[956299b] | 1 | \chapter{\CFA-Style Enum} |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | \CFA supports C-Style enumeration using the same syntax and semantics for backwards compatibility. |
---|
| 5 | \CFA also extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages. |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | \section{Enumerator Name Resolution} |
---|
| 9 | \label{s:EnumeratorNameResolution} |
---|
| 10 | |
---|
| 11 | In C, unscoping of enumerators presents a \Newterm{naming problem} when multiple enumeration types appear in the same scope with duplicate enumerator names. |
---|
| 12 | There is no mechanism in C to resolve these naming conflicts other than renaming of one of the duplicates, which may be impossible. |
---|
| 13 | |
---|
| 14 | The \CFA type-system allows extensive overloading, including enumerators. |
---|
| 15 | Furthermore, \CFA uses the left-hand of assignment in type resolution to pinpoint the best overloaded name. |
---|
| 16 | Finally, qualification is provided to disambiguate any ambiguous situations. |
---|
| 17 | \begin{cfa} |
---|
| 18 | enum C1 { First, Second, Third, Fourth }; |
---|
| 19 | enum C2 { @Fourth@, @Third@, @Second@, @First@ }; |
---|
| 20 | C1 p() { return Third; } $\C{// correctly resolved duplicate names}$ |
---|
| 21 | C2 p() { return Fourth; } |
---|
| 22 | void foo() { |
---|
| 23 | C1 e1 = First; C2 e2 = First; |
---|
| 24 | e1 = Second; e2 = Second; |
---|
| 25 | e1 = p(); e2 = p(); $\C{// correctly resolved function call}$ |
---|
| 26 | int i = @C1.@First + @C2.@First; $\C{// ambiguous without qualification}$ |
---|
| 27 | } |
---|
| 28 | \end{cfa} |
---|
| 29 | \CFA overloading allows programmers to use the most meaningful names without fear of unresolvable clashes from included files, which are correctable with qualification. |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | \section{Enumerator Scoping} |
---|
| 33 | |
---|
| 34 | An enumeration can be scoped, so the enumerator constants are not projected into the enclosing scope, using @'!'@. |
---|
| 35 | \begin{cfa} |
---|
| 36 | enum Weekday @!@ { /* as above */ }; |
---|
| 37 | enum( char * ) Names @!@ { /* as above */ }; |
---|
| 38 | \end{cfa} |
---|
| 39 | Now the enumerators \emph{must} be qualified with the associated enumeration. |
---|
| 40 | \begin{cfa} |
---|
| 41 | Weekday weekday = @Weekday@.Monday; |
---|
| 42 | Names names = @Names.@Fred; |
---|
| 43 | names = @Names.@Jane; |
---|
| 44 | \end{cfa} |
---|
| 45 | It is possible to toggle back to unscoping using the \CFA @with@ clause/statement (see also \CC \lstinline[language=c++]{using enum} in Section~\ref{s:C++RelatedWork}). |
---|
| 46 | \begin{cfa} |
---|
| 47 | Weekday weekday; |
---|
| 48 | with ( @Weekday@, @Names@ ) { $\C{// type names}$ |
---|
| 49 | Names names = @Fred@; |
---|
| 50 | names = @Jane@; |
---|
| 51 | weekday = Saturday; |
---|
| 52 | } |
---|
| 53 | \end{cfa} |
---|
| 54 | As in Section~\ref{s:EnumeratorNameResolution}, opening multiple unscoped enumerations can result in duplicate enumeration names, but \CFA type resolution and falling back to explicit qualification handles name resolution. |
---|
| 55 | |
---|
| 56 | \section{Enumerator Typing} |
---|
| 57 | |
---|
| 58 | \CFA extends the enumeration declaration by parameterizing with a type (like a generic type), allowing enumerators to be assigned any values from the declared type. |
---|
| 59 | Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be use with an enumeration and each type's constants used to set the enumerator constants. |
---|
| 60 | Note, the synonyms @Liz@ and @Beth@ in the last declaration. |
---|
| 61 | |
---|
| 62 | Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are rewritten with @const@. |
---|
| 63 | A typed enumeration has an implicit (safe) conversion to its base type. |
---|
| 64 | \begin{cfa} |
---|
| 65 | char currency = Dollar; |
---|
| 66 | string fred = Fred; $\C{// implicit conversion from char * to \CFA string type}$ |
---|
| 67 | Person student = Beth; |
---|
| 68 | \end{cfa} |
---|
| 69 | |
---|
| 70 | % \begin{cfa} |
---|
| 71 | % struct S { int i, j; }; |
---|
| 72 | % enum( S ) s { A = { 3, 4 }, B = { 7, 8 } }; |
---|
| 73 | % enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$' }; |
---|
| 74 | % enum( @double@ ) Planet { Venus = 4.87, Earth = 5.97, Mars = 0.642 }; // mass |
---|
| 75 | % enum( @char *@ ) Colour { Red = "red", Green = "green", Blue = "blue" }; |
---|
| 76 | % enum( @Currency@ ) Europe { Euro = '$\texteuro$', Pound = '$\textsterling$' }; // intersection |
---|
| 77 | % \end{cfa} |
---|
| 78 | |
---|
| 79 | \begin{figure} |
---|
| 80 | \begin{cfa} |
---|
| 81 | // integral |
---|
| 82 | enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$' }; |
---|
| 83 | enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 }; |
---|
| 84 | enum( @long long int@ ) BigNum { X = 123_456_789_012_345, Y = 345_012_789_456_123 }; |
---|
| 85 | // non-integral |
---|
| 86 | enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 }; |
---|
| 87 | enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i }; |
---|
| 88 | // pointer |
---|
| 89 | enum( @char *@ ) Names { Fred = "FRED", Mary = "MARY", Jane = "JANE" }; |
---|
| 90 | int i, j, k; |
---|
| 91 | enum( @int *@ ) ptr { I = &i, J = &j, K = &k }; |
---|
| 92 | enum( @int &@ ) ref { I = i, J = j, K = k }; |
---|
| 93 | // tuple |
---|
| 94 | enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$ |
---|
| 95 | // function |
---|
| 96 | void f() {...} void g() {...} |
---|
| 97 | enum( @void (*)()@ ) funs { F = f, G = g }; |
---|
| 98 | // aggregate |
---|
| 99 | struct Person { char * name; int age, height; }; |
---|
| 100 | @***@enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz, Jon = { "JONATHAN", 35, 190 } }; |
---|
| 101 | \end{cfa} |
---|
| 102 | \caption{Enumerator Typing} |
---|
| 103 | \label{f:EumeratorTyping} |
---|
| 104 | \end{figure} |
---|
| 105 | |
---|
| 106 | Typed enumerations deals with the \emph{harmonizing} problem between an enumeration and any companion data. |
---|
| 107 | The following example is from the \CFA compiler, written in \CC. |
---|
| 108 | \begin{cfa} |
---|
| 109 | enum integral_types { chr, schar, uschar, sshort, ushort, sint, usint, ..., NO_OF_ITYPES }; |
---|
| 110 | char * integral_names[NO_OF_ITYPES] = { |
---|
| 111 | "char", "signed char", "unsigned char", |
---|
| 112 | "signed short int", "unsigned short int", |
---|
| 113 | "signed int", "unsigned int", |
---|
| 114 | ... |
---|
| 115 | }; |
---|
| 116 | \end{cfa} |
---|
| 117 | The \emph{harmonizing} problem occurs because the enumeration declaration is in one header file and the names are declared in another translation unit. |
---|
| 118 | It is up to the programmer to ensure changes made in one location are harmonized with the other location (by identifying this requirement within a comment). |
---|
| 119 | The typed enumeration largely solves this problem by combining and managing the two data types. |
---|
| 120 | \begin{cfa} |
---|
| 121 | enum( char * ) integral_types { |
---|
| 122 | chr = "char", schar = "signed char", uschar = "unsigned char", |
---|
| 123 | sshort = "signed short int", ushort = "unsigned short int", |
---|
| 124 | sint = "signed int", usint = "unsigned int", |
---|
| 125 | ... |
---|
| 126 | }; |
---|
| 127 | \end{cfa} |
---|
| 128 | Note, the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures. |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | \section{Pure Enumerators} |
---|
| 132 | |
---|
| 133 | An empty enumerator type, @enum()@, implies the enumerators are pure symbols without values but set properties; |
---|
| 134 | hence, there is no default conversion to @int@. |
---|
| 135 | |
---|
| 136 | \begin{cfa} |
---|
| 137 | enum() Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND }; |
---|
| 138 | @***@Mode iomode = O_RDONLY; |
---|
| 139 | bool b = iomode == O_RDONLY || iomode < O_APPEND; |
---|
| 140 | int i = iomode; $\C{\color{red}// disallowed}$ |
---|
| 141 | \end{cfa} |
---|
| 142 | |
---|
| 143 | \section{Enumerator Subset} |
---|
| 144 | |
---|
| 145 | If follows from enumerator typing that the enumerator type can be another enumerator. |
---|
| 146 | \begin{cfa} |
---|
| 147 | enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$' }; |
---|
| 148 | enum( @Currency@ ) Europe { Euro = Currency.Euro, Pound = Currency.Pound }; // intersection |
---|
| 149 | enum( char ) Letter { A = 'A', B = 'B', C = 'C', ..., Z = 'Z' }; |
---|
| 150 | enum( @Letter@ ) Greek { Alph = A, Beta = B, ..., Zeta = Z }; // intersection |
---|
| 151 | \end{cfa} |
---|
| 152 | Subset enumerations may have more or less enumerators than their typed enumeration, but the enumerator values must be from the typed enumeration. |
---|
| 153 | For example, @Greek@ enumerators are a subset of type @Letter@ and are type compatible with enumeration @Letter@, but @Letter@ enumerators are not type compatible with enumeration @Greek@. |
---|
| 154 | \begin{cfa} |
---|
| 155 | Letter letter = A; |
---|
| 156 | @***@Greak greek = Beta; |
---|
| 157 | letter = Beta; $\C{// allowed, letter == B}$ |
---|
| 158 | greek = A; $\C{\color{red}// disallowed}$ |
---|
| 159 | \end{cfa} |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | \section{Enumeration Inheritance} |
---|
| 163 | |
---|
| 164 | \CFA Plan-9 inheritance may be used with enumerations, where Plan-9 inheritance is containment inheritance with implicit unscoping (like a nested unnamed @struct@/@union@ in C). |
---|
| 165 | \begin{cfa} |
---|
| 166 | enum( char * ) Names { /* as above */ }; |
---|
| 167 | enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" }; |
---|
| 168 | @***@enum /* inferred */ Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" }; |
---|
| 169 | \end{cfa} |
---|
| 170 | Enumeration @Name2@ inherits all the enumerators and their values from enumeration @Names@ by containment, and a @Names@ enumeration is a subtype of enumeration @Name2@. |
---|
| 171 | Note, enumerators must be unique in inheritance but enumerator values may be repeated. |
---|
| 172 | |
---|
| 173 | The enumeration type for the inheriting type must be the same as the inherited type; |
---|
| 174 | hence the enumeration type may be omitted for the inheriting enumeration and it is inferred from the inherited enumeration, as for @Name3@. |
---|
| 175 | % When inheriting from integral types, automatic numbering may be used, so the inheritance placement left to right is important. |
---|
| 176 | Specifically, the inheritance relationship for @Names@ is: |
---|
| 177 | \begin{cfa} |
---|
| 178 | Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\(\subset\)$ const char * $\C{// enum type of Names}$ |
---|
| 179 | \end{cfa} |
---|
| 180 | For the given function prototypes, the following calls are valid. |
---|
| 181 | \begin{cquote} |
---|
| 182 | \begin{tabular}{ll} |
---|
| 183 | \begin{cfa} |
---|
| 184 | void f( Names ); |
---|
| 185 | void g( Names2 ); |
---|
| 186 | void h( Names3 ); |
---|
| 187 | void j( const char * ); |
---|
| 188 | \end{cfa} |
---|
| 189 | & |
---|
| 190 | \begin{cfa} |
---|
| 191 | f( Fred ); |
---|
| 192 | g( Fred ); g( Jill ); |
---|
| 193 | h( Fred ); h( Jill ); h( Sue ); |
---|
| 194 | j( Fred ); j( Jill ); j( Sue ); j( "WILL" ); |
---|
| 195 | \end{cfa} |
---|
| 196 | \end{tabular} |
---|
| 197 | \end{cquote} |
---|
| 198 | Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types. |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | \section{Enumeration Pseudo-functions} |
---|
| 202 | |
---|
[f9da761] | 203 | Pseudo-functions are function-like operators that do not result in any run-time computations, \ie like @sizeof@, @offsetof@, @typeof@. |
---|
[956299b] | 204 | Often a call to a pseudo-function is substituted with information extracted from the symbol table at compilation time, like storage size or alignment associated with the underlying architecture.. |
---|
| 205 | |
---|
| 206 | The attributes of an enumerator are accessed by pseudo-functions @position@, @value@, and @label@. |
---|
| 207 | \begin{cfa} |
---|
| 208 | @***@int jane_pos = @position@( Names.Jane ); $\C{// 2}$ |
---|
| 209 | @***@char * jane_value = @value@( Names.Jane ); $\C{// "JANE"}$ |
---|
| 210 | @***@char * jane_label = @label@( Names.Jane ); $\C{// "Jane"}$ |
---|
| 211 | sout | @label@( Names.Jane ) | @value@( Names.Jane ); |
---|
| 212 | \end{cfa} |
---|
| 213 | Note the ability to print both enumerator label and value. |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | \section{Enumerator Position or Value} |
---|
| 217 | |
---|
| 218 | Enumerators can be used in multiple contexts. |
---|
| 219 | In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution). |
---|
| 220 | However, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect in some contexts. |
---|
| 221 | In these contexts, a programmer's initition assumes an implicit conversion to postion. |
---|
| 222 | |
---|
| 223 | For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implict @break@ rather than a fall-through at the end of a @case@ clause. |
---|
| 224 | \begin{cquote} |
---|
| 225 | \begin{cfa} |
---|
| 226 | enum Count { First, Second, Third, Fourth }; |
---|
| 227 | Count e; |
---|
| 228 | \end{cfa} |
---|
| 229 | \begin{tabular}{ll} |
---|
| 230 | \begin{cfa} |
---|
| 231 | |
---|
| 232 | choose( e ) { |
---|
| 233 | case @First@: ...; |
---|
| 234 | case @Second@: ...; |
---|
| 235 | case @Third@: ...; |
---|
| 236 | case @Fourth@: ...; |
---|
| 237 | } |
---|
| 238 | \end{cfa} |
---|
| 239 | & |
---|
| 240 | \begin{cfa} |
---|
| 241 | // rewrite |
---|
| 242 | choose( @value@( e ) ) { |
---|
| 243 | case @value@( First ): ...; |
---|
| 244 | case @value@( Second ): ...; |
---|
| 245 | case @value@( Third ): ...; |
---|
| 246 | case @value@( Fourth ): ...; |
---|
| 247 | } |
---|
| 248 | \end{cfa} |
---|
| 249 | \end{tabular} |
---|
| 250 | \end{cquote} |
---|
| 251 | Here, the intuitive code on the left is implicitly transformed into the statndard implementation on the right, using the value of the enumeration variable and enumerators. |
---|
[f9da761] | 252 | However, this implementation is fragile, \eg if the enumeration is changed to: |
---|
[956299b] | 253 | \begin{cfa} |
---|
| 254 | enum Count { First, Second, Third @= First@, Fourth }; |
---|
| 255 | \end{cfa} |
---|
| 256 | which make @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicase @case@ clauses. |
---|
| 257 | To better match with programmer intuition, \CFA toggles between value and position semantics depneding on the language context. |
---|
| 258 | For conditional clauses and switch statments, \CFA uses the robust position implementation. |
---|
| 259 | \begin{cfa} |
---|
| 260 | choose( @position@( e ) ) { |
---|
| 261 | case @position@( First ): ...; |
---|
| 262 | case @position@( Second ): ...; |
---|
| 263 | case @position@( Third ): ...; |
---|
| 264 | case @position@( Fourth ): ...; |
---|
| 265 | } |
---|
| 266 | \end{cfa} |
---|
| 267 | |
---|
| 268 | \begin{cfa} |
---|
| 269 | Count variable_a = First, variable_b = Second, variable_c = Third, variable_d = Fourth; |
---|
| 270 | p(variable_a); // 0 |
---|
| 271 | p(variable_b); // 1 |
---|
| 272 | p(variable_c); // "Third" |
---|
| 273 | p(variable_d); // 3 |
---|
| 274 | \end{cfa} |
---|