1 | \chapter{\CFA Enumeration}
|
---|
2 |
|
---|
3 |
|
---|
4 | \CFA supports C enumeration using the same syntax and semantics for backwards compatibility.
|
---|
5 | \CFA also extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages.
|
---|
6 |
|
---|
7 |
|
---|
8 | \section{Enumerator Name Resolution}
|
---|
9 | \label{s:EnumeratorNameResolution}
|
---|
10 |
|
---|
11 | In C, unscoping of enumerators presents a \Newterm{naming problem} when multiple enumeration types appear in the same scope with duplicate enumerator names.
|
---|
12 | There is no mechanism in C to resolve these naming conflicts other than renaming of one of the duplicates, which may be impossible.
|
---|
13 |
|
---|
14 | The \CFA type-system allows extensive overloading, including enumerators.
|
---|
15 | Furthermore, \CFA uses the left-hand of assignment in type resolution to pinpoint the best overloaded name.
|
---|
16 | Finally, qualification is provided to disambiguate any ambiguous situations.
|
---|
17 | \begin{cfa}
|
---|
18 | enum E1 { First, Second, Third, Fourth };
|
---|
19 | enum E2 { @Fourth@, @Third@, @Second@, @First@ };
|
---|
20 | E1 p() { return Third; } $\C{// correctly resolved duplicate names}$
|
---|
21 | E2 p() { return Fourth; }
|
---|
22 | void foo() {
|
---|
23 | E1 e1 = First; E2 e2 = First;
|
---|
24 | e1 = Second; e2 = Second;
|
---|
25 | e1 = p(); e2 = p(); $\C{// correctly resolved function call}$
|
---|
26 | int i = @E1.@First + @E2.@First; $\C{// disambiguate with qualification}$
|
---|
27 | int j = @(E1)@First + @(E2)@First; $\C{// disambiguate with cast}$
|
---|
28 | }
|
---|
29 | \end{cfa}
|
---|
30 | \CFA overloading allows programmers to use the most meaningful names without fear of name clashes from include files.
|
---|
31 | Either the type system implicitly disambiguates or the programmer explicitly disambiguates using qualification or casting.
|
---|
32 |
|
---|
33 |
|
---|
34 | \section{Enumerator Scoping}
|
---|
35 |
|
---|
36 | An enumeration can be scoped, so the enumerator constants are not projected into the enclosing scope, using @'!'@.
|
---|
37 | \begin{cfa}
|
---|
38 | enum Weekday @!@ { Mon, Tue, Wed, Thu = 10, Fri, Sat, Sun };
|
---|
39 | enum RGB @!@ { Red, Green, Blue };
|
---|
40 | \end{cfa}
|
---|
41 | Now the enumerators \emph{must} be qualified with the associated enumeration.
|
---|
42 | \begin{cfa}
|
---|
43 | Weekday weekday = @Weekday@.Mon;
|
---|
44 | weekday = @Weekday@.Sat;
|
---|
45 | RGB rgb = RGB.Red;
|
---|
46 | rgb = RGB.Blue;
|
---|
47 | \end{cfa}
|
---|
48 | It is possible to toggle back to unscoping using the \CFA @with@ clause/statement (see also \CC \lstinline[language=c++]{using enum} in Section~\ref{s:C++RelatedWork}).
|
---|
49 | \begin{cfa}
|
---|
50 | with ( @Weekday@, @RGB@ ) { $\C{// type names}$
|
---|
51 | weekday = @Sun@; $\C{// no qualification}$
|
---|
52 | rgb = @Green@;
|
---|
53 | }
|
---|
54 | \end{cfa}
|
---|
55 | As in Section~\ref{s:EnumeratorNameResolution}, opening multiple unscoped enumerations can result in duplicate enumeration names, but \CFA implicit type resolution and explicit qualification/casting handles name resolution.
|
---|
56 |
|
---|
57 | \section{Enumerator Typing}
|
---|
58 |
|
---|
59 | \CFA extends the enumeration declaration by parameterizing with a type (like a generic type), allowing enumerators to be assigned any values from the declared type.
|
---|
60 | Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's constants used to set the enumerator constants.
|
---|
61 | Note, the synonyms @Liz@ and @Beth@ in the last declaration.
|
---|
62 |
|
---|
63 | Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are rewritten with @const@.
|
---|
64 | A typed enumeration has an implicit (safe) conversion to its base type.
|
---|
65 | \begin{cfa}
|
---|
66 | char currency = Dollar;
|
---|
67 | string fred = Fred; $\C{// implicit conversion from char * to \CFA string type}$
|
---|
68 | Person student = Beth;
|
---|
69 | \end{cfa}
|
---|
70 |
|
---|
71 | % \begin{cfa}
|
---|
72 | % struct S { int i, j; };
|
---|
73 | % enum( S ) s { A = { 3, 4 }, B = { 7, 8 } };
|
---|
74 | % enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$' };
|
---|
75 | % enum( @double@ ) Planet { Venus = 4.87, Earth = 5.97, Mars = 0.642 }; // mass
|
---|
76 | % enum( @char *@ ) Colour { Red = "red", Green = "green", Blue = "blue" };
|
---|
77 | % enum( @Currency@ ) Europe { Euro = '$\texteuro$', Pound = '$\textsterling$' }; // intersection
|
---|
78 | % \end{cfa}
|
---|
79 |
|
---|
80 | \begin{figure}
|
---|
81 | \begin{cfa}
|
---|
82 | // integral
|
---|
83 | enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
|
---|
84 | enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
|
---|
85 | enum( @long long int@ ) BigNum { X = 123_456_789_012_345, Y = 345_012_789_456_123 };
|
---|
86 | // non-integral
|
---|
87 | enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
|
---|
88 | enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
|
---|
89 | // pointer
|
---|
90 | enum( @const char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
|
---|
91 | int i, j, k;
|
---|
92 | enum( @int *@ ) ptr { I = &i, J = &j, K = &k };
|
---|
93 | enum( @int &@ ) ref { I = i, J = j, K = k };
|
---|
94 | // tuple
|
---|
95 | enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
|
---|
96 | // function
|
---|
97 | void f() {...} void g() {...}
|
---|
98 | enum( @void (*)()@ ) funs { F = f, G = g };
|
---|
99 | // aggregate
|
---|
100 | struct Person { char * name; int age, height; };
|
---|
101 | @***@enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
|
---|
102 | Jon = { "JONATHAN", 35, 190 } };
|
---|
103 | \end{cfa}
|
---|
104 | \caption{Enumerator Typing}
|
---|
105 | \label{f:EumeratorTyping}
|
---|
106 | \end{figure}
|
---|
107 |
|
---|
108 | Typed enumerations deals with the \emph{harmonizing} problem between an enumeration and any companion data.
|
---|
109 | The following example is from the \CFA compiler, written in \CC.
|
---|
110 | \begin{cfa}
|
---|
111 | enum integral_types { chr, schar, uschar, sshort, ushort, sint, usint, ..., NO_OF_ITYPES };
|
---|
112 | char * integral_names[NO_OF_ITYPES] = {
|
---|
113 | "char", "signed char", "unsigned char",
|
---|
114 | "signed short int", "unsigned short int",
|
---|
115 | "signed int", "unsigned int",
|
---|
116 | ...
|
---|
117 | };
|
---|
118 | \end{cfa}
|
---|
119 | The \emph{harmonizing} problem occurs because the enumeration declaration is in one header file and the names are declared in another translation unit.
|
---|
120 | It is up to the programmer to ensure changes made in one location are harmonized with the other location (by identifying this requirement within a comment).
|
---|
121 | The typed enumeration largely solves this problem by combining and managing the two data types.
|
---|
122 | \begin{cfa}
|
---|
123 | enum( char * ) integral_types {
|
---|
124 | chr = "char", schar = "signed char", uschar = "unsigned char",
|
---|
125 | sshort = "signed short int", ushort = "unsigned short int",
|
---|
126 | sint = "signed int", usint = "unsigned int",
|
---|
127 | ...
|
---|
128 | };
|
---|
129 | \end{cfa}
|
---|
130 | Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
|
---|
131 |
|
---|
132 | While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are not used to evaluate an enumerator's value.
|
---|
133 | \CFA enumeration constants are compile-time values (static);
|
---|
134 | calling constructors happens at runtime (dynamic).
|
---|
135 |
|
---|
136 |
|
---|
137 | \section{Pure Enumerators}
|
---|
138 |
|
---|
139 | An empty enumerator type, @enum()@, implies the enumerators are pure symbols without values but set properties;
|
---|
140 | hence, there is no default conversion to @int@.
|
---|
141 |
|
---|
142 | \begin{cfa}
|
---|
143 | enum() Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND };
|
---|
144 | Mode iomode = O_RDONLY;
|
---|
145 | bool b = iomode == O_RDONLY || iomode < O_APPEND; $\C{// ordering}$
|
---|
146 | @***@@int i = iomode;@ $\C{// disallow conversion to int}$
|
---|
147 | \end{cfa}
|
---|
148 |
|
---|
149 | \section{Enumerator Subset}
|
---|
150 |
|
---|
151 | If follows from enumerator typing that the enumerator type can be another enumerator.
|
---|
152 | \begin{cfa}
|
---|
153 | enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
|
---|
154 | enum( Currency ) Europe { Euro = Currency.Euro, Pound = Currency.Pound };
|
---|
155 | enum( char ) Letter { A = 'A', B = 'B', C = 'C', ..., Z = 'Z' };
|
---|
156 | enum( @Letter@ ) Greek { Alph = A, Beta = B, ..., Zeta = Z }; // intersection
|
---|
157 | \end{cfa}
|
---|
158 | Subset enumerations may have more or less enumerators than their typed enumeration, but the enumerator values must be from the typed enumeration.
|
---|
159 | For example, @Greek@ enumerators are a subset of type @Letter@ and are type compatible with enumeration @Letter@, but @Letter@ enumerators are not type compatible with enumeration @Greek@.
|
---|
160 | \begin{cfa}
|
---|
161 | Letter letter = A;
|
---|
162 | Greak greek = Beta;
|
---|
163 | letter = Beta; $\C{// allowed, greek == B}$
|
---|
164 | @greek = A;@ $\C{// disallowed}$
|
---|
165 | \end{cfa}
|
---|
166 |
|
---|
167 |
|
---|
168 | \section{Enumeration Inheritance}
|
---|
169 |
|
---|
170 | \CFA Plan-9 inheritance may be used with enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C).
|
---|
171 | \begin{cfa}
|
---|
172 | enum( char * ) Names { /* as above */ };
|
---|
173 | enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
|
---|
174 | @***@enum /* inferred */ Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
|
---|
175 | \end{cfa}
|
---|
176 | Enumeration @Name2@ inherits all the enumerators and their values from enumeration @Names@ by containment, and a @Names@ enumeration is a subtype of enumeration @Name2@.
|
---|
177 | Note, enumerators must be unique in inheritance but enumerator values may be repeated.
|
---|
178 |
|
---|
179 | The enumeration type for the inheriting type must be the same as the inherited type;
|
---|
180 | hence the enumeration type may be omitted for the inheriting enumeration and it is inferred from the inherited enumeration, as for @Name3@.
|
---|
181 | % When inheriting from integral types, automatic numbering may be used, so the inheritance placement left to right is important.
|
---|
182 | Specifically, the inheritance relationship for @Names@ is:
|
---|
183 | \begin{cfa}
|
---|
184 | Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\(\subset\)$ const char * $\C{// enum type of Names}$
|
---|
185 | \end{cfa}
|
---|
186 | For the given function prototypes, the following calls are valid.
|
---|
187 | \begin{cquote}
|
---|
188 | \begin{tabular}{ll}
|
---|
189 | \begin{cfa}
|
---|
190 | void f( Names );
|
---|
191 | void g( Names2 );
|
---|
192 | void h( Names3 );
|
---|
193 | void j( const char * );
|
---|
194 | \end{cfa}
|
---|
195 | &
|
---|
196 | \begin{cfa}
|
---|
197 | f( Fred );
|
---|
198 | g( Fred ); g( Jill );
|
---|
199 | h( Fred ); h( Jill ); h( Sue );
|
---|
200 | j( Fred ); j( Jill ); j( Sue ); j( "WILL" );
|
---|
201 | \end{cfa}
|
---|
202 | \end{tabular}
|
---|
203 | \end{cquote}
|
---|
204 | Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
|
---|
205 |
|
---|
206 |
|
---|
207 | \section{Enumeration Pseudo-functions}
|
---|
208 |
|
---|
209 | Pseudo-functions are function-like operators that do not result in any run-time computations, \ie like @sizeof@, @offsetof@, @typeof@.
|
---|
210 | Often a call to a pseudo-function is substituted with information extracted from the symbol table at compilation time, like storage size or alignment associated with the underlying architecture..
|
---|
211 |
|
---|
212 | The attributes of an enumerator are accessed by pseudo-functions @position@, @value@, and @label@.
|
---|
213 | \begin{cfa}
|
---|
214 | @***@int jane_pos = @position@( Names.Jane ); $\C{// 2}$
|
---|
215 | @***@char * jane_value = @value@( Names.Jane ); $\C{// "JANE"}$
|
---|
216 | @***@char * jane_label = @label@( Names.Jane ); $\C{// "Jane"}$
|
---|
217 | sout | @label@( Names.Jane ) | @value@( Names.Jane );
|
---|
218 | \end{cfa}
|
---|
219 | Note the ability to print both enumerator label and value.
|
---|
220 |
|
---|
221 |
|
---|
222 | \section{Enumerator Position or Value}
|
---|
223 |
|
---|
224 | Enumerators can be used in multiple contexts.
|
---|
225 | In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
|
---|
226 | However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts.
|
---|
227 | In these contexts, a programmer's initition assumes an implicit conversion to postion.
|
---|
228 |
|
---|
229 | For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implict @break@ rather than a fall-through at the end of a @case@ clause.
|
---|
230 | \begin{cquote}
|
---|
231 | \begin{cfa}
|
---|
232 | enum Count { First, Second, Third, Fourth };
|
---|
233 | Count e;
|
---|
234 | \end{cfa}
|
---|
235 | \begin{tabular}{ll}
|
---|
236 | \begin{cfa}
|
---|
237 |
|
---|
238 | choose( e ) {
|
---|
239 | case @First@: ...;
|
---|
240 | case @Second@: ...;
|
---|
241 | case @Third@: ...;
|
---|
242 | case @Fourth@: ...;
|
---|
243 | }
|
---|
244 | \end{cfa}
|
---|
245 | &
|
---|
246 | \begin{cfa}
|
---|
247 | // rewrite
|
---|
248 | choose( @value@( e ) ) {
|
---|
249 | case @value@( First ): ...;
|
---|
250 | case @value@( Second ): ...;
|
---|
251 | case @value@( Third ): ...;
|
---|
252 | case @value@( Fourth ): ...;
|
---|
253 | }
|
---|
254 | \end{cfa}
|
---|
255 | \end{tabular}
|
---|
256 | \end{cquote}
|
---|
257 | Here, the intuitive code on the left is implicitly transformed into the statndard implementation on the right, using the value of the enumeration variable and enumerators.
|
---|
258 | However, this implementation is fragile, \eg if the enumeration is changed to:
|
---|
259 | \begin{cfa}
|
---|
260 | enum Count { First, Second, Third @= First@, Fourth };
|
---|
261 | \end{cfa}
|
---|
262 | which make @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicase @case@ clauses.
|
---|
263 | To better match with programmer intuition, \CFA toggles between value and position semantics depneding on the language context.
|
---|
264 | For conditional clauses and switch statments, \CFA uses the robust position implementation.
|
---|
265 | \begin{cfa}
|
---|
266 | choose( @position@( e ) ) {
|
---|
267 | case @position@( First ): ...;
|
---|
268 | case @position@( Second ): ...;
|
---|
269 | case @position@( Third ): ...;
|
---|
270 | case @position@( Fourth ): ...;
|
---|
271 | }
|
---|
272 | \end{cfa}
|
---|
273 |
|
---|
274 | \begin{cfa}
|
---|
275 | Count variable_a = First, variable_b = Second, variable_c = Third, variable_d = Fourth;
|
---|
276 | p(variable_a); // 0
|
---|
277 | p(variable_b); // 1
|
---|
278 | p(variable_c); // "Third"
|
---|
279 | p(variable_d); // 3
|
---|
280 | \end{cfa}
|
---|
281 |
|
---|
282 |
|
---|
283 | \section{Planet Example}
|
---|
284 |
|
---|
285 | \VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating all of the \CFA enumeration features.
|
---|
286 | Enumeration @Planet@ is a typed enumeration of type @MR@.
|
---|
287 | Each of the planet enumerators is initialized to a specific mass/radius, @MR@, value.
|
---|
288 | The unnamed enumeration projects the gravitational-constant enumerator @G@.
|
---|
289 | The program main iterates through the planets computing the weight on each planet for a given earth weight.
|
---|
290 |
|
---|
291 | \begin{figure}
|
---|
292 | \begin{cfa}
|
---|
293 | struct MR { double mass, radius; };
|
---|
294 | enum( MR ) Planet {
|
---|
295 | // mass radius
|
---|
296 | MERCURY = { 3.303_E23, 2.4397_E6 },
|
---|
297 | VENUS = { 4.869_E24, 6.0518_E6 },
|
---|
298 | EARTH = { 5.976_E24, 6.3781_E6 },
|
---|
299 | MARS = { 6.421_E23, 3.3972_E6 },
|
---|
300 | JUPITER = { 1.898_E27, 7.1492_E7 },
|
---|
301 | SATURN = { 5.688_E26, 6.0268_E7 },
|
---|
302 | URANUS = { 8.686_E25, 2.5559_E7 },
|
---|
303 | NEPTUNE = { 1.024_E26, 2.4746_E7 },
|
---|
304 | };
|
---|
305 | enum( double ) { G = 6.6743E-11 }; // universal gravitational constant (m3 kg-1 s-2)
|
---|
306 |
|
---|
307 | static double surfaceGravity( Planet p ) with( p ) {
|
---|
308 | return G * mass / ( radius * radius );
|
---|
309 | }
|
---|
310 | static double surfaceWeight( Planet p, double otherMass ) {
|
---|
311 | return otherMass * surfaceGravity( p );
|
---|
312 | }
|
---|
313 | int main( int argc, char * argv[] ) {
|
---|
314 | if ( argc != 2 ) exit | "Usage: " | argv[0] | "earth-weight";
|
---|
315 | double earthWeight = convert( argv[1] );
|
---|
316 | double mass = earthWeight / surfaceGravity( EARTH );
|
---|
317 | for ( p; Planet ) {
|
---|
318 | sout | "Your weight on" | labelE(p) | "is" | surfaceWeight( p, mass );
|
---|
319 | }
|
---|
320 | }
|
---|
321 | \end{cfa}
|
---|
322 | \caption{Planet Example}
|
---|
323 | \label{f:PlanetExample}
|
---|
324 | \end{figure}
|
---|