1 | import os
|
---|
2 | import sys
|
---|
3 | import time
|
---|
4 | import itertools
|
---|
5 | import matplotlib.pyplot as plt
|
---|
6 | import matplotlib.ticker as ticks
|
---|
7 | import math
|
---|
8 | from scipy import stats as st
|
---|
9 | import numpy as np
|
---|
10 | from enum import Enum
|
---|
11 | from statistics import median
|
---|
12 |
|
---|
13 | import matplotlib
|
---|
14 | matplotlib.use("pgf")
|
---|
15 | matplotlib.rcParams.update({
|
---|
16 | "pgf.texsystem": "pdflatex",
|
---|
17 | 'font.family': 'serif',
|
---|
18 | 'text.usetex': True,
|
---|
19 | 'pgf.rcfonts': False,
|
---|
20 | 'font.size': 16
|
---|
21 | })
|
---|
22 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
23 |
|
---|
24 | readfile = open(sys.argv[1], "r")
|
---|
25 |
|
---|
26 | machineName = ""
|
---|
27 |
|
---|
28 | if len(sys.argv) > 2:
|
---|
29 | machineName = sys.argv[2]
|
---|
30 |
|
---|
31 | # first line has num times per experiment
|
---|
32 | line = readfile.readline()
|
---|
33 | numTimes = int(line)
|
---|
34 |
|
---|
35 | # second line has processor args
|
---|
36 | line = readfile.readline()
|
---|
37 | procs = []
|
---|
38 | for val in line.split():
|
---|
39 | procs.append(int(val))
|
---|
40 |
|
---|
41 | # 3rd line has processor for side_chan bench
|
---|
42 | line = readfile.readline()
|
---|
43 | sideChanProcs = []
|
---|
44 | for val in line.split():
|
---|
45 | sideChanProcs.append(int(val))
|
---|
46 |
|
---|
47 | # 4th line has number of variants
|
---|
48 | line = readfile.readline()
|
---|
49 | names = line.split()
|
---|
50 | numVariants = len(names)
|
---|
51 |
|
---|
52 | lines = (line.rstrip() for line in readfile) # All lines including the blank ones
|
---|
53 | lines = (line for line in lines if line) # Non-blank lines
|
---|
54 |
|
---|
55 | def sci_format(x, pos):
|
---|
56 | return '{:.1e}'.format(x).replace('+0', '')
|
---|
57 |
|
---|
58 | def sci_format_label(x):
|
---|
59 | return '{:.2e}'.format(x).replace('+0', '')
|
---|
60 |
|
---|
61 | class Bench(Enum):
|
---|
62 | Unset = 0
|
---|
63 | Contend2 = 1
|
---|
64 | Contend4 = 2
|
---|
65 | Contend8 = 3
|
---|
66 | Spin2 = 4
|
---|
67 | Spin4 = 5
|
---|
68 | Spin8 = 6
|
---|
69 | SideChan = 7
|
---|
70 | Future = 8
|
---|
71 | Order = 9
|
---|
72 |
|
---|
73 | nameSet = False
|
---|
74 | currBench = Bench.Unset # default val
|
---|
75 | count = 0
|
---|
76 | procCount = 0
|
---|
77 | currVariant = 0
|
---|
78 | name = ""
|
---|
79 | title = ""
|
---|
80 | experiment_duration = 10.0
|
---|
81 | var_name = ""
|
---|
82 | future_variants=["CFA", "uC++"]
|
---|
83 | future_names=["OR", "AND", "AND-OR", "OR-AND"]
|
---|
84 | future_data=[[0.0 for i in range(len(future_names))] for j in range(2)]
|
---|
85 | future_bars=[[[0.0 for i in range(len(future_names))],[0.0 for k in range(len(future_names))]] for j in range(2)]
|
---|
86 | curr_future=0
|
---|
87 | sendData = [0.0 for j in range(numVariants)]
|
---|
88 | data = [[0.0 for i in range(len(procs))] for j in range(numVariants)]
|
---|
89 | bars = [[[0.0 for i in range(len(procs))],[0.0 for k in range(len(procs))]] for j in range(numVariants)]
|
---|
90 | sideData = [[0.0 for i in range(len(sideChanProcs))] for j in range(numVariants)]
|
---|
91 | sideBars = [[[0.0 for i in range(len(sideChanProcs))],[0.0 for k in range(len(sideChanProcs))]] for j in range(numVariants)]
|
---|
92 | tempData = [0.0 for i in range(numTimes)]
|
---|
93 | orderData = [0.0 for i in range(numVariants)]
|
---|
94 | for idx, line in enumerate(lines):
|
---|
95 | # print(line)
|
---|
96 |
|
---|
97 | if currBench == Bench.Unset:
|
---|
98 | if line == "contend2:":
|
---|
99 | name = "Contend_2"
|
---|
100 | title = "2 Clause Contend"
|
---|
101 | currBench = Bench.Contend2
|
---|
102 | elif line == "contend4:":
|
---|
103 | name = "Contend_4"
|
---|
104 | title = "4 Clause Contend"
|
---|
105 | currBench = Bench.Contend4
|
---|
106 | elif line == "contend8:":
|
---|
107 | name = "Contend_8"
|
---|
108 | title = "8 Clause Contend"
|
---|
109 | currBench = Bench.Contend8
|
---|
110 | elif line == "spin2:":
|
---|
111 | name = "Spin_2"
|
---|
112 | title = "2 Clause Spin"
|
---|
113 | currBench = Bench.Spin2
|
---|
114 | elif line == "spin4:":
|
---|
115 | name = "Spin_4"
|
---|
116 | title = "4 Clause Spin"
|
---|
117 | currBench = Bench.Spin4
|
---|
118 | elif line == "spin8:":
|
---|
119 | name = "Spin_8"
|
---|
120 | title = "8 Clause Spin"
|
---|
121 | currBench = Bench.Spin8
|
---|
122 | elif line == "sidechan:":
|
---|
123 | name = "Sidechan"
|
---|
124 | currBench = Bench.SideChan
|
---|
125 | elif line[0:6] == "future":
|
---|
126 | name = "Future"
|
---|
127 | title = "Future Synchronization"
|
---|
128 | currBench = Bench.Future
|
---|
129 | elif line == "order:":
|
---|
130 | name = "order"
|
---|
131 | currBench = Bench.Order
|
---|
132 | else:
|
---|
133 | print("Expected benchmark name")
|
---|
134 | print("Line: " + line)
|
---|
135 | sys.exit()
|
---|
136 | continue
|
---|
137 |
|
---|
138 | if line[0:5] == "cores":
|
---|
139 | continue
|
---|
140 |
|
---|
141 | if not nameSet:
|
---|
142 | nameSet = True
|
---|
143 | continue
|
---|
144 |
|
---|
145 | lineArr = line.split()
|
---|
146 | tempData[count] = float(lineArr[-1]) / experiment_duration
|
---|
147 | count += 1
|
---|
148 |
|
---|
149 | if currBench == Bench.Future:
|
---|
150 | if count == numTimes:
|
---|
151 | currMedian = median( tempData )
|
---|
152 | future_data[currVariant][curr_future] = currMedian
|
---|
153 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
154 | future_bars[currVariant][0][curr_future] = currMedian - lower
|
---|
155 | future_bars[currVariant][1][curr_future] = upper - currMedian
|
---|
156 | count = 0
|
---|
157 | nameSet = False
|
---|
158 | currVariant += 1
|
---|
159 | if currVariant == 2:
|
---|
160 | curr_future += 1
|
---|
161 | # reset
|
---|
162 | currBench = Bench.Unset
|
---|
163 | currVariant = 0
|
---|
164 | if curr_future == len(future_names):
|
---|
165 | x = np.arange(len(future_names)) # the label locations
|
---|
166 | width = 0.45 # the width of the bars
|
---|
167 | multiplier = .5
|
---|
168 | fig, ax = plt.subplots(layout='constrained')
|
---|
169 | plt.title(title + " Benchmark")
|
---|
170 | plt.ylabel("Throughput (statement completions per second)")
|
---|
171 | plt.xlabel("Operation")
|
---|
172 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
173 | for idx, arr in enumerate(future_data):
|
---|
174 | offset = width * multiplier
|
---|
175 | rects = ax.bar(x + offset, arr, width, label=future_variants[idx], yerr=[future_bars[idx][0], future_bars[idx][1]])
|
---|
176 | # ax.bar_label(rects, padding=3, fmt='%.1e')
|
---|
177 | ax.bar_label(rects, padding=3, fmt=sci_format_label)
|
---|
178 | multiplier += 1
|
---|
179 | plt.xticks(x + width, future_names)
|
---|
180 |
|
---|
181 | ax.legend(future_variants, loc='lower right')
|
---|
182 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
183 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
184 | fig.clf()
|
---|
185 |
|
---|
186 | elif currBench == Bench.Order:
|
---|
187 | if count == numTimes:
|
---|
188 | currMedian = median( tempData )
|
---|
189 | orderData[currVariant] = currMedian
|
---|
190 | count = 0
|
---|
191 | currVariant += 1
|
---|
192 | procCount = 0
|
---|
193 | nameSet = False
|
---|
194 | if currVariant == numVariants:
|
---|
195 | fileName = "data/" + machineName + "Order"
|
---|
196 | f = open(fileName, 'w')
|
---|
197 | f.write(" & ".join(map(lambda a: str(int(a)), orderData)))
|
---|
198 |
|
---|
199 | # reset
|
---|
200 | currBench = Bench.Unset
|
---|
201 | currVariant = 0
|
---|
202 |
|
---|
203 | elif currBench == Bench.SideChan:
|
---|
204 | if count == numTimes:
|
---|
205 | currMedian = median( tempData )
|
---|
206 | sideData[currVariant][procCount] = currMedian
|
---|
207 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
208 | sideBars[currVariant][0][procCount] = currMedian - lower
|
---|
209 | sideBars[currVariant][1][procCount] = upper - currMedian
|
---|
210 | count = 0
|
---|
211 | procCount += 1
|
---|
212 | if procCount == len(sideChanProcs):
|
---|
213 | procCount = 0
|
---|
214 | nameSet = False
|
---|
215 | currVariant += 1
|
---|
216 |
|
---|
217 | if currVariant == numVariants:
|
---|
218 | fig, ax = plt.subplots()
|
---|
219 | plt.title(name + " Benchmark")
|
---|
220 | plt.ylabel("Throughput (channel operations per second)")
|
---|
221 | plt.xlabel("Cores")
|
---|
222 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
223 | for idx, arr in enumerate(sideData):
|
---|
224 | plt.errorbar( sideChanProcs, arr, [sideBars[idx][0], sideBars[idx][1]], capsize=2, marker=next(marker) )
|
---|
225 | plt.xticks(sideChanProcs)
|
---|
226 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
227 | # plt.yscale("log")
|
---|
228 | ax.legend(names)
|
---|
229 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
230 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
231 | fig.clf()
|
---|
232 |
|
---|
233 | # reset
|
---|
234 | currBench = Bench.Unset
|
---|
235 | currVariant = 0
|
---|
236 | else:
|
---|
237 | if count == numTimes:
|
---|
238 | currMedian = median( tempData )
|
---|
239 | data[currVariant][procCount] = currMedian
|
---|
240 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
241 | bars[currVariant][0][procCount] = currMedian - lower
|
---|
242 | bars[currVariant][1][procCount] = upper - currMedian
|
---|
243 | count = 0
|
---|
244 | procCount += 1
|
---|
245 |
|
---|
246 | if procCount == len(procs):
|
---|
247 | procCount = 0
|
---|
248 | nameSet = False
|
---|
249 | currVariant += 1
|
---|
250 |
|
---|
251 | if currVariant == numVariants:
|
---|
252 | fig, ax = plt.subplots(layout='constrained')
|
---|
253 | plt.title(title + " Benchmark")
|
---|
254 | plt.ylabel("Throughput (channel operations per second)")
|
---|
255 | plt.xlabel("Cores")
|
---|
256 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
257 | for idx, arr in enumerate(data):
|
---|
258 | plt.errorbar( procs, arr, [bars[idx][0], bars[idx][1]], capsize=2, marker=next(marker) )
|
---|
259 | plt.xticks(procs)
|
---|
260 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
261 | # plt.yscale("log")
|
---|
262 | # plt.ylim(1, None)
|
---|
263 | # ax.get_yaxis().set_major_formatter(ticks.ScalarFormatter())
|
---|
264 | # else:
|
---|
265 | # plt.ylim(0, None)
|
---|
266 | ax.legend(names)
|
---|
267 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
268 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
269 | fig.clf()
|
---|
270 |
|
---|
271 | # reset
|
---|
272 | currBench = Bench.Unset
|
---|
273 | currVariant = 0
|
---|