source: doc/theses/jiada_liang_MMath/CFAenum.tex @ 31f4837

Last change on this file since 31f4837 was 31f4837, checked in by JiadaL <j82liang@…>, 7 weeks ago

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

  • Property mode set to 100644
File size: 19.8 KB
Line 
1\chapter{\CFA Enumeration}
2
3
4\CFA supports C enumeration using the same syntax and semantics for backwards compatibility.
5\CFA also extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages.
6Any enumeration extensions must be intuitive to C programmers both in syntax and semantics.
7The following sections detail all of my new contributions to enumerations in \CFA.
8
9
10\section{Aliasing}
11
12C already provides @const@-style aliasing using the unnamed enumerator \see{\VRef{s:TypeName}}, even if the name @enum@ is misleading (@const@ would be better).
13Given the existence of this form, it is straightforward to extend it with types other than @int@.
14\begin{cfa}
15enum E { Size = 20u, PI = 3.14159L, Jack = L"John" };
16\end{cfa}
17which matches with @const@ aliasing in other programming languages.
18Here, the type of the enumerator is the type of the initialization constant, \eg @typeof(20u)@ for @Size@ implies @unsigned int@.
19Auto-initialization is restricted to the case where all constants are @int@, matching with C.
20As seen in \VRef{s:EnumeratorTyping}, this feature is just a shorthand for multiple typed-enumeration declarations.
21
22
23\section{Enumerator Visibility}
24\label{s:EnumeratorVisibility}
25
26In C, unscoped enumerators present a \newterm{naming problem} when multiple enumeration types appear in the same scope with duplicate enumerator names.
27There is no mechanism in C to resolve these naming conflicts other than renaming one of the duplicates, which may be impossible.
28
29The \CFA type-system allows extensive overloading, including enumerators.
30Furthermore, \CFA uses the left-hand of assignment in type resolution to pinpoint the best overloaded name.
31Finally, qualification and casting are provided to disambiguate any ambiguous situations.
32\begin{cfa}
33enum E1 { First, Second, Third, Fourth };
34enum E2 { @Fourth@, @Third@, @Second@, @First@ }; $\C{// same enumerator names}$
35E1 p() { return Third; }                                $\C{// return}$
36E2 p() { return Fourth; }
37void foo() {
38        E1 e1 = First;   E2 e2 = First;         $\C{// initialization}$
39        e1 = Second;   e2 = Second;                     $\C{// assignment}$
40        e1 = p();   e2 = p();                           $\C{// function call}$
41        int i = @E1.@First + @E2.@First;        $\C{// disambiguate with qualification}$
42        int j = @(E1)@First + @(E2)@First;      $\C{// disambiguate with cast}$
43}
44\end{cfa}
45\CFA overloading allows programmers to use the most meaningful names without fear of name clashes from include files.
46In most cases, the type system implicitly disambiguates, otherwise the programmer explicitly disambiguates using qualification or casting.
47
48
49\section{Enumerator Scoping}
50
51An enumeration can be scoped, using @'!'@, so the enumerator constants are not projected into the enclosing scope.
52\begin{cfa}
53enum Week @!@ { Mon, Tue, Wed, Thu = 10, Fri, Sat, Sun };
54enum RGB @!@ { Red, Green, Blue };
55\end{cfa}
56Now the enumerators \emph{must} be qualified with the associated enumeration type.
57\begin{cfa}
58Week week = @Week.@Mon;
59week = @Week.@Sat;
60RGB rgb = @RGB.@Red;
61rgb = @RGB.@Blue;
62\end{cfa}
63It is possible to toggle back to unscoping using the \CFA @with@ clause/statement (see also \CC \lstinline[language=c++]{using enum} in Section~\ref{s:C++RelatedWork}).
64\begin{cfa}
65with ( @Week@, @RGB@ ) {                        $\C{// type names}$
66         week = @Sun@;                                  $\C{// no qualification}$
67         rgb = @Green@;
68}
69\end{cfa}
70As in Section~\ref{s:EnumeratorVisibility}, opening multiple scoped enumerations in a @with@ can result in duplicate enumeration names, but \CFA implicit type resolution and explicit qualification/casting handle ambiguities.
71
72\section{Enumeration Trait}
73
74The header file \lstinline[deletekeywords=enum]{<enum.hfa>} defines the set of traits containing operators and helper functions for @enum@.
75A \CFA enumeration satisfies all of these traits allowing it to interact with runtime features in \CFA.
76Each trait is discussed in detail.
77
78The trait @Bounded@:
79\begin{cfa}
80forall( E ) trait Bounded {
81        E first();
82        E last();
83};
84\end{cfa}
85defines the bounds of the enumeration, where @first()@ returns the first enumerator and @last()@ returns the last, \eg:
86\begin{cfa}
87Workday day = first();                                  $\C{// Mon}$
88Planet outermost = last();                              $\C{// NEPTUNE}$
89\end{cfa}
90@first()@ and @last()@ are overloaded with return types only, so in the example, the enumeration type is found on the left-hand side of the assignment.
91Calling either functions without a context results in a type ambiguity, except in the rare case where the type environment has only one enumeration.
92\begin{cfa}
93@first();@                                                              $\C{// ambiguous Workday and Planet implement Bounded}$
94sout | @last()@;
95Workday day = first();                                  $\C{// day provides type Workday}$
96void foo( Planet p );
97foo( last() );                                                  $\C{// parameter provides type Planet}$
98\end{cfa}
99
100The trait @Serial@:
101\begin{cfa}
102forall( E | Bounded( E ) ) trait Serial {
103        unsigned fromInstance( E e );
104        E fromInt( unsigned int posn );
105        E succ( E e );
106        E pred( E e );
107};
108\end{cfa}
109is a @Bounded@ trait, where elements can be mapped to an integer sequence.
110A type @T@ matching @Serial@ can project to an unsigned @int@ type, \ie an instance of type T has a corresponding integer value.
111%However, the inverse may not be possible, and possible requires a bound check.
112The mapping from a serial type to integer is defined by @fromInstance@, which returns the enumerator's position.
113The inverse operation is @fromInt@, which performs a bound check using @first()@ and @last()@ before casting the integer into an enumerator.
114Specifically, for enumerator @E@ declaring $N$ enumerators, @fromInt( i )@ returns the $i-1_{th}$ enumerator, if $0 \leq i < N$, or raises the exception @enumBound@.
115
116The @Serial@ trait also requires interface functions @succ( E e )@ and @pred( E e )@ be implemented for a serial type, which imply the enumeration positions are consecutive and ordinal.
117Specifically, if @e@ is the $i_{th}$ enumerator, @succ( e )@ returns the $i+1_{th}$ enumerator when $e \ne last()$, and @pred( e )@ returns the $i-1_{th}$ enumerator when $e \ne first()$.
118The exception @enumRange@ is raised if the result of either operation is outside the range of type @E@.
119
120The trait @TypedEnum@:
121\begin{cfa}
122forall( E, T ) trait TypedEnum {
123        T valueE( E e );
124        char * labelE( E e );
125        unsigned int posE( E e );
126};
127\end{cfa}
128captures three basic attributes of an enumeration type: value, label, and position.
129@TypedEnum@ asserts two types @E@ and @T@, with @T@ being the base type of the enumeration @E@, \eg @enum( T ) E { ... };@.
130Implementing general functions across all enumeration types is possible by asserting @TypeEnum( E, T )@, \eg:
131\begin{cfa}
132forall( E, T | TypeEnum( E, T ) )
133void printEnum( E e ) {
134        sout | "Enum "| labelE( e );
135}
136printEunm( MARS );
137\end{cfa}
138
139Finally, there is an associated trait defining comparison operators among enumerators.
140\begin{cfa}
141forall( E, T | TypedEnum( E, T ) ) {
142        // comparison
143        int ?==?( E l, E r );           $\C{// true if l and r are same enumerators}$
144        int ?!=?( E l, E r );           $\C{// true if l and r are different enumerators}$
145        int ?!=?( E l, zero_t );        $\C{// true if l is not the first enumerator}$
146        int ?<?( E l, E r );            $\C{// true if l is an enumerator before r}$
147        int ?<=?( E l, E r );           $\C{// true if l before or the same as r}$
148        int ?>?( E l, E r );            $\C{// true if l is an enumerator after r}$
149        int ?>=?( E l, E r );           $\C{// true if l after or the same as r}$         
150}
151\end{cfa}
152Note, the overloaded operators are defined only when the header @<enum.hfa>@ is included.
153If not, the compiler converts an enumerator to its value, and applies the operators defined for the value type @E@, \eg:
154\begin{cfa}
155// if not include <enum.hfa>
156enum( int ) Fruits { APPLE = 2, BANANA = 10, CHERRY = 2 };
157APPLE == CHERRY; // true because valueE( APPLE ) == valueE( CHERRY )
158
159#include <enum.hfa>
160APPLE == CHERRY; // false because posE( APPLE ) != posE( CHERRY )
161\end{cfa}
162An enumerator returns its @position@ by default.
163In particular, @printf( ... )@ from @<stdio.h>@ functions provides no context to its parameter type, so it prints @position@.
164On the other hand, the pipeline operator @?|?( ostream os, E enumType )@ provides type context for type @E@, and \CFA has overwritten this operator to print the enumeration @value@ over @position@.
165\begin{cfa}
166printf( "Position of BANANA is \%d", BANANA ); // Position of BANANA is 1
167sout | "Value of BANANA is " | BANANA; // Value of BANANA is 10
168\end{cfa}
169Programmers can overwrite this behaviour by overloading the pipeline operator themselves.
170\PAB{This needs discussing because including \lstinline{<enum.hfa>} can change the entire meaning of a program.}
171
172
173% \section{Enumeration Pseudo-functions}
174
175% Pseudo-functions are function-like operators that do not result in any run-time computations, \ie like @sizeof@, @alignof@, @typeof@.
176% A pseudo-function call is often substituted with information extracted from the compilation symbol-table, like storage size or alignment associated with the underlying architecture.
177
178% The attributes of an enumerator are accessed by pseudo-functions @posE@, @valueE@, and @labelE@.
179% \begin{cfa}
180% int jane_pos = @posE@( Names.Jane );   $\C{// 2}$
181% char * jane_value = @valueE@( Names.Jane ); $\C{// "JANE"}$
182% char * jane_label = @labelE@( Names.Jane ); $\C{// "Jane"}$
183% sout | posE( Names.Jane) | labelE( Names.Jane ) | valueE( Names.Jane );
184% \end{cfa}
185% Note the ability to print all of an enumerator's properties.
186
187
188
189\section{Enumerator Typing}
190\label{s:EnumeratorTyping}
191
192\CFA extends the enumeration declaration by parameterizing with a type (like a generic type), allowing enumerators to be assigned any values from the declared type.
193Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's constants used to set the enumerator constants.
194Note, the synonyms @Liz@ and @Beth@ in the last declaration.
195Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@.
196
197C has an implicit type conversion from an enumerator to its base type @int@.
198Correspondingly, \CFA has an implicit (safe) conversion from a typed enumerator to its base type.
199\begin{cfa}
200char currency = Dollar;
201string fred = Fred;                                             $\C{// implicit conversion from char * to \CFA string type}$
202Person student = Beth;
203\end{cfa}
204
205% \begin{cfa}
206% struct S { int i, j; };
207% enum( S ) s { A = { 3,  4 }, B = { 7,  8 } };
208% enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$'  };
209% enum( @double@ ) Planet { Venus = 4.87, Earth = 5.97, Mars = 0.642  }; // mass
210% enum( @char *@ ) Colour { Red = "red", Green = "green", Blue = "blue"  };
211% enum( @Currency@ ) Europe { Euro = '$\texteuro$', Pound = '$\textsterling$' }; // intersection
212% \end{cfa}
213
214\begin{figure}
215\begin{cfa}
216// integral
217        enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
218        enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
219        enum( @long long int@ ) BigNum { X = 123_456_789_012_345,  Y = 345_012_789_456_123 };
220// non-integral
221        enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
222        enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
223// pointer
224        enum( @const char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
225        int i, j, k;
226        enum( @int *@ ) ptr { I = &i,  J = &j,  K = &k };
227        enum( @int &@ ) ref { I = i,   J = j,   K = k };
228// tuple
229        enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
230// function
231        void f() {...}   void g() {...}
232        enum( @void (*)()@ ) funs { F = f,  G = g };
233// aggregate
234        struct Person { char * name; int age, height; };
235@***@enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
236                                                                        Jon = { "JONATHAN", 35, 190 } };
237\end{cfa}
238\caption{Enumerator Typing}
239\label{f:EumeratorTyping}
240\end{figure}
241
242An advantage of the typed enumerations is eliminating the \emph{harmonizing} problem between an enumeration and companion data \see{\VRef{s:Usage}}:
243\begin{cfa}
244enum( char * ) integral_types {
245        chr = "char", schar = "signed char", uschar = "unsigned char",
246        sshort = "signed short int", ushort = "unsigned short int",
247        sint = "signed int", usint = "unsigned int",
248        ...
249};
250\end{cfa}
251Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
252
253While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are not used to evaluate an enumerator's value.
254\CFA enumeration constants are compile-time values (static);
255calling constructors happens at runtime (dynamic).
256
257
258\section{Enumerator Opaque Type}
259
260\CFA provides a special opaque enumeration type, where the internal representation is chosen by the compiler and only equality operations are available.
261\begin{cfa}
262enum@()@ Planets { MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE };
263\end{cfa}
264
265
266\section{Enumeration Inheritance}
267
268\CFA Plan-9 inheritance may be used with enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C).
269\begin{cfa}
270enum( char * ) Names { /* as above */ };
271enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
272@***@enum /* inferred */ Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
273\end{cfa}
274Enumeration @Name2@ inherits all the enumerators and their values from enumeration @Names@ by containment, and a @Names@ enumeration is a subtype of enumeration @Name2@.
275Note, enumerators must be unique in inheritance but enumerator values may be repeated.
276
277The enumeration type for the inheriting type must be the same as the inherited type;
278hence the enumeration type may be omitted for the inheriting enumeration and it is inferred from the inherited enumeration, as for @Name3@.
279% When inheriting from integral types, automatic numbering may be used, so the inheritance placement left to right is important.
280Specifically, the inheritance relationship for @Names@ is:
281\begin{cfa}
282Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\(\subset\)$ const char * $\C{// enum type of Names}$
283\end{cfa}
284For the given function prototypes, the following calls are valid.
285\begin{cquote}
286\begin{tabular}{ll}
287\begin{cfa}
288void f( Names );
289void g( Names2 );
290void h( Names3 );
291void j( const char * );
292\end{cfa}
293&
294\begin{cfa}
295f( Fred );
296g( Fred );   g( Jill );
297h( Fred );   h( Jill );   h( Sue );
298 j( Fred );    j( Jill );    j( Sue );    j( "WILL" );
299\end{cfa}
300\end{tabular}
301\end{cquote}
302Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
303
304
305\section{Enumerator Control Structures}
306
307Enumerators can be used in multiple contexts.
308In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
309However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts.
310In these contexts, a programmer's initition assumes an implicit conversion to postion.
311
312For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implict @break@ rather than a fall-through at the end of a @case@ clause.
313\begin{cquote}
314\begin{cfa}
315enum Count { First, Second, Third, Fourth };
316Count e;
317\end{cfa}
318\begin{tabular}{ll}
319\begin{cfa}
320
321choose( e ) {
322        case @First@: ...;
323        case @Second@: ...;
324        case @Third@: ...;
325        case @Fourth@: ...;
326}
327\end{cfa}
328&
329\begin{cfa}
330// rewrite
331choose( @value@( e ) ) {
332        case @value@( First ): ...;
333        case @value@( Second ): ...;
334        case @value@( Third ): ...;
335        case @value@( Fourth ): ...;
336}
337\end{cfa}
338\end{tabular}
339\end{cquote}
340Here, the intuitive code on the left is implicitly transformed into the standard implementation on the right, using the value of the enumeration variable and enumerators.
341However, this implementation is fragile, \eg if the enumeration is changed to:
342\begin{cfa}
343enum Count { First, Second, Third @= First@, Fourth };
344\end{cfa}
345which make @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicase @case@ clauses.
346To better match with programmer intuition, \CFA toggles between value and position semantics depending on the language context.
347For conditional clauses and switch statments, \CFA uses the robust position implementation.
348\begin{cfa}
349choose( @position@( e ) ) {
350        case @position@( First ): ...;
351        case @position@( Second ): ...;
352        case @position@( Third ): ...;
353        case @position@( Fourth ): ...;
354}
355\end{cfa}
356
357\begin{cfa}
358Count variable_a = First, variable_b = Second, variable_c = Third, variable_d = Fourth;
359p(variable_a); // 0
360p(variable_b); // 1
361p(variable_c); // "Third"
362p(variable_d); // 3
363\end{cfa}
364
365
366@if@ statement
367
368@switch@ statement
369
370looping statements
371
372
373
374\section{Enumerated Arrays}
375Enumerated array use an \CFA array as their index.
376\begin{cfa}
377enum() Colour {
378        Red, Orange, Yellow, Green, Blue, Indigo, Violet
379};
380
381string colourCode[Colour] = { "#e81416", "#ffa500", "#ffa500", "#ffa500", "#487de7", "#4b369d", "#70369d" };
382sout | "Colour Code of Orange is " | colourCode[Orange];
383\end{cfa}
384
385\section{Planet Example}
386
387\VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating most of the \CFA enumeration features.
388@Planet@ is an enumeration of type @MR@.
389Each of the planet enumerators is initialized to a specific mass/radius, @MR@, value.
390The unnamed enumeration provides the gravitational-constant enumerator @G@.
391Function @surfaceGravity@ uses the @with@ clause to remove @p@ qualification from fields @mass@ and @radius@.
392The program main uses @SizeE@ to obtain the number of enumerators in @Planet@, and safely converts the random value into a @Planet@ enumerator.
393The resulting random orbital-body is used in a \CFA @choose@ statement.
394The enumerators in the @case@ clause use position for testing.
395The prints use @labelE@ to print an enumerator's label.
396Finally, a loop iterates through the planets computing the weight on each planet for a given earth mass.
397The print statement does an equality comparison with an enumeration variable and enumerator.
398
399\begin{figure}
400\small
401\begin{cfa}
402struct MR { double mass, radius; };
403enum( @MR@ ) Planet {
404        //                      mass (kg)   radius (km)
405        MERCURY = { 0.330_E24, 2.4397_E6 },
406        VENUS      = { 4.869_E24, 6.0518_E6 },
407        EARTH       = { 5.976_E24, 6.3781_E6 },
408        MOON        = { 7.346_E22, 1.7380_E6 }, $\C{// not a planet}$
409        MARS         = { 0.642_E24, 3.3972_E6 },
410        JUPITER    = { 1898._E24, 71.492_E6 },
411        SATURN     = { 568.8_E24, 60.268_E6 },
412        URANUS    = { 86.86_E24, 25.559_E6 },
413        NEPTUNE  = { 102.4_E24, 24.746_E6 },
414};
415enum( double ) { G = 6.6743_E-11 }; $\C{// universal gravitational constant (m3 kg-1 s-2)}$
416static double surfaceGravity( Planet p ) @with( p )@ {
417        return G * mass / ( radius \ 2 ); $\C{// exponentiation}$
418}
419static double surfaceWeight( Planet p, double otherMass ) {
420        return otherMass * surfaceGravity( p );
421}
422int main( int argc, char * argv[] ) {
423        if ( argc != 2 ) exit | "Usage: " | argv[0] | "earth-weight";
424        double earthWeight = convert( argv[1] );
425        double earthMass = earthWeight / surfaceGravity( EARTH );
426
427        Planet p = @fromInt@( prng( @SizeE@(Planet) ) ); $\C{// select a random orbiting body}$
428        @choose( p )@ {
429          case MERCURY, VENUS, EARTH, MARS:
430                sout | @labelE( p )@ | "is a rocky planet";
431          @case JUPITER, SATURN, URANUS, NEPTUNE:@
432                sout | labelE( p ) | "is a gas-giant planet";
433          default:
434                sout | labelE( p ) | "is not a planet";
435        }
436        for ( @p; Planet@ ) {
437                sout | "Your weight on" | (@p == MOON@ ? "the" : "") | labelE(p)
438                           | "is" | wd( 1,1, surfaceWeight( p, earthMass ) ) | "kg";
439        }
440}
441$\$$ planet 100
442JUPITER is a gas-giant planet
443Your weight on MERCURY is 37.7 kg
444Your weight on VENUS is 90.5 kg
445Your weight on EARTH is 100.0 kg
446Your weight on the MOON is 16.6 kg
447Your weight on MARS is 37.9 kg
448Your weight on JUPITER is 252.8 kg
449Your weight on SATURN is 106.6 kg
450Your weight on URANUS is 90.5 kg
451Your weight on NEPTUNE is 113.8 kg
452\end{cfa}
453\caption{Planet Example}
454\label{f:PlanetExample}
455\end{figure}
Note: See TracBrowser for help on using the repository browser.