source: doc/theses/colby_parsons_MMAth/text/CFA_intro.tex @ 4f6c628

Last change on this file since 4f6c628 was 4f6c628, checked in by Peter A. Buhr <pabuhr@…>, 17 months ago

add label for inheritance subsection

  • Property mode set to 100644
File size: 9.0 KB
RevLine 
[601bd9e]1% ======================================================================
2% ======================================================================
3\chapter{Introduction to \CFA}\label{s:cfa}
4% ======================================================================
5% ======================================================================
6
7\section{Overview}
[c459f99]8The following serves as an introduction to \CFA.
9\CFA is a layer over C, is transpiled\footnote{Source to source translator.} to C, and is largely considered to be an extension of C.
10Beyond C, it adds productivity features, extended libraries, an advanced type-system, and many control-flow/concurrency constructions.
11However, \CFA stays true to the C programming style, with most code revolving around @struct@'s and routines, and respects the same rules as C.
[2d831a1]12\CFA is not object oriented as it has no notion of @this@ (receiver) and no structures with methods, but supports some object oriented ideas including constructors, destructors, and limited nominal inheritance.
[59c05958]13While \CFA is rich with interesting features, only the subset pertinent to this work is discussed.
[0faacb8]14
15\section{References}
[c459f99]16References in \CFA are similar to references in \CC; however \CFA references are \emph{rebindable}, and support multi-level referencing.
17References in \CFA are a layer of syntactic sugar over pointers to reduce the number of ref/deref operations needed with pointer usage.
[59c05958]18Another difference is the use of @0p@ instead of C's @NULL@ or \CC's @nullptr@.
[c459f99]19Examples of references are shown in \VRef[Listing]{l:cfa_ref}.
[0faacb8]20
[0e398ad]21\begin{cfa}[caption={Example of \CFA references},label={l:cfa_ref}]
[0faacb8]22int i = 2;
[59c05958]23int & ref_i = i;                        $\C{// declare ref to i}$
24int * ptr_i = &i;                       $\C{// ptr to i}$
[0faacb8]25
26// address of ref_i is the same as address of i
27assert( &ref_i == ptr_i );
28
[59c05958]29int && ref_ref_i = ref_i;       $\C{// can have a ref to a ref}$
30ref_i = 3;                                      $\C{// set i to 3}$
[0faacb8]31int new_i = 4;
32
33// syntax to rebind ref_i (must cancel implicit deref)
[59c05958]34&ref_i = &new_i;                        $\C{// (\&*)ref\_i = \&new\_i; (sets underlying ptr)}$
[0e398ad]35\end{cfa}
[601bd9e]36
37
[59c05958]38\section{Overloading}\label{s:Overloading}
[c459f99]39\CFA routines can be overloaded on parameter type, number of parameters, and \emph{return type}.
40Variables can also be overloaded on type, meaning that two variables can have the same name so long as they have different types.
[59c05958]41A routine or variable is disambiguated at each usage site via its type and surrounding expression context.
[c459f99]42A cast is used to disambiguate any conflicting usage.
43Examples of overloading are shown in \VRef[Listing]{l:cfa_overload}.
[0faacb8]44
[59c05958]45\begin{cfa}[caption={Example of \CFA overloading},label={l:cfa_overload}]
46int foo() { sout | "A";  return 0;}
47int foo( int bar ) { sout | "B"; return 1; }
48int foo( double bar ) { sout | "C"; return 2; }
49double foo( double bar ) { sout | "D"; return 3; }
50void foo( double bar ) { sout | bar; }
[0faacb8]51
52int main() {
[59c05958]53        foo();                                          $\C{// prints A}$
54        foo( 0 );                                       $\C{// prints B}$
55        int foo = foo( 0.0 );           $\C{// prints C}$
56        double foo = foo( 0.0 );        $\C{// prints D}$
57        foo( foo );                                     $\C{// prints 3., where left-hand side of expression is void}$
[0faacb8]58}
[0e398ad]59\end{cfa}
[601bd9e]60
61
[c459f99]62\section{\lstinline{with} Statement}
[59c05958]63The \CFA @with@ statement is for exposing fields of an aggregate type within a scope, allowing field names without qualification.
[c459f99]64This feature is also implemented in Pascal~\cite{Pascal}.
65It can exist as a stand-alone statement or wrap a routine body to expose aggregate fields.
66Examples of the @with@ statement are shown in \VRef[Listing]{l:cfa_with}.
[59c05958]67
68\begin{cfa}[caption={Example of \CFA \lstinline{with} statement},label={l:cfa_with}]
69struct pair {  double x, y;  };
70struct triple {  int a, b, c;  };
[0faacb8]71pair p;
72
[59c05958]73@with( p )@ {                                   $\C{// stand-alone with}$
74        p.x = 6.28;  p.y = 1.73;        $\C{// long form}$
75           x = 6.28;     y = 1.73;      $\C{// short form}$
[0faacb8]76}
[59c05958]77void foo( triple t, pair p ) @with( t, p )@ {  $\C{// routine with}$
78        t.a = 1;  t.b = 2;  t.c = 3;  p.x = 3.14;  p.y = 2.71;  $\C{// long form}$
79          a = 1;    b = 2;    c = 3;     x = 3.14;     y = 2.71;  $\C{// short form}$
[0faacb8]80}
[0e398ad]81\end{cfa}
[0faacb8]82
83
84\section{Operators}
[c459f99]85Operators can be overloaded in \CFA with operator routines.
[59c05958]86Operators in \CFA are named using an operator symbol and '@?@' to represent operands.
[c459f99]87Examples of \CFA operators are shown in \VRef[Listing]{l:cfa_operate}.
[0faacb8]88
[59c05958]89\begin{cfa}[caption={Example of \CFA operators},label={l:cfa_operate}]
[0faacb8]90struct coord {
[59c05958]91        double x, y, z;
[0faacb8]92};
[59c05958]93coord ++@?@( coord & c ) with( c ) { $\C{// post increment}$
94        x++;  y++;  z++;
95        return c;
[0faacb8]96}
[59c05958]97coord @?@<=@?@( coord op1, coord op2 ) with( op1 ) { $\C{// ambiguous with both parameters}$
98        return (x * x + y * y + z * z) <= (op2.x * op2.x + op2.y * op2.y + op2.z * op2.z);
[0faacb8]99}
[0e398ad]100\end{cfa}
[0faacb8]101
102
103\section{Constructors and Destructors}
[c459f99]104Constructors and destructors in \CFA are special operator routines used for creation and destruction of objects.
105The default constructor and destructor for a type are called implicitly upon creation and deletion, respectively.
106Examples of \CFA constructors and destructors are shown in \VRef[Listing]{l:cfa_ctor}.
[0faacb8]107
[59c05958]108\begin{cfa}[caption={Example of \CFA constructors and destructors},label={l:cfa_ctor}]
[0faacb8]109struct discrete_point {
[59c05958]110        int x, y;
[0faacb8]111};
[59c05958]112void ?{}( discrete_point & this ) with(this) { $\C{// default constructor}$
113        [x, y] = 0;
[0faacb8]114}
[59c05958]115void ?{}( discrete_point & this, int x, int y ) { $\C{// explicit constructor}$
116        this.[x, y] = [x, y];
[0faacb8]117}
[59c05958]118void ^?{}( discrete_point & this ) with(this) { $\C{// destructor}$
119        ?{}( this );  $\C{// reset by calling default constructor}$
[0faacb8]120}
121int main() {
[59c05958]122        discrete_point x, y{}$\C{// implicit call to default ctor, ?\{\}}$
123        discrete_point s = { 2, -4 }, t{ 4, 2 }$\C{// explicit call to specialized ctor}$
124} // ^t{}, ^s{}, ^y{}, ^x{} implicit calls in reverse allocation order
[0e398ad]125\end{cfa}
[0faacb8]126
127
128\section{Polymorphism}\label{s:poly}
[59c05958]129C supports limited polymorphism, often requiring users to implement polymorphism using a @void *@ (type erasure) approach.
[2d831a1]130\CFA extends C with generalized overloading polymorphism (see \VRef{s:Overloading}), as well as, parametric polymorphism and limited nominal inheritance.
[0faacb8]131
132\subsection{Parametric Polymorphism}
[c459f99]133\CFA provides parametric polymorphism in the form of @forall@, and @trait@s.
134A @forall@ takes in a set of types and a list of constraints.
135The declarations that follow the @forall@ are parameterized over the types listed that satisfy the constraints.
136A list of @forall@ constraints can be refactored into a named @trait@ and reused in @forall@s.
137Examples of \CFA parametric polymorphism are shown in \VRef[Listing]{l:cfa_poly}.
[0faacb8]138
[59c05958]139\begin{cfa}[caption={Example of \CFA parametric polymorphism},label={l:cfa_poly}]
[0faacb8]140// sized() is a trait that means the type has a size
[59c05958]141forall( V & | sized(V) )                $\C{// type params for trait}$
[0faacb8]142trait vector_space {
[59c05958]143        // dtor and copy ctor needed in constraints to pass by copy
144        void ?{}( V &, V & );           $\C{// copy ctor for return}$
145        void ^?{}( V & );                       $\C{// dtor}$
146        V ?+?( V, V );                          $\C{// vector addition}$
147        V ?*?( int, V );                        $\C{// scalar multiplication}$
[0faacb8]148};
149
[59c05958]150forall( V & | vector_space( V ) ) {
151        V get_inverse( V v1 ) {
152                return -1 * v1;                 $\C{// can use ?*? routine defined in trait}$
153        }
154        V add_and_invert( V v1, V v2 ) {
155                return get_inverse( v1 + v2 );  $\C{// can use ?+? routine defined in trait}$
156        }
[0faacb8]157}
158struct Vec1 { int x; };
159void ?{}( Vec1 & this, Vec1 & other ) { this.x = other.x; }
160void ?{}( Vec1 & this, int x ) { this.x = x; }
161void ^?{}( Vec1 & this ) {}
[59c05958]162Vec1 ?+?( Vec1 v1, Vec1 v2 ) { v1.x += v2.x; return v1; }
163Vec1 ?*?( int c, Vec1 v1 ) { v1.x = v1.x * c; return v1; }
[0faacb8]164
165struct Vec2 { int x; int y; };
166void ?{}( Vec2 & this, Vec2 & other ) { this.x = other.x; this.y = other.y; }
167void ?{}( Vec2 & this, int x ) { this.x = x; this.y = x; }
168void ^?{}( Vec2 & this ) {}
[59c05958]169Vec2 ?+?( Vec2 v1, Vec2 v2 ) { v1.x += v2.x; v1.y += v2.y; return v1; }
170Vec2 ?*?( int c, Vec2 v1 ) { v1.x = v1.x * c; v1.y = v1.y * c; return v1; }
[0faacb8]171
172int main() {
[59c05958]173        Vec1 v1{ 1 };                           $\C{// create Vec1 and call ctor}$
174        Vec2 v2{ 2 };                           $\C{// create Vec2 and call ctor}$
175        // can use forall defined routines since types satisfy trait
176        add_and_invert( get_inverse( v1 ), v1 );
177        add_and_invert( get_inverse( v2 ), v2 );
[0faacb8]178}
[0e398ad]179\end{cfa}
[0faacb8]180
[4f6c628]181\subsection{Inheritance}\label{s:Inheritance}
[2d831a1]182Inheritance in \CFA is taken from Plan-9 C's nominal inheritance.
[c459f99]183In \CFA, @struct@s can @inline@ another struct type to gain its fields and masquerade as that type.
[2d831a1]184Examples of \CFA nominal inheritance are shown in \VRef[Listing]{l:cfa_inherit}.
[0faacb8]185
[2d831a1]186\begin{cfa}[caption={Example of \CFA nominal inheritance},label={l:cfa_inherit}]
[0faacb8]187struct one_d { double x; };
[c459f99]188struct two_d {
[59c05958]189        @inline@ one_d;
190        double y;
[0faacb8]191};
[c459f99]192struct three_d {
[59c05958]193        @inline@ two_d;
194        double z;
[0faacb8]195};
196double get_x( one_d & d ){ return d.x; }
197
198struct dog {};
199struct dog_food {
[59c05958]200        int count;
[0faacb8]201};
202struct pet {
[59c05958]203        @inline@ dog;
204        @inline@ dog_food;
[0faacb8]205};
[59c05958]206void pet_dog( dog & d ) { sout | "woof"; }
207void print_food( dog_food & f ) { sout | f.count; }
[0faacb8]208
209int main() {
[59c05958]210        one_d x;
211        two_d y;
212        three_d z;
213        x.x = 1;
214        y.x = 2;
215        z.x = 3;
216        get_x( x );                                     $\C{// returns 1;}$
217        get_x( y );                                     $\C{// returns 2;}$
218        get_x( z );                                     $\C{// returns 3;}$
219        pet p;
220        p.count = 5;
221        pet_dog( p );                           $\C{// prints woof}$
222        print_food( p );                        $\C{// prints 5}$
[0faacb8]223}
[0e398ad]224\end{cfa}
[0faacb8]225
[59c05958]226% Local Variables: %
227% tab-width: 4 %
228% End: %
Note: See TracBrowser for help on using the repository browser.