source: doc/theses/jiada_liang_MMath/CFAenum.tex @ ee2f11f

Last change on this file since ee2f11f was 0c51c8b4, checked in by Peter A. Buhr <pabuhr@…>, 3 months ago

formatting, add section of enumeration subset

  • Property mode set to 100644
File size: 24.7 KB
Line 
1\chapter{\CFA Enumeration}
2
3\CFA extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages.
4Any enumeration extensions must be intuitive to C programmers both in syntax and semantics.
5The following sections detail all of my new contributions to enumerations in \CFA.
6
7
8\section{Syntax}
9
10\CFA extends the C enumeration declaration \see{\VRef{s:CEnumeration}} by parameterizing with a type (like a generic type), and adding Plan-9 inheritance \see{\VRef{s:CFAInheritance}} using an @inline@ to another enumeration type.
11\begin{cfa}[identifierstyle=\linespread{0.9}\it]
12$\it enum$-specifier:
13        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list }
14        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list , }
15        enum @(type-specifier$\(_{opt}\)$)@ identifier
16cfa-enumerator-list:
17        cfa-enumerator
18        cfa-enumerator-list, cfa-enumerator
19cfa-enumerator:
20        enumeration-constant
21        @inline $\color{red}enum$-type-name@
22        enumeration-constant = constant-expression
23\end{cfa}
24
25
26\section{Operations}
27
28\CFA enumerations have access to the three enumerations properties \see{\VRef{s:Terminology}}: label, order (position), and value via three overloaded functions @label@, @posn@, and @value@ \see{\VRef{c:trait} for details}.
29\CFA auto-generates these functions for every \CFA enumeration.
30\begin{cfa}
31enum(int) E { A = 3 } e = A;
32sout | A | @label@( A ) | @posn@( A ) | @value@( A );
33sout | e | @label@( e ) | @posn@( e ) | @value@( e );
34A A 0 3
35A A 0 3
36\end{cfa}
37For output, the default is to print the label.
38An alternate way to get an enumerator's position is to cast it to @int@.
39\begin{cfa}
40sout | A | label( A ) | @(int)A@ | value( A );
41sout | A | label( A ) | @(int)A@ | value( A );
42A A @0@ 3
43A A @0@ 3
44\end{cfa}
45Finally, there is an additional enumeration pseudo-function @countof@ (like @sizeof@, @typeof@) that returns the number of enumerators in an enumeration.
46\begin{cfa}
47enum(int) E { A, B, C, D } e;
48countof( E )// 4, type argument
49countof( e )// 4, variable argument
50\end{cfa}
51This buildin function replaces the C idiom for automatically computing the number of enumerators \see{\VRef{s:Usage}}.
52\begin{cfa}
53enum E { A, B, C, D, @N@ };  // N == 4
54\end{cfa}
55
56The underlying representation of \CFA enumeration object is its position, saved as an integral type.
57Therefore, the size of a \CFA enumeration is consistent with a C enumeration.
58Attribute function @posn@ performs type substitution on an expression from \CFA type to integral type.
59The label and value of an enumerator is stored in a global data structure for each enumeration, where attribute functions @label@/@value@ map an \CFA enumeration object to the corresponding data.
60These operations do not apply to C Enums because backwards compatibility means the necessary backing data structures cannot be supplied.
61
62\section{Opaque Enumeration}
63\label{s:OpaqueEnum}
64
65When an enumeration type is empty is it an \newterm{opaque} enumeration.
66\begin{cfa}
67enum@()@ Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND };
68\end{cfa}
69Here, the internal representation is chosen by the compiler and hidden, so the enumerators cannot be initialized.
70Compared to the C enum, opaque enums are more restrictive in terms of typing and cannot be implicitly converted to integers.
71\begin{cfa}
72Mode mode = O_RDONLY;
73int www @=@ mode;                                               $\C{// disallowed}$
74\end{cfa}
75Opaque enumerations have only two attribute properties @label@ and @posn@.
76\begin{cfa}
77char * s = label( O_TRUNC );                    $\C{// "O\_TRUNC"}$
78int open = posn( O_WRONLY );                    $\C{// 1}$
79\end{cfa}
80The equality and relational operations are available.
81\begin{cfa}
82if ( mode @==@ O_CREAT ) ...
83bool b = mode @<@ O_APPEND;
84\end{cfa}
85
86
87\section{Typed Enumeration}
88\label{s:EnumeratorTyping}
89
90When an enumeration type is specified, all enumerators have that type and can be initialized with constants of that type or compile-time convertable to that type.
91Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's values used to set the enumerator constants.
92Note, the use of the synonyms @Liz@ and @Beth@ in the last declaration.
93Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@.
94
95\begin{figure}
96\begin{cfa}
97// integral
98        enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
99        enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
100        enum( @long long int@ ) BigNum { X = 123_456_789_012_345,  Y = 345_012_789_456_123 };
101// non-integral
102        enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
103        enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
104// pointer
105        enum( @char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
106        int i, j, k;
107        enum( @int *@ ) ptr { I = &i,  J = &j,  K = &k };
108        enum( @int &@ ) ref { I = i,   J = j,   K = k };
109// tuple
110        enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
111// function
112        void f() {...}   void g() {...}
113        enum( @void (*)()@ ) funs { F = f,  G = g };
114// aggregate
115        struct Person { char * name; int age, height; };
116        enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
117                                                                        Jon = { "JONATHAN", 35, 190 } };
118\end{cfa}
119% synonym feature unimplemented
120\caption{Enumerator Typing}
121\label{f:EumeratorTyping}
122\end{figure}
123
124An advantage of the typed enumerations is eliminating the \emph{harmonizing} problem between an enumeration and companion data \see{\VRef{s:Usage}}:
125\begin{cfa}
126enum( char * ) integral_types {
127        chr = "char", schar = "signed char", uschar = "unsigned char",
128        sshort = "signed short int", ushort = "unsigned short int",
129        sint = "signed int", usint = "unsigned int",
130        ...
131};
132\end{cfa}
133Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
134
135While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are \emph{not} used to evaluate an enumerator's value.
136\CFA enumeration constants are compile-time values (static);
137calling constructors happens at runtime (dynamic).
138
139
140\section{Value Conversion}
141
142C has an implicit type conversion from an enumerator to its base type @int@.
143Correspondingly, \CFA has an implicit conversion from a typed enumerator to its base type, allowing typed enumeration to be seamlessly used as the value of its base type
144For example, using type @Currency@ in \VRef[Figure]{f:EumeratorTyping}:
145\begin{cfa}
146char currency = Dollar;         $\C{// implicit conversion to base type}$
147void foo( char );
148foo( Dollar );                          $\C{// implicit conversion to base type}$
149\end{cfa}
150The implicit conversion induces a \newterm{value cost}, which is a new category (8 tuple) in \CFA's conversion cost model \see{\VRef{s:ConversionCost}} to disambiguate function overloading over a \CFA enumeration and its base type.
151\begin{cfa}
152void baz( char ch );            $\C{// (1)}$
153void baz( Currency cu );        $\C{// (2)}$
154baz( Dollar );
155\end{cfa}
156While both @baz@ functions are applicable to the enumerator @Dollar@, @candidate (1)@ comes with a @value@ cost for the conversion to the enumeration's base type, while @candidate (2)@ has @zero@ cost.
157Hence, \CFA chooses the exact match.
158Value cost is defined to be a more significant factor than an @unsafe@ but less than the other conversion costs: @(unsafe,@ {\color{red}@value@}@, poly, safe, sign, vars, specialization,@ @reference)@.
159\begin{cfa}
160void bar( @int@ );
161Math x = PI;                            $\C{// (1)}$
162double x = 5.5;                         $\C{// (2)}$
163bar( x );                                       $\C{// costs (1, 0, 0, 0, 0, 0, 0, 0) or (0, 1, 0, 0, 0, 0, 0, 0)}$
164\end{cfa}
165Here, candidate (1) has a value conversion cost to convert to the base type, while candidate (2) has an unsafe conversion from @double@ to @int@.
166Hence, @bar( x )@ resolves @x@ as type @Math@.
167
168% \begin{cfa}
169% forall(T | @CfaEnum(T)@) void bar(T);
170%
171% bar(a);                                       $\C{// (3), with cost (0, 0, 1, 0, 0, 0, 0, 0)}$
172% \end{cfa}
173% % @Value@ is designed to be less significant than @poly@ to allow function being generic over \CFA enumeration (see ~\ref{c:trait}).
174% Being generic over @CfaEnum@ traits (a pre-defined interface for \CFA enums) is a practice in \CFA to implement functions over \CFA enumerations, as will see in chapter~\ref{c:trait}.
175% @Value@ is a being a more significant cost than @poly@ implies if a overloaeded function defined for @CfaEnum@ (and other generic type), \CFA always try to resolve it as a @CfaEnum@, rather to insert a @value@ conversion.
176
177
178\section{Auto Initialization}
179
180A partially implemented feature is auto-initialization, which works for the C integral type with constant expressions.
181\begin{cfa}
182enum Week { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun }; // 0-2, 10-13
183\end{cfa}
184The complexity of the constant expression depends on the level of computation the compiler implements, \eg \CC \lstinline[language={[GNU]C++}]{constexpr} provides complex compile-time computation across multiple types, which blurs the compilation/runtime boundary.
185
186If \CFA had powerful compilation expression evaluation, auto initialization would be implemented as follows.
187\begin{cfa}
188enum E(T) { A, B, C };
189\end{cfa}
190\begin{enumerate}
191\item the first enumerator, @A@, is initialized with @T@'s @zero_t@.
192\item otherwise, the next enumerator is initialized with the previous enumerator's value using operator @?++@, where @?++( T )@ can be overloaded for any type @T@.
193\end{enumerate}
194
195Unfortunately, constant expressions in C are not powerful and \CFA is only a transpiler, relying on generated C code to perform the detail work.
196It is currently beyond the scope of the \CFA project to implement a complex runtime interpreter in the transpiler to evaluate complex expressions across multiple builtin and user-defined type.
197Nevertheless, the necessary language concepts exist to support this feature.
198
199
200\section{Subset}
201
202An enumeration's type can be another enumeration.
203\begin{cfa}
204enum( char ) Letter { A = 'A', ... };
205enum( @Letter@ ) Greek { Alph = A, Beta = B, ... }; // alphabet intersection
206\end{cfa}
207Enumeration @Greek@ may have more or less enums than @Letter@, but the enum values \emph{must} be from @Letter@.
208Therefore, @Greek@ enums are a subset of type @Letter@ and are type compatible with enumeration @Letter@, but @Letter@ enums are not type compatible with enumeration @Greek@.
209
210
211\section{Inheritance}
212\label{s:CFAInheritance}
213
214\CFA Plan-9 inheritance may be used with \CFA enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C).
215Containment is nominative: an enumeration inherits all enumerators from another enumeration by declaring an @inline statement@ in its enumerator lists.
216\begin{cfa}
217enum( char * ) Names { /* $\see{\VRef[Figure]{f:EumeratorTyping}}$ */ };
218enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
219enum( char * ) Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
220\end{cfa}
221In the preceding example, @Names2@ is defined with five enumerators, three of which are from @Name@ through containment, and two are self-declared.
222@Names3@ inherits all five members from @Names2@ and declares two additional enumerators.
223Hence, enumeration inheritance forms a subset relationship.
224Specifically, the inheritance relationship for the example above is:
225\begin{cfa}
226Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\C{// enum type of Names}$
227\end{cfa}
228
229Inheritance can be nested, and a \CFA enumeration can inline enumerators from more than one \CFA enumeration, forming a tree-like hierarchy.
230However, the uniqueness of enumeration name applies to enumerators, including those from supertypes, meaning an enumeration cannot name enumerator with the same label as its subtype's members, or inherits
231from multiple enumeration that has overlapping enumerator label. As a consequence, a new type cannot inherits from both an enumeration and its supertype, or two enumerations with a
232common supertype (the diamond problem), since such would unavoidably introduce duplicate enumerator labels.
233
234The base type must be consistent between subtype and supertype.
235When an enumeration inherits enumerators from another enumeration, it copies the enumerators' @value@ and @label@, even if the @value@ is auto initialized.
236However, the position of the underlying representation is the order of the enumerator in the new enumeration.
237\begin{cfa}
238enum() E1 { A };
239enum() E2 { B, C };
240enum() E3 { inline E1, inline E2, D };
241\end{cfa}
242Here, @A@ has position 0 in @E1@ and @E3@.
243@B@ has position 0 in @E2@ and 1 in @E3@.
244@C@ has position 1 in @E2@ and position 2 in @E3@.
245@D@ has position 3 in @E3@.
246
247A subtype enumeration can be casted, or implicitly converted into its supertype, with a @safe@ cost.
248\begin{cfa}
249enum E2 e2 = C;
250posn( e2 );                     $\C[1.75in]{// 1}$
251enum E3 e3 = e2;
252posn( e2 );                     $\C{// 2}$
253void foo( E3 e );
254foo( e2 );
255posn( (E3)e2 );         $\C{// 2}$
256E3 e31 = B;
257posn( e31 );            $\C{// 1}\CRT$
258\end{cfa}
259The last expression is unambiguous.
260While both @E2.B@ and @E3.B@ are valid candidate, @E2.B@ has an associated safe cost and \CFA selects the zero cost candidate @E3.B@.
261Hence, as discussed in \VRef{s:OpaqueEnum}, \CFA chooses position as a representation of the \CFA enum.
262Therefore, conversion involves both a change of type and possibly position.
263
264When converting a subtype to a supertype, its position can only be a larger value.
265The difference between the position in the subtype and in the supertype is its \newterm{offset}.
266\VRef[Figure]{s:OffsetSubtypeSuperType} show the algorithm to determine the offset for an subtype enumerator to its super type.
267\PAB{You need to explain the algorithm.}
268
269\begin{figure}
270\begin{cfa}
271struct Enumerator;
272struct CFAEnum {
273        vector<variant<CFAEnum, Enumerator>> members;
274};
275pair<bool, int> calculateEnumOffset( CFAEnum dst, Enumerator e ) {
276        int offset = 0;
277        for ( auto v: dst.members ) {
278                if ( v.holds_alternative<Enumerator>() ) {
279                        auto m = v.get<Enumerator>();
280                        if ( m == e ) return make_pair( true, 0 );
281                        offset++;
282                } else {
283                        auto p = calculateEnumOffset( v, e );
284                        if ( p.first ) return make_pair( true, offset + p.second );
285                        offset += p.second;
286                }
287        }
288        return make_pair( false, offset );
289}
290\end{cfa}
291\caption{Compute Offset from Subtype Enumerator to Super Type}
292\label{s:OffsetSubtypeSuperType}
293\end{figure}
294
295For the given function prototypes, the following calls are valid.
296\begin{cquote}
297\begin{tabular}{ll}
298\begin{cfa}
299void f( Names );
300void g( Names2 );
301void h( Names3 );
302void j( const char * );
303\end{cfa}
304&
305\begin{cfa}
306f( Fred );
307g( Fred );   g( Jill );
308h( Fred );   h( Jill );   h( Sue );
309j( Fred );    j( Jill );    j( Sue );    j( "WILL" );
310\end{cfa}
311\end{tabular}
312\end{cquote}
313Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
314
315
316\section{Control Structures}
317
318Enumerators can be used in multiple contexts.
319In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
320However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts.
321In these contexts, a programmer's intuition assumes an implicit conversion to position.
322
323For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implicit @break@ rather than a fall-through at the end of a @case@ clause.
324(For this discussion, ignore the fact that @case@ requires a compile-time constant.)
325\begin{cfa}[belowskip=0pt]
326enum Count { First, Second, Third, Fourth };
327Count e;
328\end{cfa}
329\begin{cquote}
330\setlength{\tabcolsep}{15pt}
331\noindent
332\begin{tabular}{@{}ll@{}}
333\begin{cfa}[aboveskip=0pt]
334
335choose( e ) {
336        case @First@: ...;
337        case @Second@: ...;
338        case @Third@: ...;
339        case @Fourth@: ...;
340}
341\end{cfa}
342&
343\begin{cfa}[aboveskip=0pt]
344// rewrite
345choose( @value@( e ) ) {
346        case @value@( First ): ...;
347        case @value@( Second ): ...;
348        case @value@( Third ): ...;
349        case @value@( Fourth ): ...;
350}
351\end{cfa}
352\end{tabular}
353\end{cquote}
354Here, the intuitive code on the left is implicitly transformed into the standard implementation on the right, using the value of the enumeration variable and enumerators.
355However, this implementation is fragile, \eg if the enumeration is changed to:
356\begin{cfa}
357enum Count { First, Second, Third @= First@, Fourth };
358\end{cfa}
359making @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicate @case@ clauses.
360To better match with programmer intuition, \CFA toggles between value and position semantics depending on the language context.
361For conditional clauses and switch statements, \CFA uses the robust position implementation.
362\begin{cfa}
363if ( @posn@( e ) < posn( Third ) ) ...
364choose( @posn@( e ) ) {
365        case @posn@( First ): ...;
366        case @posn@( Second ): ...;
367        case @posn@( Third ): ...;
368        case @posn@( Fourth ): ...;
369}
370\end{cfa}
371
372\CFA provides a special form of for-control for enumerating through an enumeration, where the range is a type.
373\begin{cfa}
374for ( cx; @Count@ ) { sout | cx | nonl; } sout | nl;
375for ( cx; ~= Count ) { sout | cx | nonl; } sout | nl;
376for ( cx; -~= Count ) { sout | cx | nonl; } sout | nl;
377First Second Third Fourth
378First Second Third Fourth
379Fourth Third Second First
380\end{cfa}
381The enumeration type is syntax sugar for looping over all enumerators and assigning each enumerator to the loop index, whose type is inferred from the range type.
382The prefix @+~=@ or @-~=@ iterate forward or backwards through the inclusive enumeration range, where no prefix defaults to @+~=@.
383
384C has an idiom for @if@ and loop predicates of comparing the predicate result ``not equal to 0''.
385\begin{cfa}
386if ( x + y /* != 0 */  ) ...
387while ( p /* != 0 */  ) ...
388\end{cfa}
389This idiom extends to enumerations because there is a boolean conversion in terms of the enumeration value, if and only if such a conversion is available.
390For example, such a conversion exists for all numerical types (integral and floating-point).
391It is possible to explicitly extend this idiom to any typed enumeration by overloading the @!=@ operator.
392\begin{cfa}
393bool ?!=?( Name n, zero_t ) { return n != Fred; }
394Name n = Mary;
395if ( n ) ... // result is true
396\end{cfa}
397Specialize meanings are also possible.
398\begin{cfa}
399enum(int) ErrorCode { Normal = 0, Slow = 1, Overheat = 1000, OutOfResource = 1001 };
400bool ?!=?( ErrorCode ec, zero_t ) { return ec >= Overheat; }
401ErrorCode code = ...;
402if ( code ) { problem(); }
403\end{cfa}
404
405
406\section{Dimension}
407
408\VRef{s:EnumeratorTyping} introduces the harmonizing problem between an enumeration and secondary information.
409When possible, using a typed enumeration for the secondary information is the best approach.
410However, there are times when combining these two types is not possible.
411For example, the secondary information might precede the enumeration and/or its type is needed directly to declare parameters of functions.
412In these cases, having secondary arrays of the enumeration size are necessary.
413
414To support some level of harmonizing in these cases, an array dimension can be defined using an enumerator type, and the enumerators used as subscripts.
415\begin{cfa}
416enum E1 { A, B, C, N }; // possibly predefined
417enum(int) E2 { A, B, C };
418float H1[N] = { [A] :$\footnotemark$ 3.4, [B] : 7.1, [C] : 0.01 }; // C
419float H2[@E2@] = { [A] : 3.4, [B] : 7.1, [C] : 0.01 }; // CFA
420\end{cfa}
421\footnotetext{C uses symbol \lstinline{'='} for designator initialization, but \CFA changes it to \lstinline{':'} because of problems with tuple syntax.}
422This approach is also necessary for a predefined typed enumeration (unchangeable), when additional secondary-information need to be added.
423
424The array subscript operator, namely @?[?]@, is overloaded so that when a \CFA enumerator is used as an array index, it implicitly converts to its position over value to sustain data harmonization.
425This behaviour can be reverted by explicit overloading:
426\begin{cfa}
427float ?[?]( float * arr, E2 index ) { return arr[ value( index ) ]; }
428\end{cfa}
429When an enumeration type is being used as an array dimension, \CFA adds the enumeration type to the initializer's context.
430As a result, @H2@'s array destinators @A@, @B@ and @C@ are resolved unambiguously to type @E2@.
431(@H1@'s destinators are also resolved unambiguously to @E1@ because @E2@ has a @value@ cost.)
432
433
434\section{I/O}
435
436As seen in multiple examples, enumerations can be printed and the default property printed is the enumerator's label, which is similar in other programming languages.
437However, very few programming languages provide a mechanism to read in enumerator values.
438Even the @boolean@ type in many languages does not have a mechanism for input using the enumerators @true@ or @false@.
439\VRef[Figure]{f:EnumerationI/O} show \CFA enumeration input based on the enumerator labels.
440When the enumerator labels are packed together in the input stream, the input algorithm scans for the longest matching string.
441For basic types in \CFA, the rule is that the same constants used to initialize a variable in a program are available to initialize a variable using input, where strings constants can be quoted or unquoted.
442
443\begin{figure}
444\begin{cquote}
445\setlength{\tabcolsep}{15pt}
446\begin{tabular}{@{}ll@{}}
447\begin{cfa}
448int main() {
449        enum(int ) E { BBB = 3, AAA, AA, AB, B };
450        E e;
451
452        for () {
453                try {
454                        @sin | e@;
455                } catch( missing_data * ) {
456                        sout | "missing data";
457                        continue; // try again
458                }
459          if ( eof( sin ) ) break;
460                sout | e | "= " | value( e );
461        }
462}
463\end{cfa}
464&
465\begin{cfa}
466$\rm input$
467BBBABAAAAB
468BBB AAA AA AB B
469
470$\rm output$
471BBB = 3
472AB = 6
473AAA = 4
474AB = 6
475BBB = 3
476AAA = 4
477AA = 5
478AB = 6
479B = 7
480
481\end{cfa}
482\end{tabular}
483\end{cquote}
484\caption{Enumeration I/O}
485\label{f:EnumerationI/O}
486\end{figure}
487
488
489\section{Planet Example}
490
491\VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating most of the \CFA enumeration features.
492@Planet@ is an enumeration of type @MR@.
493Each planet enumerator is initialized to a specific mass/radius, @MR@, value.
494The unnamed enumeration provides the gravitational-constant enumerator @G@.
495Function @surfaceGravity@ uses the @with@ clause to remove @p@ qualification from fields @mass@ and @radius@.
496The program main uses the pseudo function @countof@ to obtain the number of enumerators in @Planet@, and safely converts the random value into a @Planet@ enumerator using @fromInt@.
497The resulting random orbital-body is used in a @choose@ statement.
498The enumerators in the @case@ clause use the enumerator position for testing.
499The prints use @label@ to print an enumerator's name.
500Finally, a loop enumerates through the planets computing the weight on each planet for a given earth mass.
501The print statement does an equality comparison with an enumeration variable and enumerator (@p == MOON@).
502
503\begin{figure}
504\small
505\begin{cfa}
506struct MR { double mass, radius; };                     $\C[3.5in]{// planet definition}$
507enum( @MR@ ) Planet {                                           $\C{// typed enumeration}$
508        //                      mass (kg)   radius (km)
509        MERCURY = { 0.330_E24, 2.4397_E6 },
510        VENUS      = { 4.869_E24, 6.0518_E6 },
511        EARTH       = { 5.976_E24, 6.3781_E6 },
512        MOON        = { 7.346_E22, 1.7380_E6 }, $\C{// not a planet}$
513        MARS         = { 0.642_E24, 3.3972_E6 },
514        JUPITER    = { 1898._E24, 71.492_E6 },
515        SATURN     = { 568.8_E24, 60.268_E6 },
516        URANUS    = { 86.86_E24, 25.559_E6 },
517        NEPTUNE  = { 102.4_E24, 24.746_E6 },
518        PLUTO       = { 1.303_E22, 1.1880_E6 }, $\C{// not a planet}$
519};
520enum( double ) { G = 6.6743_E-11 };                     $\C{// universal gravitational constant (m3 kg-1 s-2)}$
521static double surfaceGravity( Planet p ) @with( p )@ {
522        return G * mass / ( radius @\@ 2 );             $\C{// no qualification, exponentiation}$
523}
524static double surfaceWeight( Planet p, double otherMass ) {
525        return otherMass * surfaceGravity( p );
526}
527int main( int argc, char * argv[] ) {
528        if ( argc != 2 ) @exit@ | "Usage: " | argv[0] | "earth-weight";  // terminate program
529        double earthWeight = convert( argv[1] );
530        double earthMass = earthWeight / surfaceGravity( EARTH );
531        Planet rp = @fromInt@( prng( @countof@( Planet ) ) ); $\C{// select random orbiting body}$
532        @choose( rp )@ {                                                $\C{// implicit breaks}$
533          case MERCURY, VENUS, EARTH, MARS:
534                sout | @rp@ | "is a rocky planet";
535          case JUPITER, SATURN, URANUS, NEPTUNE:
536                sout | rp | "is a gas-giant planet";
537          default:
538                sout | rp | "is not a planet";
539        }
540        for ( @p; Planet@ ) {                                   $\C{// enumerate}\CRT$
541                sout | "Your weight on" | ( @p == MOON@ ? "the" : " " ) | p
542                           | "is" | wd( 1,1,  surfaceWeight( p, earthMass ) ) | "kg";
543        }
544}
545$\$$ planet 100
546JUPITER is a gas-giant planet
547Your weight on MERCURY is 37.7 kg
548Your weight on VENUS is 90.5 kg
549Your weight on EARTH is 100.0 kg
550Your weight on the MOON is 16.6 kg
551Your weight on MARS is 37.9 kg
552Your weight on JUPITER is 252.8 kg
553Your weight on SATURN is 106.6 kg
554Your weight on URANUS is 90.5 kg
555Your weight on NEPTUNE is 113.8 kg
556Your weight on PLUTO is 6.3 kg
557\end{cfa}
558\caption{Planet Example}
559\label{f:PlanetExample}
560\end{figure}
Note: See TracBrowser for help on using the repository browser.