source: doc/theses/jiada_liang_MMath/CFAenum.tex @ 3b10778

Last change on this file since 3b10778 was 3b10778, checked in by Peter A. Buhr <pabuhr@…>, 2 months ago

small proofreading updates

  • Property mode set to 100644
File size: 26.8 KB
Line 
1\chapter{\CFA Enumeration}
2
3\CFA extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages.
4Any enumeration extensions must be intuitive to C programmers both in syntax and semantics.
5The following sections detail all of my new contributions to enumerations in \CFA.
6
7
8\section{Syntax}
9
10\CFA extends the C enumeration declaration \see{\VRef{s:CEnumeration}} by parameterizing with a type (like a generic type), and adding Plan-9 inheritance \see{\VRef{s:CFAInheritance}} using an @inline@ to another enumeration type.
11\begin{cfa}[identifierstyle=\linespread{0.9}\it]
12$\it enum$-specifier:
13        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list }
14        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list , }
15        enum @(type-specifier$\(_{opt}\)$)@ identifier
16cfa-enumerator-list:
17        cfa-enumerator
18        cfa-enumerator-list, cfa-enumerator
19cfa-enumerator:
20        enumeration-constant
21        @inline $\color{red}enum$-type-name@
22        enumeration-constant = constant-expression
23\end{cfa}
24
25
26\section{Operations}
27
28\CFA enumerations have access to the three enumerations properties \see{\VRef{s:Terminology}}: label, order (position), and value via three overloaded functions @label@, @posn@, and @value@ \see{\VRef{c:trait} for details}.
29\CFA auto-generates these functions for every \CFA enumeration.
30\begin{cfa}
31enum(int) E { A = 3 } e = A;
32sout | A | @label@( A ) | @posn@( A ) | @value@( A );
33sout | e | @label@( e ) | @posn@( e ) | @value@( e );
34A A 0 3
35A A 0 3
36\end{cfa}
37For output, the default is to print the label.
38An alternate way to get an enumerator's position is to cast it to @int@.
39\begin{cfa}
40sout | A | label( A ) | @(int)A@ | value( A );
41sout | A | label( A ) | @(int)A@ | value( A );
42A A @0@ 3
43A A @0@ 3
44\end{cfa}
45Finally, there is an additional enumeration pseudo-function @countof@ (like @sizeof@, @typeof@) that returns the number of enumerators in an enumeration.
46\begin{cfa}
47enum(int) E { A, B, C, D } e;
48countof( E )// 4, type argument
49countof( e )// 4, variable argument
50\end{cfa}
51This buildin function replaces the C idiom for automatically computing the number of enumerators \see{\VRef{s:Usage}}.
52\begin{cfa}
53enum E { A, B, C, D, @N@ };  // N == 4
54\end{cfa}
55
56The underlying representation of \CFA enumeration object is its position, saved as an integral type.
57Therefore, the size of a \CFA enumeration is consistent with a C enumeration.
58Attribute function @posn@ performs type substitution on an expression from \CFA type to integral type.
59The label and value of an enumerator is stored in a global data structure for each enumeration, where attribute functions @label@/@value@ map an \CFA enumeration object to the corresponding data.
60These operations do not apply to C Enums because backwards compatibility means the necessary backing data structures cannot be supplied.
61
62\section{Opaque Enumeration}
63\label{s:OpaqueEnum}
64
65When an enumeration type is empty is it an \newterm{opaque} enumeration.
66\begin{cfa}
67enum@()@ Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND };
68\end{cfa}
69Here, the internal representation is chosen by the compiler and hidden, so the enumerators cannot be initialized.
70Compared to the C enum, opaque enums are more restrictive in terms of typing and cannot be implicitly converted to integers.
71\begin{cfa}
72Mode mode = O_RDONLY;
73int www @=@ mode;                                               $\C{// disallowed}$
74\end{cfa}
75Opaque enumerations have only two attribute properties @label@ and @posn@.
76\begin{cfa}
77char * s = label( O_TRUNC );                    $\C{// "O\_TRUNC"}$
78int open = posn( O_WRONLY );                    $\C{// 1}$
79\end{cfa}
80The equality and relational operations are available.
81\begin{cfa}
82if ( mode @==@ O_CREAT ) ...
83bool b = mode @<@ O_APPEND;
84\end{cfa}
85
86
87\section{Typed Enumeration}
88\label{s:EnumeratorTyping}
89
90When an enumeration type is specified, all enumerators have that type and can be initialized with constants of that type or compile-time convertable to that type.
91Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's values used to set the enumerator constants.
92Note, the use of the synonyms @Liz@ and @Beth@ in the last declaration.
93Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@.
94
95\begin{figure}
96\begin{cfa}
97// integral
98        enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
99        enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
100        enum( @long long int@ ) BigNum { X = 123_456_789_012_345,  Y = 345_012_789_456_123 };
101// non-integral
102        enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
103        enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
104// pointer
105        enum( @char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
106        int i, j, k;
107        enum( @int *@ ) ptr { I = &i,  J = &j,  K = &k };
108        enum( @int &@ ) ref { I = i,   J = j,   K = k };
109// tuple
110        enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
111// function
112        void f() {...}   void g() {...}
113        enum( @void (*)()@ ) funs { F = f,  G = g };
114// aggregate
115        struct Person { char * name; int age, height; };
116        enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
117                                                                        Jon = { "JONATHAN", 35, 190 } };
118\end{cfa}
119% synonym feature unimplemented
120\caption{Enumerator Typing}
121\label{f:EumeratorTyping}
122\end{figure}
123
124An advantage of the typed enumerations is eliminating the \emph{harmonizing} problem between an enumeration and companion data \see{\VRef{s:Usage}}:
125\begin{cfa}
126enum( char * ) integral_types {
127        chr = "char", schar = "signed char", uschar = "unsigned char",
128        sshort = "signed short int", ushort = "unsigned short int",
129        sint = "signed int", usint = "unsigned int",
130        ...
131};
132\end{cfa}
133Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
134
135While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are \emph{not} used to evaluate an enumerator's value.
136\CFA enumeration constants are compile-time values (static);
137calling constructors happens at runtime (dynamic).
138
139
140\section{Value Conversion}
141
142C has an implicit type conversion from an enumerator to its base type @int@.
143Correspondingly, \CFA has an implicit conversion from a typed enumerator to its base type, allowing typed enumeration to be seamlessly used as the value of its base type
144For example, using type @Currency@ in \VRef[Figure]{f:EumeratorTyping}:
145\begin{cfa}
146char currency = Dollar;         $\C{// implicit conversion to base type}$
147void foo( char );
148foo( Dollar );                          $\C{// implicit conversion to base type}$
149\end{cfa}
150The implicit conversion induces a \newterm{value cost}, which is a new category (8 tuple) in \CFA's conversion cost model \see{\VRef{s:ConversionCost}} to disambiguate function overloading over a \CFA enumeration and its base type.
151\begin{cfa}
152void baz( char ch );            $\C{// (1)}$
153void baz( Currency cu );        $\C{// (2)}$
154baz( Dollar );
155\end{cfa}
156While both @baz@ functions are applicable to the enumerator @Dollar@, @candidate (1)@ comes with a @value@ cost for the conversion to the enumeration's base type, while @candidate (2)@ has @zero@ cost.
157Hence, \CFA chooses the exact match.
158Value cost is defined to be a more significant factor than an @unsafe@ but less than the other conversion costs: @(unsafe,@ {\color{red}@value@}@, poly, safe, sign, vars, specialization,@ @reference)@.
159\begin{cfa}
160void bar( @int@ );
161Math x = PI;                            $\C{// (1)}$
162double x = 5.5;                         $\C{// (2)}$
163bar( x );                                       $\C{// costs (1, 0, 0, 0, 0, 0, 0, 0) or (0, 1, 0, 0, 0, 0, 0, 0)}$
164\end{cfa}
165Here, candidate (1) has a value conversion cost to convert to the base type, while candidate (2) has an unsafe conversion from @double@ to @int@.
166Hence, @bar( x )@ resolves @x@ as type @Math@.
167
168% \begin{cfa}
169% forall(T | @CfaEnum(T)@) void bar(T);
170%
171% bar(a);                                       $\C{// (3), with cost (0, 0, 1, 0, 0, 0, 0, 0)}$
172% \end{cfa}
173% % @Value@ is designed to be less significant than @poly@ to allow function being generic over \CFA enumeration (see ~\ref{c:trait}).
174% Being generic over @CfaEnum@ traits (a pre-defined interface for \CFA enums) is a practice in \CFA to implement functions over \CFA enumerations, as will see in chapter~\ref{c:trait}.
175% @Value@ is a being a more significant cost than @poly@ implies if a overloaeded function defined for @CfaEnum@ (and other generic type), \CFA always try to resolve it as a @CfaEnum@, rather to insert a @value@ conversion.
176
177
178\section{Auto Initialization}
179
180A partially implemented feature is auto-initialization, which works for the C integral type with constant expressions.
181\begin{cfa}
182enum Week { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun }; // 0-2, 10-13
183\end{cfa}
184The complexity of the constant expression depends on the level of computation the compiler implements, \eg \CC \lstinline[language={[GNU]C++}]{constexpr} provides complex compile-time computation across multiple types, which blurs the compilation/runtime boundary.
185
186If \CFA had powerful compilation expression evaluation, auto initialization would be implemented as follows.
187\begin{cfa}
188enum E(T) { A, B, C };
189\end{cfa}
190\begin{enumerate}
191\item the first enumerator, @A@, is initialized with @T@'s @zero_t@.
192\item otherwise, the next enumerator is initialized with the previous enumerator's value using operator @?++@, where @?++( T )@ can be overloaded for any type @T@.
193\end{enumerate}
194
195Unfortunately, constant expressions in C are not powerful and \CFA is only a transpiler, relying on generated C code to perform the detail work.
196It is currently beyond the scope of the \CFA project to implement a complex runtime interpreter in the transpiler to evaluate complex expressions across multiple builtin and user-defined type.
197Nevertheless, the necessary language concepts exist to support this feature.
198
199
200\section{Subset}
201
202An enumeration's type can be another enumeration.
203\begin{cfa}
204enum( char ) Letter { A = 'A', ..., Z = 'Z' };
205enum( @Letter@ ) Greek { Alph = @A@, Beta = @B@, Gamma = @G@, ..., Zeta = @Z@ }; // alphabet intersection
206\end{cfa}
207Enumeration @Greek@ may have more or less enumerators than @Letter@, but its enumerator values \emph{must} be from @Letter@.
208Therefore, the set of @Greek@ enumerator values in a subset of the @Letter@ enumerator values.
209@Letter@ is type compatible with enumeration @Letter@ because value conversions are inserted whenever @Letter@ is used in place of @Greek@.
210\begin{cfa}
211Letter l = A;                                           $\C{// allowed}$
212Greek g = Alph;                                         $\C{// allowed}$
213l = Alph;                                                       $\C{// allowed, conversion to base type}$
214g = A;                                                          $\C{// {\color{red}disallowed}}$
215void foo( Letter );
216foo( Beta );                                            $\C{// allowed, conversion to base type}$
217void bar( Greek );
218bar( A );                                                       $\C{// {\color{red}disallowed}}$
219\end{cfa}
220Hence, @Letter@ enumerators are not type compatible with the @Greek@ enumeration but the reverse is true.
221
222
223\section{Inheritance}
224\label{s:CFAInheritance}
225
226\CFA Plan-9 inheritance may be used with \CFA enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C).
227Containment is nominative: an enumeration inherits all enumerators from another enumeration by declaring an @inline statement@ in its enumerator lists.
228\begin{cfa}
229enum( char * ) Names { /* $\see{\VRef[Figure]{f:EumeratorTyping}}$ */  };
230enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
231enum( char * ) Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
232\end{cfa}
233In the preceding example, @Names2@ is defined with five enumerators, three of which are from @Name@ through containment, and two are self-declared.
234@Names3@ inherits all five members from @Names2@ and declares two additional enumerators.
235Hence, enumeration inheritance forms a subset relationship.
236Specifically, the inheritance relationship for the example above is:
237\begin{cfa}
238Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\C{// enum type of Names}$
239\end{cfa}
240
241Inheritance can be nested, and a \CFA enumeration can inline enumerators from more than one \CFA enumeration, forming a tree-like hierarchy.
242However, the uniqueness of enumeration name applies to enumerators, including those from supertypes, meaning an enumeration cannot name enumerator with the same label as its subtype's members, or inherits
243from multiple enumeration that has overlapping enumerator label. As a consequence, a new type cannot inherits from both an enumeration and its supertype, or two enumerations with a
244common supertype (the diamond problem), since such would unavoidably introduce duplicate enumerator labels.
245
246The base type must be consistent between subtype and supertype.
247When an enumeration inherits enumerators from another enumeration, it copies the enumerators' @value@ and @label@, even if the @value@ is auto initialized.
248However, the position of the underlying representation is the order of the enumerator in the new enumeration.
249\begin{cfa}
250enum() E1 { B };                                                                        $\C{// B}$                                             
251enum() E2 { C, D };                                             $\C{// C D}$
252enum() E3 { inline E1, inline E2, E };  $\C{// {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E}$
253enum() E4 { A, inline E3, F};                   $\C{// A {\color{blue}[\(_{E3}\)} {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E {\color{blue}]} F}$
254\end{cfa}
255In the example, @B@ is at position 0 in @E1@ and @E3@, but position 1 in @E4@ as @A@ takes position 0 in @E4@.
256@C@ is at position 0 in @E2@, 1 in @E3@, and 2 in @E4@.
257@D@ is at position 1 in @E2@, 2 in @E3@, and 3 in @E4@.
258
259A subtype enumeration can be casted, or implicitly converted into its supertype, with a @safe@ cost, called \newterm{enumeration conversion}.
260\begin{cfa}
261enum E2 e2 = C;
262posn( e2 );                     $\C[1.75in]{// 0}$
263enum E3 e3 = e2;
264posn( e2 );                     $\C{// 1 cost}$
265void foo( E3 e );
266foo( e2 );
267posn( (E3)e2 );         $\C{// 1 cost}$
268E3 e31 = B;
269posn( e31 );            $\C{// 0 cost}\CRT$
270\end{cfa}
271The last expression is unambiguous.
272While both @E2.B@ and @E3.B@ are valid candidates, @E2.B@ has an associated safe cost, so \CFA selects the zero cost candidate.
273
274For the given function prototypes, the following calls are valid.
275\begin{cquote}
276\begin{tabular}{ll}
277\begin{cfa}
278void f( Names );
279void g( Names2 );
280void h( Names3 );
281void j( const char * );
282\end{cfa}
283&
284\begin{cfa}
285f( Fred );
286g( Fred );   g( Jill );
287h( Fred );   h( Jill );   h( Sue );
288j( Fred );    j( Jill );    j( Sue );    j( "WILL" );
289\end{cfa}
290\end{tabular}
291\end{cquote}
292Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
293
294
295\subsection{Offset Calculation}
296
297As discussed in \VRef{s:OpaqueEnum}, \CFA chooses position as a representation of a \CFA enumeration variable.
298When a cast or implicit conversion moves an enumeration from subtype to supertype, the position can be unchanged or increase.
299\CFA determines the position offset with an \newterm{offset calculation} function.
300
301\begin{figure}
302\begin{cfa}
303struct Enumerator;
304struct CFAEnum { vector<variant<CFAEnum, Enumerator>> members; string name; };
305inline static bool operator==(CFAEnum& lhs, CFAEnum& rhs) { return lhs.name == rhs.name; }
306pair<bool, int> calculateEnumOffset(CFAEnum src, CFAEnum dst) {
307        int offset = 0;
308        if ( src == dst ) return make_pair(true, 0);
309        for ( auto v : dst.members ) {
310                if ( holds_alternative<Enumerator>(v) ) {
311                        offset++;
312                } else {
313                        auto m = get<CFAEnum>(v);
314                        if ( m == src ) @return@ make_pair( true, offset );
315                        auto dist = calculateEnumOffset( src, m );
316                        if ( dist.first ) {
317                                @return@ make_pair( true, offset + dist.second );
318                        } else {
319                                offset += dist.second;
320                        }
321                }
322        }
323        @return@ make_pair( false, offset );
324}
325\end{cfa}
326\caption{Compute Offset from Subtype Enumeration to a Supertype}
327\label{s:OffsetSubtypeSuperType}
328\end{figure}
329
330Figure~\ref{s:OffsetSubtypeSuperType} shows an outline of the offset calculation in \CC.
331Structure @CFAEnum@ represents the \CFA enumeration with a vector of variants of @CFAEnum@ or @Enumerator@.
332The algorithm takes two @CFAEnums@ parameters, @src@ and @dst@, with @src@ being the type of expression the conversion applies to, and @dst@ being the type the expression is cast to.
333The algorithm iterates over the members in @dst@ to find @src@.
334If a member is an enumerator of @dst@, the positions of all subsequent members is increment by one.
335If the current member is @dst@, the function returns true indicating \emph{found} and the accumulated offset.
336Otherwise, the algorithm recurses into the current @CFAEnum@ @m@ to check if its @src@ is convertible to @m@.
337If @src@ is convertible to the current member @m@, this means @src@ is a subtype-of-subtype of @dst@.
338The offset between @src@ and @dst@ is the sum of the offset of @m@ in @dst@ and the offset of @src@ in @m@.
339If @src@ is not a subtype of @m@, the loop continues but with the offset shifted by the size of @m@.
340If the loop ends, than @src@ is not convertible to @dst@, and false is returned.
341
342
343\section{Control Structures}
344
345Enumerators can be used in multiple contexts.
346In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
347However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts.
348In these contexts, a programmer's intuition assumes an implicit conversion to position.
349
350For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implicit @break@ rather than a fall-through at the end of a @case@ clause.
351(For this discussion, ignore the fact that @case@ requires a compile-time constant.)
352\begin{cfa}[belowskip=0pt]
353enum Count { First, Second, Third, Fourth };
354Count e;
355\end{cfa}
356\begin{cquote}
357\setlength{\tabcolsep}{15pt}
358\noindent
359\begin{tabular}{@{}ll@{}}
360\begin{cfa}[aboveskip=0pt]
361
362choose( e ) {
363        case @First@: ...;
364        case @Second@: ...;
365        case @Third@: ...;
366        case @Fourth@: ...;
367}
368\end{cfa}
369&
370\begin{cfa}[aboveskip=0pt]
371// rewrite
372choose( @value@( e ) ) {
373        case @value@( First ): ...;
374        case @value@( Second ): ...;
375        case @value@( Third ): ...;
376        case @value@( Fourth ): ...;
377}
378\end{cfa}
379\end{tabular}
380\end{cquote}
381Here, the intuitive code on the left is implicitly transformed into the standard implementation on the right, using the value of the enumeration variable and enumerators.
382However, this implementation is fragile, \eg if the enumeration is changed to:
383\begin{cfa}
384enum Count { First, Second, Third @= First@, Fourth };
385\end{cfa}
386making @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicate @case@ clauses.
387To better match with programmer intuition, \CFA toggles between value and position semantics depending on the language context.
388For conditional clauses and switch statements, \CFA uses the robust position implementation.
389\begin{cfa}
390if ( @posn@( e ) < posn( Third ) ) ...
391choose( @posn@( e ) ) {
392        case @posn@( First ): ...;
393        case @posn@( Second ): ...;
394        case @posn@( Third ): ...;
395        case @posn@( Fourth ): ...;
396}
397\end{cfa}
398
399\CFA provides a special form of for-control for enumerating through an enumeration, where the range is a type.
400\begin{cfa}
401for ( cx; @Count@ ) { sout | cx | nonl; } sout | nl;
402for ( cx; ~= Count ) { sout | cx | nonl; } sout | nl;
403for ( cx; -~= Count ) { sout | cx | nonl; } sout | nl;
404First Second Third Fourth
405First Second Third Fourth
406Fourth Third Second First
407\end{cfa}
408The enumeration type is syntax sugar for looping over all enumerators and assigning each enumerator to the loop index, whose type is inferred from the range type.
409The prefix @+~=@ or @-~=@ iterate forward or backwards through the inclusive enumeration range, where no prefix defaults to @+~=@.
410
411C has an idiom for @if@ and loop predicates of comparing the predicate result ``not equal to 0''.
412\begin{cfa}
413if ( x + y /* != 0 */  ) ...
414while ( p /* != 0 */  ) ...
415\end{cfa}
416This idiom extends to enumerations because there is a boolean conversion in terms of the enumeration value, if and only if such a conversion is available.
417For example, such a conversion exists for all numerical types (integral and floating-point).
418It is possible to explicitly extend this idiom to any typed enumeration by overloading the @!=@ operator.
419\begin{cfa}
420bool ?!=?( Name n, zero_t ) { return n != Fred; }
421Name n = Mary;
422if ( n ) ... // result is true
423\end{cfa}
424Specialize meanings are also possible.
425\begin{cfa}
426enum(int) ErrorCode { Normal = 0, Slow = 1, Overheat = 1000, OutOfResource = 1001 };
427bool ?!=?( ErrorCode ec, zero_t ) { return ec >= Overheat; }
428ErrorCode code = ...;
429if ( code ) { problem(); }
430\end{cfa}
431
432
433\section{Dimension}
434
435\VRef{s:EnumeratorTyping} introduces the harmonizing problem between an enumeration and secondary information.
436When possible, using a typed enumeration for the secondary information is the best approach.
437However, there are times when combining these two types is not possible.
438For example, the secondary information might precede the enumeration and/or its type is needed directly to declare parameters of functions.
439In these cases, having secondary arrays of the enumeration size are necessary.
440
441To support some level of harmonizing in these cases, an array dimension can be defined using an enumerator type, and the enumerators used as subscripts.
442\begin{cfa}
443enum E1 { A, B, C, N }; // possibly predefined
444enum(int) E2 { A, B, C };
445float H1[N] = { [A] :$\footnotemark$ 3.4, [B] : 7.1, [C] : 0.01 }; // C
446float H2[@E2@] = { [A] : 3.4, [B] : 7.1, [C] : 0.01 }; // CFA
447\end{cfa}
448\footnotetext{C uses symbol \lstinline{'='} for designator initialization, but \CFA changes it to \lstinline{':'} because of problems with tuple syntax.}
449This approach is also necessary for a predefined typed enumeration (unchangeable), when additional secondary-information need to be added.
450
451The array subscript operator, namely @?[?]@, is overloaded so that when a \CFA enumerator is used as an array index, it implicitly converts to its position over value to sustain data harmonization.
452This behaviour can be reverted by explicit overloading:
453\begin{cfa}
454float ?[?]( float * arr, E2 index ) { return arr[ value( index ) ]; }
455\end{cfa}
456When an enumeration type is being used as an array dimension, \CFA adds the enumeration type to the initializer's context.
457As a result, @H2@'s array destinators @A@, @B@ and @C@ are resolved unambiguously to type @E2@.
458(@H1@'s destinators are also resolved unambiguously to @E1@ because @E2@ has a @value@ cost.)
459
460
461\section{I/O}
462
463As seen in multiple examples, enumerations can be printed and the default property printed is the enumerator's label, which is similar in other programming languages.
464However, very few programming languages provide a mechanism to read in enumerator values.
465Even the @boolean@ type in many languages does not have a mechanism for input using the enumerators @true@ or @false@.
466\VRef[Figure]{f:EnumerationI/O} show \CFA enumeration input based on the enumerator labels.
467When the enumerator labels are packed together in the input stream, the input algorithm scans for the longest matching string.
468For basic types in \CFA, the rule is that the same constants used to initialize a variable in a program are available to initialize a variable using input, where strings constants can be quoted or unquoted.
469
470\begin{figure}
471\begin{cquote}
472\setlength{\tabcolsep}{15pt}
473\begin{tabular}{@{}ll@{}}
474\begin{cfa}
475int main() {
476        enum(int ) E { BBB = 3, AAA, AA, AB, B };
477        E e;
478
479        for () {
480                try {
481                        @sin | e@;
482                } catch( missing_data * ) {
483                        sout | "missing data";
484                        continue; // try again
485                }
486          if ( eof( sin ) ) break;
487                sout | e | "= " | value( e );
488        }
489}
490\end{cfa}
491&
492\begin{cfa}
493$\rm input$
494BBBABAAAAB
495BBB AAA AA AB B
496
497$\rm output$
498BBB = 3
499AB = 6
500AAA = 4
501AB = 6
502BBB = 3
503AAA = 4
504AA = 5
505AB = 6
506B = 7
507
508\end{cfa}
509\end{tabular}
510\end{cquote}
511\caption{Enumeration I/O}
512\label{f:EnumerationI/O}
513\end{figure}
514
515
516\section{Planet Example}
517
518\VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating most of the \CFA enumeration features.
519@Planet@ is an enumeration of type @MR@.
520Each planet enumerator is initialized to a specific mass/radius, @MR@, value.
521The unnamed enumeration provides the gravitational-constant enumerator @G@.
522Function @surfaceGravity@ uses the @with@ clause to remove @p@ qualification from fields @mass@ and @radius@.
523The program main uses the pseudo function @countof@ to obtain the number of enumerators in @Planet@, and safely converts the random value into a @Planet@ enumerator using @fromInt@.
524The resulting random orbital-body is used in a @choose@ statement.
525The enumerators in the @case@ clause use the enumerator position for testing.
526The prints use @label@ to print an enumerator's name.
527Finally, a loop enumerates through the planets computing the weight on each planet for a given earth mass.
528The print statement does an equality comparison with an enumeration variable and enumerator (@p == MOON@).
529
530\begin{figure}
531\small
532\begin{cfa}
533struct MR { double mass, radius; };                     $\C[3.5in]{// planet definition}$
534enum( @MR@ ) Planet {                                           $\C{// typed enumeration}$
535        //                      mass (kg)   radius (km)
536        MERCURY = { 0.330_E24, 2.4397_E6 },
537        VENUS      = { 4.869_E24, 6.0518_E6 },
538        EARTH       = { 5.976_E24, 6.3781_E6 },
539        MOON        = { 7.346_E22, 1.7380_E6 }, $\C{// not a planet}$
540        MARS         = { 0.642_E24, 3.3972_E6 },
541        JUPITER    = { 1898._E24, 71.492_E6 },
542        SATURN     = { 568.8_E24, 60.268_E6 },
543        URANUS    = { 86.86_E24, 25.559_E6 },
544        NEPTUNE  = { 102.4_E24, 24.746_E6 },
545        PLUTO       = { 1.303_E22, 1.1880_E6 }, $\C{// not a planet}$
546};
547enum( double ) { G = 6.6743_E-11 };                     $\C{// universal gravitational constant (m3 kg-1 s-2)}$
548static double surfaceGravity( Planet p ) @with( p )@ {
549        return G * mass / ( radius @\@ 2 );             $\C{// no qualification, exponentiation}$
550}
551static double surfaceWeight( Planet p, double otherMass ) {
552        return otherMass * surfaceGravity( p );
553}
554int main( int argc, char * argv[] ) {
555        if ( argc != 2 ) @exit@ | "Usage: " | argv[0] | "earth-weight";  // terminate program
556        double earthWeight = convert( argv[1] );
557        double earthMass = earthWeight / surfaceGravity( EARTH );
558        Planet rp = @fromInt@( prng( @countof@( Planet ) ) ); $\C{// select random orbiting body}$
559        @choose( rp )@ {                                                $\C{// implicit breaks}$
560          case MERCURY, VENUS, EARTH, MARS:
561                sout | @rp@ | "is a rocky planet";
562          case JUPITER, SATURN, URANUS, NEPTUNE:
563                sout | rp | "is a gas-giant planet";
564          default:
565                sout | rp | "is not a planet";
566        }
567        for ( @p; Planet@ ) {                                   $\C{// enumerate}\CRT$
568                sout | "Your weight on" | ( @p == MOON@ ? "the" : " " ) | p
569                           | "is" | wd( 1,1,  surfaceWeight( p, earthMass ) ) | "kg";
570        }
571}
572$\$$ planet 100
573JUPITER is a gas-giant planet
574Your weight on MERCURY is 37.7 kg
575Your weight on VENUS is 90.5 kg
576Your weight on EARTH is 100.0 kg
577Your weight on the MOON is 16.6 kg
578Your weight on MARS is 37.9 kg
579Your weight on JUPITER is 252.8 kg
580Your weight on SATURN is 106.6 kg
581Your weight on URANUS is 90.5 kg
582Your weight on NEPTUNE is 113.8 kg
583Your weight on PLUTO is 6.3 kg
584\end{cfa}
585\caption{Planet Example}
586\label{f:PlanetExample}
587\end{figure}
Note: See TracBrowser for help on using the repository browser.