source: doc/theses/jiada_liang_MMath/CFAenum.tex @ 4c63025

Last change on this file since 4c63025 was fd0a9bf, checked in by Peter A. Buhr <pabuhr@…>, 14 hours ago

formatting

  • Property mode set to 100644
File size: 26.8 KB
Line 
1\chapter{\CFA Enumeration}
2
3\CFA extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages.
4Any enumeration extensions must be intuitive to C programmers both in syntax and semantics.
5The following sections detail all of my new contributions to enumerations in \CFA.
6
7
8\section{Syntax}
9
10\CFA extends the C enumeration declaration \see{\VRef{s:CEnumeration}} by parameterizing with a type (like a generic type), and adding Plan-9 inheritance \see{\VRef{s:CFAInheritance}} using an @inline@ to another enumeration type.
11\begin{cfa}[identifierstyle=\linespread{0.9}\it]
12$\it enum$-specifier:
13        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list }
14        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list , }
15        enum @(type-specifier$\(_{opt}\)$)@ identifier
16cfa-enumerator-list:
17        cfa-enumerator
18        cfa-enumerator-list, cfa-enumerator
19cfa-enumerator:
20        enumeration-constant
21        @inline $\color{red}enum$-type-name@
22        enumeration-constant = constant-expression
23\end{cfa}
24
25
26\section{Operations}
27
28\CFA enumerations have access to the three enumerations properties \see{\VRef{s:Terminology}}: label, order (position), and value via three overloaded functions @label@, @posn@, and @value@ \see{\VRef{c:trait} for details}.
29\CFA auto-generates these functions for every \CFA enumeration.
30\begin{cfa}
31enum(int) E { A = 3 } e = A;
32sout | A | @label@( A ) | @posn@( A ) | @value@( A );
33sout | e | @label@( e ) | @posn@( e ) | @value@( e );
34A A 0 3
35A A 0 3
36\end{cfa}
37For output, the default is to print the label.
38An alternate way to get an enumerator's position is to cast it to @int@.
39\begin{cfa}
40sout | A | label( A ) | @(int)A@ | value( A );
41sout | A | label( A ) | @(int)A@ | value( A );
42A A @0@ 3
43A A @0@ 3
44\end{cfa}
45Finally, there is an additional enumeration pseudo-function @countof@ (like @sizeof@, @typeof@) that returns the number of enumerators in an enumeration.
46\begin{cfa}
47enum(int) E { A, B, C, D } e;
48countof( E )// 4, type argument
49countof( e )// 4, variable argument
50\end{cfa}
51This buildin function replaces the C idiom for automatically computing the number of enumerators \see{\VRef{s:Usage}}.
52\begin{cfa}
53enum E { A, B, C, D, @N@ };  // N == 4
54\end{cfa}
55
56The underlying representation of \CFA enumeration object is its position, saved as an integral type.
57Therefore, the size of a \CFA enumeration is consistent with a C enumeration.
58Attribute function @posn@ performs type substitution on an expression from \CFA type to integral type.
59The label and value of an enumerator is stored in a global data structure for each enumeration, where attribute functions @label@/@value@ map an \CFA enumeration object to the corresponding data.
60These operations do not apply to C Enums because backwards compatibility means the necessary backing data structures cannot be supplied.
61
62
63\section{Opaque Enumeration}
64\label{s:OpaqueEnum}
65
66When an enumeration type is empty is it an \newterm{opaque} enumeration.
67\begin{cfa}
68enum@()@ Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND };
69\end{cfa}
70Here, the internal representation is chosen by the compiler and hidden, so the enumerators cannot be initialized.
71Compared to the C enum, opaque enums are more restrictive in terms of typing and cannot be implicitly converted to integers.
72\begin{cfa}
73Mode mode = O_RDONLY;
74int www @=@ mode;                                               $\C{// disallowed}$
75\end{cfa}
76Opaque enumerations have only two attribute properties @label@ and @posn@.
77\begin{cfa}
78char * s = label( O_TRUNC );                    $\C{// "O\_TRUNC"}$
79int open = posn( O_WRONLY );                    $\C{// 1}$
80\end{cfa}
81The equality and relational operations are available.
82\begin{cfa}
83if ( mode @==@ O_CREAT ) ...
84bool b = mode @<@ O_APPEND;
85\end{cfa}
86
87
88\section{Typed Enumeration}
89\label{s:EnumeratorTyping}
90
91When an enumeration type is specified, all enumerators have that type and can be initialized with constants of that type or compile-time convertable to that type.
92Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's values used to set the enumerator constants.
93Note, the use of the synonyms @Liz@ and @Beth@ in the last declaration.
94Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@.
95
96\begin{figure}
97\begin{cfa}
98// integral
99        enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
100        enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
101        enum( @long long int@ ) BigNum { X = 123_456_789_012_345,  Y = 345_012_789_456_123 };
102// non-integral
103        enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
104        enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
105// pointer
106        enum( @char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
107        int i, j, k;
108        enum( @int *@ ) ptr { I = &i,  J = &j,  K = &k };
109        enum( @int &@ ) ref { I = i,   J = j,   K = k };
110// tuple
111        enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
112// function
113        void f() {...}   void g() {...}
114        enum( @void (*)()@ ) funs { F = f,  G = g };
115// aggregate
116        struct Person { char * name; int age, height; };
117        enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
118                                                                        Jon = { "JONATHAN", 35, 190 } };
119\end{cfa}
120% synonym feature unimplemented
121\caption{Enumerator Typing}
122\label{f:EumeratorTyping}
123\end{figure}
124
125An advantage of the typed enumerations is eliminating the \emph{harmonizing} problem between an enumeration and companion data \see{\VRef{s:Usage}}:
126\begin{cfa}
127enum( char * ) integral_types {
128        chr = "char", schar = "signed char", uschar = "unsigned char",
129        sshort = "signed short int", ushort = "unsigned short int",
130        sint = "signed int", usint = "unsigned int",
131        ...
132};
133\end{cfa}
134Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
135
136While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are \emph{not} used to evaluate an enumerator's value.
137\CFA enumeration constants are compile-time values (static);
138calling constructors happens at runtime (dynamic).
139
140
141\section{Value Conversion}
142
143C has an implicit type conversion from an enumerator to its base type @int@.
144Correspondingly, \CFA has an implicit conversion from a typed enumerator to its base type, allowing typed enumeration to be seamlessly used as the value of its base type
145For example, using type @Currency@ in \VRef[Figure]{f:EumeratorTyping}:
146\begin{cfa}
147char currency = Dollar;         $\C{// implicit conversion to base type}$
148void foo( char );
149foo( Dollar );                          $\C{// implicit conversion to base type}$
150\end{cfa}
151The implicit conversion induces a \newterm{value cost}, which is a new category (8 tuple) in \CFA's conversion cost model \see{\VRef{s:ConversionCost}} to disambiguate function overloading over a \CFA enumeration and its base type.
152\begin{cfa}
153void baz( char ch );            $\C{// (1)}$
154void baz( Currency cu );        $\C{// (2)}$
155baz( Dollar );
156\end{cfa}
157While both @baz@ functions are applicable to the enumerator @Dollar@, @candidate (1)@ comes with a @value@ cost for the conversion to the enumeration's base type, while @candidate (2)@ has @zero@ cost.
158Hence, \CFA chooses the exact match.
159Value cost is defined to be a more significant factor than an @unsafe@ but less than the other conversion costs: @(unsafe,@ {\color{red}@value@}@, poly, safe, sign, vars, specialization,@ @reference)@.
160\begin{cfa}
161void bar( @int@ );
162Math x = PI;                            $\C{// (1)}$
163double x = 5.5;                         $\C{// (2)}$
164bar( x );                                       $\C{// costs (1, 0, 0, 0, 0, 0, 0, 0) or (0, 1, 0, 0, 0, 0, 0, 0)}$
165\end{cfa}
166Here, candidate (1) has a value conversion cost to convert to the base type, while candidate (2) has an unsafe conversion from @double@ to @int@.
167Hence, @bar( x )@ resolves @x@ as type @Math@.
168
169% \begin{cfa}
170% forall(T | @CfaEnum(T)@) void bar(T);
171%
172% bar(a);                                       $\C{// (3), with cost (0, 0, 1, 0, 0, 0, 0, 0)}$
173% \end{cfa}
174% % @Value@ is designed to be less significant than @poly@ to allow function being generic over \CFA enumeration (see ~\ref{c:trait}).
175% Being generic over @CfaEnum@ traits (a pre-defined interface for \CFA enums) is a practice in \CFA to implement functions over \CFA enumerations, as will see in chapter~\ref{c:trait}.
176% @Value@ is a being a more significant cost than @poly@ implies if a overloaeded function defined for @CfaEnum@ (and other generic type), \CFA always try to resolve it as a @CfaEnum@, rather to insert a @value@ conversion.
177
178
179\section{Auto Initialization}
180
181A partially implemented feature is auto-initialization, which works for the C integral type with constant expressions.
182\begin{cfa}
183enum Week { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun }; // 0-2, 10-13
184\end{cfa}
185The complexity of the constant expression depends on the level of computation the compiler implements, \eg \CC \lstinline[language={[GNU]C++}]{constexpr} provides complex compile-time computation across multiple types, which blurs the compilation/runtime boundary.
186
187If \CFA had powerful compilation expression evaluation, auto initialization would be implemented as follows.
188\begin{cfa}
189enum E(T) { A, B, C };
190\end{cfa}
191\begin{enumerate}
192\item the first enumerator, @A@, is initialized with @T@'s @zero_t@.
193\item otherwise, the next enumerator is initialized with the previous enumerator's value using operator @?++@, where @?++( T )@ can be overloaded for any type @T@.
194\end{enumerate}
195
196Unfortunately, constant expressions in C are not powerful and \CFA is only a transpiler, relying on generated C code to perform the detail work.
197It is currently beyond the scope of the \CFA project to implement a complex runtime interpreter in the transpiler to evaluate complex expressions across multiple builtin and user-defined type.
198Nevertheless, the necessary language concepts exist to support this feature.
199
200
201\section{Subset}
202
203An enumeration's type can be another enumeration.
204\begin{cfa}
205enum( char ) Letter { A = 'A', ..., Z = 'Z' };
206enum( @Letter@ ) Greek { Alph = @A@, Beta = @B@, Gamma = @G@, ..., Zeta = @Z@ }; // alphabet intersection
207\end{cfa}
208Enumeration @Greek@ may have more or less enumerators than @Letter@, but its enumerator values \emph{must} be from @Letter@.
209Therefore, the set of @Greek@ enumerator values in a subset of the @Letter@ enumerator values.
210@Letter@ is type compatible with enumeration @Letter@ because value conversions are inserted whenever @Letter@ is used in place of @Greek@.
211\begin{cfa}
212Letter l = A;                                           $\C{// allowed}$
213Greek g = Alph;                                         $\C{// allowed}$
214l = Alph;                                                       $\C{// allowed, conversion to base type}$
215g = A;                                                          $\C{// {\color{red}disallowed}}$
216void foo( Letter );
217foo( Beta );                                            $\C{// allowed, conversion to base type}$
218void bar( Greek );
219bar( A );                                                       $\C{// {\color{red}disallowed}}$
220\end{cfa}
221Hence, @Letter@ enumerators are not type compatible with the @Greek@ enumeration but the reverse is true.
222
223
224\section{Inheritance}
225\label{s:CFAInheritance}
226
227\CFA Plan-9 inheritance may be used with \CFA enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C).
228Containment is nominative: an enumeration inherits all enumerators from another enumeration by declaring an @inline statement@ in its enumerator lists.
229\begin{cfa}
230enum( char * ) Names { /* $\see{\VRef[Figure]{f:EumeratorTyping}}$ */  };
231enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
232enum( char * ) Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
233\end{cfa}
234In the preceding example, @Names2@ is defined with five enumerators, three of which are from @Name@ through containment, and two are self-declared.
235@Names3@ inherits all five members from @Names2@ and declares two additional enumerators.
236Hence, enumeration inheritance forms a subset relationship.
237Specifically, the inheritance relationship for the example above is:
238\begin{cfa}
239Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\C{// enum type of Names}$
240\end{cfa}
241
242Inheritance can be nested, and a \CFA enumeration can inline enumerators from more than one \CFA enumeration, forming a tree-like hierarchy.
243However, the uniqueness of enumeration name applies to enumerators, including those from supertypes, meaning an enumeration cannot name enumerator with the same label as its subtype's members, or inherits
244from multiple enumeration that has overlapping enumerator label. As a consequence, a new type cannot inherits from both an enumeration and its supertype, or two enumerations with a
245common supertype (the diamond problem), since such would unavoidably introduce duplicate enumerator labels.
246
247The base type must be consistent between subtype and supertype.
248When an enumeration inherits enumerators from another enumeration, it copies the enumerators' @value@ and @label@, even if the @value@ is auto initialized.
249However, the position of the underlying representation is the order of the enumerator in the new enumeration.
250\begin{cfa}
251enum() E1 { B };                                                                        $\C{// B}$                                             
252enum() E2 { C, D };                                             $\C{// C D}$
253enum() E3 { inline E1, inline E2, E };  $\C{// {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E}$
254enum() E4 { A, inline E3, F};                   $\C{// A {\color{blue}[\(_{E3}\)} {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E {\color{blue}]} F}$
255\end{cfa}
256In the example, @B@ is at position 0 in @E1@ and @E3@, but position 1 in @E4@ as @A@ takes position 0 in @E4@.
257@C@ is at position 0 in @E2@, 1 in @E3@, and 2 in @E4@.
258@D@ is at position 1 in @E2@, 2 in @E3@, and 3 in @E4@.
259
260A subtype enumeration can be casted, or implicitly converted into its supertype, with a @safe@ cost, called \newterm{enumeration conversion}.
261\begin{cfa}
262enum E2 e2 = C;
263posn( e2 );                     $\C[1.75in]{// 0}$
264enum E3 e3 = e2;
265posn( e2 );                     $\C{// 1 cost}$
266void foo( E3 e );
267foo( e2 );
268posn( (E3)e2 );         $\C{// 1 cost}$
269E3 e31 = B;
270posn( e31 );            $\C{// 0 cost}\CRT$
271\end{cfa}
272The last expression is unambiguous.
273While both @E2.B@ and @E3.B@ are valid candidates, @E2.B@ has an associated safe cost, so \CFA selects the zero cost candidate.
274
275For the given function prototypes, the following calls are valid.
276\begin{cquote}
277\begin{tabular}{ll}
278\begin{cfa}
279void f( Names );
280void g( Names2 );
281void h( Names3 );
282void j( const char * );
283\end{cfa}
284&
285\begin{cfa}
286f( Fred );
287g( Fred );   g( Jill );
288h( Fred );   h( Jill );   h( Sue );
289j( Fred );    j( Jill );    j( Sue );    j( "WILL" );
290\end{cfa}
291\end{tabular}
292\end{cquote}
293Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
294
295
296\subsection{Offset Calculation}
297
298As discussed in \VRef{s:OpaqueEnum}, \CFA chooses position as a representation of a \CFA enumeration variable.
299When a cast or implicit conversion moves an enumeration from subtype to supertype, the position can be unchanged or increase.
300\CFA determines the position offset with an \newterm{offset calculation} function.
301
302\begin{figure}
303\begin{cfa}
304struct Enumerator;
305struct CFAEnum { vector<variant<CFAEnum, Enumerator>> members; string name; };
306inline static bool operator==(CFAEnum& lhs, CFAEnum& rhs) { return lhs.name == rhs.name; }
307pair<bool, int> calculateEnumOffset(CFAEnum src, CFAEnum dst) {
308        int offset = 0;
309        if ( src == dst ) return make_pair(true, 0);
310        for ( auto v : dst.members ) {
311                if ( holds_alternative<Enumerator>(v) ) {
312                        offset++;
313                } else {
314                        auto m = get<CFAEnum>(v);
315                        if ( m == src ) @return@ make_pair( true, offset );
316                        auto dist = calculateEnumOffset( src, m );
317                        if ( dist.first ) {
318                                @return@ make_pair( true, offset + dist.second );
319                        } else {
320                                offset += dist.second;
321                        }
322                }
323        }
324        @return@ make_pair( false, offset );
325}
326\end{cfa}
327\caption{Compute Offset from Subtype Enumeration to a Supertype}
328\label{s:OffsetSubtypeSuperType}
329\end{figure}
330
331Figure~\ref{s:OffsetSubtypeSuperType} shows an outline of the offset calculation in \CC.
332Structure @CFAEnum@ represents the \CFA enumeration with a vector of variants of @CFAEnum@ or @Enumerator@.
333The algorithm takes two @CFAEnums@ parameters, @src@ and @dst@, with @src@ being the type of expression the conversion applies to, and @dst@ being the type the expression is cast to.
334The algorithm iterates over the members in @dst@ to find @src@.
335If a member is an enumerator of @dst@, the positions of all subsequent members is increment by one.
336If the current member is @dst@, the function returns true indicating \emph{found} and the accumulated offset.
337Otherwise, the algorithm recurses into the current @CFAEnum@ @m@ to check if its @src@ is convertible to @m@.
338If @src@ is convertible to the current member @m@, this means @src@ is a subtype-of-subtype of @dst@.
339The offset between @src@ and @dst@ is the sum of the offset of @m@ in @dst@ and the offset of @src@ in @m@.
340If @src@ is not a subtype of @m@, the loop continues but with the offset shifted by the size of @m@.
341If the loop ends, than @src@ is not convertible to @dst@, and false is returned.
342
343
344\section{Control Structures}
345
346Enumerators can be used in multiple contexts.
347In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
348However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts.
349In these contexts, a programmer's intuition assumes an implicit conversion to position.
350
351For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implicit @break@ rather than a fall-through at the end of a @case@ clause.
352(For this discussion, ignore the fact that @case@ requires a compile-time constant.)
353\begin{cfa}[belowskip=0pt]
354enum Count { First, Second, Third, Fourth };
355Count e;
356\end{cfa}
357\begin{cquote}
358\setlength{\tabcolsep}{15pt}
359\noindent
360\begin{tabular}{@{}ll@{}}
361\begin{cfa}[aboveskip=0pt]
362
363choose( e ) {
364        case @First@: ...;
365        case @Second@: ...;
366        case @Third@: ...;
367        case @Fourth@: ...;
368}
369\end{cfa}
370&
371\begin{cfa}[aboveskip=0pt]
372// rewrite
373choose( @value@( e ) ) {
374        case @value@( First ): ...;
375        case @value@( Second ): ...;
376        case @value@( Third ): ...;
377        case @value@( Fourth ): ...;
378}
379\end{cfa}
380\end{tabular}
381\end{cquote}
382Here, the intuitive code on the left is implicitly transformed into the standard implementation on the right, using the value of the enumeration variable and enumerators.
383However, this implementation is fragile, \eg if the enumeration is changed to:
384\begin{cfa}
385enum Count { First, Second, Third @= First@, Fourth };
386\end{cfa}
387making @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicate @case@ clauses.
388To better match with programmer intuition, \CFA toggles between value and position semantics depending on the language context.
389For conditional clauses and switch statements, \CFA uses the robust position implementation.
390\begin{cfa}
391if ( @posn@( e ) < posn( Third ) ) ...
392choose( @posn@( e ) ) {
393        case @posn@( First ): ...;
394        case @posn@( Second ): ...;
395        case @posn@( Third ): ...;
396        case @posn@( Fourth ): ...;
397}
398\end{cfa}
399
400\CFA provides a special form of for-control for enumerating through an enumeration, where the range is a type.
401\begin{cfa}
402for ( cx; @Count@ ) { sout | cx | nonl; } sout | nl;
403for ( cx; ~= Count ) { sout | cx | nonl; } sout | nl;
404for ( cx; -~= Count ) { sout | cx | nonl; } sout | nl;
405First Second Third Fourth
406First Second Third Fourth
407Fourth Third Second First
408\end{cfa}
409The enumeration type is syntax sugar for looping over all enumerators and assigning each enumerator to the loop index, whose type is inferred from the range type.
410The prefix @+~=@ or @-~=@ iterate forward or backwards through the inclusive enumeration range, where no prefix defaults to @+~=@.
411
412C has an idiom for @if@ and loop predicates of comparing the predicate result ``not equal to 0''.
413\begin{cfa}
414if ( x + y /* != 0 */  ) ...
415while ( p /* != 0 */  ) ...
416\end{cfa}
417This idiom extends to enumerations because there is a boolean conversion in terms of the enumeration value, if and only if such a conversion is available.
418For example, such a conversion exists for all numerical types (integral and floating-point).
419It is possible to explicitly extend this idiom to any typed enumeration by overloading the @!=@ operator.
420\begin{cfa}
421bool ?!=?( Name n, zero_t ) { return n != Fred; }
422Name n = Mary;
423if ( n ) ... // result is true
424\end{cfa}
425Specialize meanings are also possible.
426\begin{cfa}
427enum(int) ErrorCode { Normal = 0, Slow = 1, Overheat = 1000, OutOfResource = 1001 };
428bool ?!=?( ErrorCode ec, zero_t ) { return ec >= Overheat; }
429ErrorCode code = ...;
430if ( code ) { problem(); }
431\end{cfa}
432
433
434\section{Dimension}
435
436\VRef{s:EnumeratorTyping} introduces the harmonizing problem between an enumeration and secondary information.
437When possible, using a typed enumeration for the secondary information is the best approach.
438However, there are times when combining these two types is not possible.
439For example, the secondary information might precede the enumeration and/or its type is needed directly to declare parameters of functions.
440In these cases, having secondary arrays of the enumeration size are necessary.
441
442To support some level of harmonizing in these cases, an array dimension can be defined using an enumerator type, and the enumerators used as subscripts.
443\begin{cfa}
444enum E1 { A, B, C, N }; // possibly predefined
445enum(int) E2 { A, B, C };
446float H1[N] = { [A] :$\footnotemark$ 3.4, [B] : 7.1, [C] : 0.01 }; // C
447float H2[@E2@] = { [A] : 3.4, [B] : 7.1, [C] : 0.01 }; // CFA
448\end{cfa}
449\footnotetext{C uses symbol \lstinline{'='} for designator initialization, but \CFA changes it to \lstinline{':'} because of problems with tuple syntax.}
450This approach is also necessary for a predefined typed enumeration (unchangeable), when additional secondary-information need to be added.
451
452The array subscript operator, namely @?[?]@, is overloaded so that when a \CFA enumerator is used as an array index, it implicitly converts to its position over value to sustain data harmonization.
453This behaviour can be reverted by explicit overloading:
454\begin{cfa}
455float ?[?]( float * arr, E2 index ) { return arr[ value( index ) ]; }
456\end{cfa}
457When an enumeration type is being used as an array dimension, \CFA adds the enumeration type to the initializer's context.
458As a result, @H2@'s array destinators @A@, @B@ and @C@ are resolved unambiguously to type @E2@.
459(@H1@'s destinators are also resolved unambiguously to @E1@ because @E2@ has a @value@ cost.)
460
461
462\section{I/O}
463
464As seen in multiple examples, enumerations can be printed and the default property printed is the enumerator's label, which is similar in other programming languages.
465However, very few programming languages provide a mechanism to read in enumerator values.
466Even the @boolean@ type in many languages does not have a mechanism for input using the enumerators @true@ or @false@.
467\VRef[Figure]{f:EnumerationI/O} show \CFA enumeration input based on the enumerator labels.
468When the enumerator labels are packed together in the input stream, the input algorithm scans for the longest matching string.
469For basic types in \CFA, the rule is that the same constants used to initialize a variable in a program are available to initialize a variable using input, where strings constants can be quoted or unquoted.
470
471\begin{figure}
472\begin{cquote}
473\setlength{\tabcolsep}{15pt}
474\begin{tabular}{@{}ll@{}}
475\begin{cfa}
476int main() {
477        enum(int ) E { BBB = 3, AAA, AA, AB, B };
478        E e;
479
480        for () {
481                try {
482                        @sin | e@;
483                } catch( missing_data * ) {
484                        sout | "missing data";
485                        continue; // try again
486                }
487          if ( eof( sin ) ) break;
488                sout | e | "= " | value( e );
489        }
490}
491\end{cfa}
492&
493\begin{cfa}
494$\rm input$
495BBBABAAAAB
496BBB AAA AA AB B
497
498$\rm output$
499BBB = 3
500AB = 6
501AAA = 4
502AB = 6
503BBB = 3
504AAA = 4
505AA = 5
506AB = 6
507B = 7
508
509\end{cfa}
510\end{tabular}
511\end{cquote}
512\caption{Enumeration I/O}
513\label{f:EnumerationI/O}
514\end{figure}
515
516
517\section{Planet Example}
518
519\VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating most of the \CFA enumeration features.
520@Planet@ is an enumeration of type @MR@.
521Each planet enumerator is initialized to a specific mass/radius, @MR@, value.
522The unnamed enumeration provides the gravitational-constant enumerator @G@.
523Function @surfaceGravity@ uses the @with@ clause to remove @p@ qualification from fields @mass@ and @radius@.
524The program main uses the pseudo function @countof@ to obtain the number of enumerators in @Planet@, and safely converts the random value into a @Planet@ enumerator using @fromInt@.
525The resulting random orbital-body is used in a @choose@ statement.
526The enumerators in the @case@ clause use the enumerator position for testing.
527The prints use @label@ to print an enumerator's name.
528Finally, a loop enumerates through the planets computing the weight on each planet for a given earth mass.
529The print statement does an equality comparison with an enumeration variable and enumerator (@p == MOON@).
530
531\begin{figure}
532\small
533\begin{cfa}
534struct MR { double mass, radius; };                     $\C[3.5in]{// planet definition}$
535enum( @MR@ ) Planet {                                           $\C{// typed enumeration}$
536        //                      mass (kg)   radius (km)
537        MERCURY = { 0.330_E24, 2.4397_E6 },
538        VENUS      = { 4.869_E24, 6.0518_E6 },
539        EARTH       = { 5.976_E24, 6.3781_E6 },
540        MOON        = { 7.346_E22, 1.7380_E6 }, $\C{// not a planet}$
541        MARS         = { 0.642_E24, 3.3972_E6 },
542        JUPITER    = { 1898._E24, 71.492_E6 },
543        SATURN     = { 568.8_E24, 60.268_E6 },
544        URANUS    = { 86.86_E24, 25.559_E6 },
545        NEPTUNE  = { 102.4_E24, 24.746_E6 },
546        PLUTO       = { 1.303_E22, 1.1880_E6 }, $\C{// not a planet}$
547};
548enum( double ) { G = 6.6743_E-11 };                     $\C{// universal gravitational constant (m3 kg-1 s-2)}$
549static double surfaceGravity( Planet p ) @with( p )@ {
550        return G * mass / ( radius @\@ 2 );             $\C{// no qualification, exponentiation}$
551}
552static double surfaceWeight( Planet p, double otherMass ) {
553        return otherMass * surfaceGravity( p );
554}
555int main( int argc, char * argv[] ) {
556        if ( argc != 2 ) @exit@ | "Usage: " | argv[0] | "earth-weight";  // terminate program
557        double earthWeight = convert( argv[1] );
558        double earthMass = earthWeight / surfaceGravity( EARTH );
559        Planet rp = @fromInt@( prng( @countof@( Planet ) ) ); $\C{// select random orbiting body}$
560        @choose( rp )@ {                                                $\C{// implicit breaks}$
561          case MERCURY, VENUS, EARTH, MARS:
562                sout | @rp@ | "is a rocky planet";
563          case JUPITER, SATURN, URANUS, NEPTUNE:
564                sout | rp | "is a gas-giant planet";
565          default:
566                sout | rp | "is not a planet";
567        }
568        for ( @p; Planet@ ) {                                   $\C{// enumerate}\CRT$
569                sout | "Your weight on" | ( @p == MOON@ ? "the" : " " ) | p
570                           | "is" | wd( 1,1,  surfaceWeight( p, earthMass ) ) | "kg";
571        }
572}
573$\$$ planet 100
574JUPITER is a gas-giant planet
575Your weight on MERCURY is 37.7 kg
576Your weight on VENUS is 90.5 kg
577Your weight on EARTH is 100.0 kg
578Your weight on the MOON is 16.6 kg
579Your weight on MARS is 37.9 kg
580Your weight on JUPITER is 252.8 kg
581Your weight on SATURN is 106.6 kg
582Your weight on URANUS is 90.5 kg
583Your weight on NEPTUNE is 113.8 kg
584Your weight on PLUTO is 6.3 kg
585\end{cfa}
586\caption{Planet Example}
587\label{f:PlanetExample}
588\end{figure}
Note: See TracBrowser for help on using the repository browser.