1 | % ====================================================================== |
---|
2 | % ====================================================================== |
---|
3 | \chapter{Introduction to \CFA}\label{s:cfa} |
---|
4 | % ====================================================================== |
---|
5 | % ====================================================================== |
---|
6 | |
---|
7 | \section{Overview} |
---|
8 | The following serves as an introduction to \CFA. |
---|
9 | \CFA is a layer over C, is transpiled\footnote{Source to source translator.} to C, and is largely considered to be an extension of C. |
---|
10 | Beyond C, it adds productivity features, extended libraries, an advanced type-system, and many control-flow/concurrency constructions. |
---|
11 | However, \CFA stays true to the C programming style, with most code revolving around @struct@'s and routines, and respects the same rules as C. |
---|
12 | \CFA is not object oriented as it has no notion of @this@ (receiver) and no structures with methods, but supports some object oriented ideas including constructors, destructors, and limited nominal inheritance. |
---|
13 | While \CFA is rich with interesting features, only the subset pertinent to this work is discussed. |
---|
14 | |
---|
15 | \section{References} |
---|
16 | References in \CFA are similar to references in \CC; however \CFA references are \emph{rebindable}, and support multi-level referencing. |
---|
17 | References in \CFA are a layer of syntactic sugar over pointers to reduce the number of ref/deref operations needed with pointer usage. |
---|
18 | Another difference is the use of @0p@ instead of C's @NULL@ or \CC's @nullptr@. |
---|
19 | Examples of references are shown in \VRef[Listing]{l:cfa_ref}. |
---|
20 | |
---|
21 | \begin{cfa}[caption={Example of \CFA references},label={l:cfa_ref}] |
---|
22 | int i = 2; |
---|
23 | int & ref_i = i; $\C{// declare ref to i}$ |
---|
24 | int * ptr_i = &i; $\C{// ptr to i}$ |
---|
25 | |
---|
26 | // address of ref_i is the same as address of i |
---|
27 | assert( &ref_i == ptr_i ); |
---|
28 | |
---|
29 | int && ref_ref_i = ref_i; $\C{// can have a ref to a ref}$ |
---|
30 | ref_i = 3; $\C{// set i to 3}$ |
---|
31 | int new_i = 4; |
---|
32 | |
---|
33 | // syntax to rebind ref_i (must cancel implicit deref) |
---|
34 | &ref_i = &new_i; $\C{// (\&*)ref\_i = \&new\_i; (sets underlying ptr)}$ |
---|
35 | \end{cfa} |
---|
36 | |
---|
37 | |
---|
38 | \section{Overloading}\label{s:Overloading} |
---|
39 | \CFA routines can be overloaded on parameter type, number of parameters, and \emph{return type}. |
---|
40 | Variables can also be overloaded on type, meaning that two variables can have the same name so long as they have different types. |
---|
41 | A routine or variable is disambiguated at each usage site via its type and surrounding expression context. |
---|
42 | A cast is used to disambiguate any conflicting usage. |
---|
43 | Examples of overloading are shown in \VRef[Listing]{l:cfa_overload}. |
---|
44 | |
---|
45 | \begin{cfa}[caption={Example of \CFA overloading},label={l:cfa_overload}] |
---|
46 | int foo() { sout | "A"; return 0;} |
---|
47 | int foo( int bar ) { sout | "B"; return 1; } |
---|
48 | int foo( double bar ) { sout | "C"; return 2; } |
---|
49 | double foo( double bar ) { sout | "D"; return 3; } |
---|
50 | void foo( double bar ) { sout | bar; } |
---|
51 | |
---|
52 | int main() { |
---|
53 | foo(); $\C{// prints A}$ |
---|
54 | foo( 0 ); $\C{// prints B}$ |
---|
55 | int foo = foo( 0.0 ); $\C{// prints C}$ |
---|
56 | double foo = foo( 0.0 ); $\C{// prints D}$ |
---|
57 | foo( foo ); $\C{// prints 3., where left-hand side of expression is void}$ |
---|
58 | } |
---|
59 | \end{cfa} |
---|
60 | |
---|
61 | |
---|
62 | \section{\lstinline{with} Statement} |
---|
63 | The \CFA @with@ statement is for exposing fields of an aggregate type within a scope, allowing field names without qualification. |
---|
64 | This feature is also implemented in Pascal~\cite{Pascal}. |
---|
65 | It can exist as a stand-alone statement or wrap a routine body to expose aggregate fields. |
---|
66 | Examples of the @with@ statement are shown in \VRef[Listing]{l:cfa_with}. |
---|
67 | |
---|
68 | \begin{cfa}[caption={Example of \CFA \lstinline{with} statement},label={l:cfa_with}] |
---|
69 | struct pair { double x, y; }; |
---|
70 | struct triple { int a, b, c; }; |
---|
71 | pair p; |
---|
72 | |
---|
73 | @with( p )@ { $\C{// stand-alone with}$ |
---|
74 | p.x = 6.28; p.y = 1.73; $\C{// long form}$ |
---|
75 | x = 6.28; y = 1.73; $\C{// short form}$ |
---|
76 | } |
---|
77 | void foo( triple t, pair p ) @with( t, p )@ { $\C{// routine with}$ |
---|
78 | t.a = 1; t.b = 2; t.c = 3; p.x = 3.14; p.y = 2.71; $\C{// long form}$ |
---|
79 | a = 1; b = 2; c = 3; x = 3.14; y = 2.71; $\C{// short form}$ |
---|
80 | } |
---|
81 | \end{cfa} |
---|
82 | |
---|
83 | |
---|
84 | \section{Operators} |
---|
85 | Operators can be overloaded in \CFA with operator routines. |
---|
86 | Operators in \CFA are named using an operator symbol and '@?@' to represent operands. |
---|
87 | Examples of \CFA operators are shown in \VRef[Listing]{l:cfa_operate}. |
---|
88 | |
---|
89 | \begin{cfa}[caption={Example of \CFA operators},label={l:cfa_operate}] |
---|
90 | struct coord { |
---|
91 | double x, y, z; |
---|
92 | }; |
---|
93 | coord ++@?@( coord & c ) with( c ) { $\C{// post increment}$ |
---|
94 | x++; y++; z++; |
---|
95 | return c; |
---|
96 | } |
---|
97 | coord @?@<=@?@( coord op1, coord op2 ) with( op1 ) { $\C{// ambiguous with both parameters}$ |
---|
98 | return (x * x + y * y + z * z) <= (op2.x * op2.x + op2.y * op2.y + op2.z * op2.z); |
---|
99 | } |
---|
100 | \end{cfa} |
---|
101 | |
---|
102 | |
---|
103 | \section{Constructors and Destructors} |
---|
104 | Constructors and destructors in \CFA are special operator routines used for creation and destruction of objects. |
---|
105 | The default constructor and destructor for a type are called implicitly upon creation and deletion, respectively. |
---|
106 | Examples of \CFA constructors and destructors are shown in \VRef[Listing]{l:cfa_ctor}. |
---|
107 | |
---|
108 | \begin{cfa}[caption={Example of \CFA constructors and destructors},label={l:cfa_ctor}] |
---|
109 | struct discrete_point { |
---|
110 | int x, y; |
---|
111 | }; |
---|
112 | void ?{}( discrete_point & this ) with(this) { $\C{// default constructor}$ |
---|
113 | [x, y] = 0; |
---|
114 | } |
---|
115 | void ?{}( discrete_point & this, int x, int y ) { $\C{// explicit constructor}$ |
---|
116 | this.[x, y] = [x, y]; |
---|
117 | } |
---|
118 | void ^?{}( discrete_point & this ) with(this) { $\C{// destructor}$ |
---|
119 | ?{}( this ); $\C{// reset by calling default constructor}$ |
---|
120 | } |
---|
121 | int main() { |
---|
122 | discrete_point x, y{}; $\C{// implicit call to default ctor, ?\{\}}$ |
---|
123 | discrete_point s = { 2, -4 }, t{ 4, 2 }; $\C{// explicit call to specialized ctor}$ |
---|
124 | } // ^t{}, ^s{}, ^y{}, ^x{} implicit calls in reverse allocation order |
---|
125 | \end{cfa} |
---|
126 | |
---|
127 | |
---|
128 | \section{Polymorphism}\label{s:poly} |
---|
129 | C supports limited polymorphism, often requiring users to implement polymorphism using a @void *@ (type erasure) approach. |
---|
130 | \CFA extends C with generalized overloading polymorphism (see \VRef{s:Overloading}), as well as, parametric polymorphism and limited nominal inheritance. |
---|
131 | |
---|
132 | \subsection{Parametric Polymorphism} |
---|
133 | \CFA provides parametric polymorphism in the form of @forall@, and @trait@s. |
---|
134 | A @forall@ takes in a set of types and a list of constraints. |
---|
135 | The declarations that follow the @forall@ are parameterized over the types listed that satisfy the constraints. |
---|
136 | A list of @forall@ constraints can be refactored into a named @trait@ and reused in @forall@s. |
---|
137 | Examples of \CFA parametric polymorphism are shown in \VRef[Listing]{l:cfa_poly}. |
---|
138 | |
---|
139 | \begin{cfa}[caption={Example of \CFA parametric polymorphism},label={l:cfa_poly}] |
---|
140 | // sized() is a trait that means the type has a size |
---|
141 | forall( V & | sized(V) ) $\C{// type params for trait}$ |
---|
142 | trait vector_space { |
---|
143 | // dtor and copy ctor needed in constraints to pass by copy |
---|
144 | void ?{}( V &, V & ); $\C{// copy ctor for return}$ |
---|
145 | void ^?{}( V & ); $\C{// dtor}$ |
---|
146 | V ?+?( V, V ); $\C{// vector addition}$ |
---|
147 | V ?*?( int, V ); $\C{// scalar multiplication}$ |
---|
148 | }; |
---|
149 | |
---|
150 | forall( V & | vector_space( V ) ) { |
---|
151 | V get_inverse( V v1 ) { |
---|
152 | return -1 * v1; $\C{// can use ?*? routine defined in trait}$ |
---|
153 | } |
---|
154 | V add_and_invert( V v1, V v2 ) { |
---|
155 | return get_inverse( v1 + v2 ); $\C{// can use ?+? routine defined in trait}$ |
---|
156 | } |
---|
157 | } |
---|
158 | struct Vec1 { int x; }; |
---|
159 | void ?{}( Vec1 & this, Vec1 & other ) { this.x = other.x; } |
---|
160 | void ?{}( Vec1 & this, int x ) { this.x = x; } |
---|
161 | void ^?{}( Vec1 & this ) {} |
---|
162 | Vec1 ?+?( Vec1 v1, Vec1 v2 ) { v1.x += v2.x; return v1; } |
---|
163 | Vec1 ?*?( int c, Vec1 v1 ) { v1.x = v1.x * c; return v1; } |
---|
164 | |
---|
165 | struct Vec2 { int x; int y; }; |
---|
166 | void ?{}( Vec2 & this, Vec2 & other ) { this.x = other.x; this.y = other.y; } |
---|
167 | void ?{}( Vec2 & this, int x ) { this.x = x; this.y = x; } |
---|
168 | void ^?{}( Vec2 & this ) {} |
---|
169 | Vec2 ?+?( Vec2 v1, Vec2 v2 ) { v1.x += v2.x; v1.y += v2.y; return v1; } |
---|
170 | Vec2 ?*?( int c, Vec2 v1 ) { v1.x = v1.x * c; v1.y = v1.y * c; return v1; } |
---|
171 | |
---|
172 | int main() { |
---|
173 | Vec1 v1{ 1 }; $\C{// create Vec1 and call ctor}$ |
---|
174 | Vec2 v2{ 2 }; $\C{// create Vec2 and call ctor}$ |
---|
175 | // can use forall defined routines since types satisfy trait |
---|
176 | add_and_invert( get_inverse( v1 ), v1 ); |
---|
177 | add_and_invert( get_inverse( v2 ), v2 ); |
---|
178 | } |
---|
179 | \end{cfa} |
---|
180 | |
---|
181 | \subsection{Inheritance}\label{s:Inheritance} |
---|
182 | Inheritance in \CFA is taken from Plan-9 C's nominal inheritance. |
---|
183 | In \CFA, @struct@s can @inline@ another struct type to gain its fields and masquerade as that type. |
---|
184 | Examples of \CFA nominal inheritance are shown in \VRef[Listing]{l:cfa_inherit}. |
---|
185 | |
---|
186 | \begin{cfa}[caption={Example of \CFA nominal inheritance},label={l:cfa_inherit}] |
---|
187 | struct one_d { double x; }; |
---|
188 | struct two_d { |
---|
189 | @inline@ one_d; |
---|
190 | double y; |
---|
191 | }; |
---|
192 | struct three_d { |
---|
193 | @inline@ two_d; |
---|
194 | double z; |
---|
195 | }; |
---|
196 | double get_x( one_d & d ){ return d.x; } |
---|
197 | |
---|
198 | struct dog {}; |
---|
199 | struct dog_food { |
---|
200 | int count; |
---|
201 | }; |
---|
202 | struct pet { |
---|
203 | @inline@ dog; |
---|
204 | @inline@ dog_food; |
---|
205 | }; |
---|
206 | void pet_dog( dog & d ) { sout | "woof"; } |
---|
207 | void print_food( dog_food & f ) { sout | f.count; } |
---|
208 | |
---|
209 | int main() { |
---|
210 | one_d x; |
---|
211 | two_d y; |
---|
212 | three_d z; |
---|
213 | x.x = 1; |
---|
214 | y.x = 2; |
---|
215 | z.x = 3; |
---|
216 | get_x( x ); $\C{// returns 1;}$ |
---|
217 | get_x( y ); $\C{// returns 2;}$ |
---|
218 | get_x( z ); $\C{// returns 3;}$ |
---|
219 | pet p; |
---|
220 | p.count = 5; |
---|
221 | pet_dog( p ); $\C{// prints woof}$ |
---|
222 | print_food( p ); $\C{// prints 5}$ |
---|
223 | } |
---|
224 | \end{cfa} |
---|
225 | |
---|
226 | % Local Variables: % |
---|
227 | % tab-width: 4 % |
---|
228 | % End: % |
---|