[14e1053] | 1 | import os
|
---|
| 2 | import sys
|
---|
| 3 | import time
|
---|
| 4 | import itertools
|
---|
| 5 | import matplotlib.pyplot as plt
|
---|
| 6 | import matplotlib.ticker as ticks
|
---|
| 7 | import math
|
---|
| 8 | from scipy import stats as st
|
---|
| 9 | import numpy as np
|
---|
| 10 | from enum import Enum
|
---|
| 11 | from statistics import median
|
---|
| 12 |
|
---|
| 13 | import matplotlib
|
---|
| 14 | matplotlib.use("pgf")
|
---|
| 15 | matplotlib.rcParams.update({
|
---|
| 16 | "pgf.texsystem": "pdflatex",
|
---|
| 17 | 'font.family': 'serif',
|
---|
| 18 | 'text.usetex': True,
|
---|
| 19 | 'pgf.rcfonts': False,
|
---|
| 20 | 'font.size': 16
|
---|
| 21 | })
|
---|
| 22 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
| 23 |
|
---|
| 24 | readfile = open(sys.argv[1], "r")
|
---|
| 25 |
|
---|
| 26 | machineName = ""
|
---|
| 27 |
|
---|
| 28 | if len(sys.argv) > 2:
|
---|
| 29 | machineName = sys.argv[2]
|
---|
| 30 |
|
---|
| 31 | # first line has num times per experiment
|
---|
| 32 | line = readfile.readline()
|
---|
| 33 | numTimes = int(line)
|
---|
| 34 |
|
---|
| 35 | # second line has processor args
|
---|
| 36 | line = readfile.readline()
|
---|
| 37 | procs = []
|
---|
| 38 | for val in line.split():
|
---|
| 39 | procs.append(int(val))
|
---|
| 40 |
|
---|
| 41 | # 3rd line has processor for side_chan bench
|
---|
| 42 | line = readfile.readline()
|
---|
| 43 | sideChanProcs = []
|
---|
| 44 | for val in line.split():
|
---|
| 45 | sideChanProcs.append(int(val))
|
---|
| 46 |
|
---|
| 47 | # 4th line has number of variants
|
---|
| 48 | line = readfile.readline()
|
---|
| 49 | names = line.split()
|
---|
| 50 | numVariants = len(names)
|
---|
| 51 |
|
---|
| 52 | lines = (line.rstrip() for line in readfile) # All lines including the blank ones
|
---|
| 53 | lines = (line for line in lines if line) # Non-blank lines
|
---|
| 54 |
|
---|
| 55 | def sci_format(x, pos):
|
---|
| 56 | return '{:.1e}'.format(x).replace('+0', '')
|
---|
| 57 |
|
---|
| 58 | def sci_format_label(x):
|
---|
| 59 | return '{:.2e}'.format(x).replace('+0', '')
|
---|
| 60 |
|
---|
| 61 | class Bench(Enum):
|
---|
| 62 | Unset = 0
|
---|
| 63 | Contend2 = 1
|
---|
| 64 | Contend4 = 2
|
---|
| 65 | Contend8 = 3
|
---|
| 66 | Spin2 = 4
|
---|
| 67 | Spin4 = 5
|
---|
| 68 | Spin8 = 6
|
---|
| 69 | SideChan = 7
|
---|
| 70 | Future = 8
|
---|
| 71 | Order = 9
|
---|
| 72 |
|
---|
| 73 | nameSet = False
|
---|
| 74 | currBench = Bench.Unset # default val
|
---|
| 75 | count = 0
|
---|
| 76 | procCount = 0
|
---|
| 77 | currVariant = 0
|
---|
| 78 | name = ""
|
---|
| 79 | title = ""
|
---|
| 80 | experiment_duration = 10.0
|
---|
| 81 | var_name = ""
|
---|
| 82 | future_variants=["CFA", "uC++"]
|
---|
| 83 | future_names=["OR", "AND", "AND-OR", "OR-AND"]
|
---|
| 84 | future_data=[[0.0 for i in range(len(future_names))] for j in range(2)]
|
---|
| 85 | future_bars=[[[0.0 for i in range(len(future_names))],[0.0 for k in range(len(future_names))]] for j in range(2)]
|
---|
| 86 | curr_future=0
|
---|
| 87 | sendData = [0.0 for j in range(numVariants)]
|
---|
| 88 | data = [[0.0 for i in range(len(procs))] for j in range(numVariants)]
|
---|
| 89 | bars = [[[0.0 for i in range(len(procs))],[0.0 for k in range(len(procs))]] for j in range(numVariants)]
|
---|
| 90 | sideData = [[0.0 for i in range(len(sideChanProcs))] for j in range(numVariants)]
|
---|
| 91 | sideBars = [[[0.0 for i in range(len(sideChanProcs))],[0.0 for k in range(len(sideChanProcs))]] for j in range(numVariants)]
|
---|
| 92 | tempData = [0.0 for i in range(numTimes)]
|
---|
| 93 | orderData = [0.0 for i in range(numVariants)]
|
---|
| 94 | for idx, line in enumerate(lines):
|
---|
| 95 | # print(line)
|
---|
| 96 |
|
---|
| 97 | if currBench == Bench.Unset:
|
---|
| 98 | if line == "contend2:":
|
---|
| 99 | name = "Contend_2"
|
---|
| 100 | title = "2 Clause Contend"
|
---|
| 101 | currBench = Bench.Contend2
|
---|
| 102 | elif line == "contend4:":
|
---|
| 103 | name = "Contend_4"
|
---|
| 104 | title = "4 Clause Contend"
|
---|
| 105 | currBench = Bench.Contend4
|
---|
| 106 | elif line == "contend8:":
|
---|
| 107 | name = "Contend_8"
|
---|
| 108 | title = "8 Clause Contend"
|
---|
| 109 | currBench = Bench.Contend8
|
---|
| 110 | elif line == "spin2:":
|
---|
| 111 | name = "Spin_2"
|
---|
| 112 | title = "2 Clause Spin"
|
---|
| 113 | currBench = Bench.Spin2
|
---|
| 114 | elif line == "spin4:":
|
---|
| 115 | name = "Spin_4"
|
---|
| 116 | title = "4 Clause Spin"
|
---|
| 117 | currBench = Bench.Spin4
|
---|
| 118 | elif line == "spin8:":
|
---|
| 119 | name = "Spin_8"
|
---|
| 120 | title = "8 Clause Spin"
|
---|
| 121 | currBench = Bench.Spin8
|
---|
| 122 | elif line == "sidechan:":
|
---|
| 123 | name = "Sidechan"
|
---|
| 124 | currBench = Bench.SideChan
|
---|
| 125 | elif line[0:6] == "future":
|
---|
| 126 | name = "Future"
|
---|
| 127 | title = "Future Synchronization"
|
---|
| 128 | currBench = Bench.Future
|
---|
| 129 | elif line == "order:":
|
---|
| 130 | name = "order"
|
---|
| 131 | currBench = Bench.Order
|
---|
| 132 | else:
|
---|
| 133 | print("Expected benchmark name")
|
---|
| 134 | print("Line: " + line)
|
---|
| 135 | sys.exit()
|
---|
| 136 | continue
|
---|
| 137 |
|
---|
| 138 | if line[0:5] == "cores":
|
---|
| 139 | continue
|
---|
| 140 |
|
---|
| 141 | if not nameSet:
|
---|
| 142 | nameSet = True
|
---|
| 143 | continue
|
---|
| 144 |
|
---|
| 145 | lineArr = line.split()
|
---|
| 146 | tempData[count] = float(lineArr[-1]) / experiment_duration
|
---|
| 147 | count += 1
|
---|
| 148 |
|
---|
| 149 | if currBench == Bench.Future:
|
---|
| 150 | if count == numTimes:
|
---|
| 151 | currMedian = median( tempData )
|
---|
| 152 | future_data[currVariant][curr_future] = currMedian
|
---|
| 153 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
| 154 | future_bars[currVariant][0][curr_future] = currMedian - lower
|
---|
| 155 | future_bars[currVariant][1][curr_future] = upper - currMedian
|
---|
| 156 | count = 0
|
---|
| 157 | nameSet = False
|
---|
| 158 | currVariant += 1
|
---|
| 159 | if currVariant == 2:
|
---|
| 160 | curr_future += 1
|
---|
| 161 | # reset
|
---|
| 162 | currBench = Bench.Unset
|
---|
| 163 | currVariant = 0
|
---|
| 164 | if curr_future == len(future_names):
|
---|
| 165 | x = np.arange(len(future_names)) # the label locations
|
---|
| 166 | width = 0.45 # the width of the bars
|
---|
| 167 | multiplier = .5
|
---|
| 168 | fig, ax = plt.subplots(layout='constrained')
|
---|
| 169 | plt.title(title + " Benchmark")
|
---|
| 170 | plt.ylabel("Throughput (statement completions per second)")
|
---|
| 171 | plt.xlabel("Operation")
|
---|
| 172 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
| 173 | for idx, arr in enumerate(future_data):
|
---|
| 174 | offset = width * multiplier
|
---|
| 175 | rects = ax.bar(x + offset, arr, width, label=future_variants[idx], yerr=[future_bars[idx][0], future_bars[idx][1]])
|
---|
| 176 | # ax.bar_label(rects, padding=3, fmt='%.1e')
|
---|
| 177 | ax.bar_label(rects, padding=3, fmt=sci_format_label)
|
---|
| 178 | multiplier += 1
|
---|
| 179 | plt.xticks(x + width, future_names)
|
---|
| 180 |
|
---|
| 181 | ax.legend(future_variants, loc='lower right')
|
---|
| 182 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
| 183 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
| 184 | fig.clf()
|
---|
| 185 |
|
---|
| 186 | elif currBench == Bench.Order:
|
---|
| 187 | if count == numTimes:
|
---|
| 188 | currMedian = median( tempData )
|
---|
| 189 | orderData[currVariant] = currMedian
|
---|
| 190 | count = 0
|
---|
| 191 | currVariant += 1
|
---|
| 192 | procCount = 0
|
---|
| 193 | nameSet = False
|
---|
| 194 | if currVariant == numVariants:
|
---|
| 195 | fileName = "data/" + machineName + "Order"
|
---|
| 196 | f = open(fileName, 'w')
|
---|
| 197 | f.write(" & ".join(map(lambda a: str(int(a)), orderData)))
|
---|
| 198 |
|
---|
| 199 | # reset
|
---|
| 200 | currBench = Bench.Unset
|
---|
| 201 | currVariant = 0
|
---|
| 202 |
|
---|
| 203 | elif currBench == Bench.SideChan:
|
---|
| 204 | if count == numTimes:
|
---|
| 205 | currMedian = median( tempData )
|
---|
| 206 | sideData[currVariant][procCount] = currMedian
|
---|
| 207 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
| 208 | sideBars[currVariant][0][procCount] = currMedian - lower
|
---|
| 209 | sideBars[currVariant][1][procCount] = upper - currMedian
|
---|
| 210 | count = 0
|
---|
| 211 | procCount += 1
|
---|
| 212 | if procCount == len(sideChanProcs):
|
---|
| 213 | procCount = 0
|
---|
| 214 | nameSet = False
|
---|
| 215 | currVariant += 1
|
---|
| 216 |
|
---|
| 217 | if currVariant == numVariants:
|
---|
| 218 | fig, ax = plt.subplots()
|
---|
| 219 | plt.title(name + " Benchmark")
|
---|
| 220 | plt.ylabel("Throughput (channel operations per second)")
|
---|
| 221 | plt.xlabel("Cores")
|
---|
| 222 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
| 223 | for idx, arr in enumerate(sideData):
|
---|
| 224 | plt.errorbar( sideChanProcs, arr, [sideBars[idx][0], sideBars[idx][1]], capsize=2, marker=next(marker) )
|
---|
| 225 | plt.xticks(sideChanProcs)
|
---|
| 226 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
| 227 | # plt.yscale("log")
|
---|
| 228 | ax.legend(names)
|
---|
| 229 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
| 230 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
| 231 | fig.clf()
|
---|
| 232 |
|
---|
| 233 | # reset
|
---|
| 234 | currBench = Bench.Unset
|
---|
| 235 | currVariant = 0
|
---|
| 236 | else:
|
---|
| 237 | if count == numTimes:
|
---|
| 238 | currMedian = median( tempData )
|
---|
| 239 | data[currVariant][procCount] = currMedian
|
---|
| 240 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
| 241 | bars[currVariant][0][procCount] = currMedian - lower
|
---|
| 242 | bars[currVariant][1][procCount] = upper - currMedian
|
---|
| 243 | count = 0
|
---|
| 244 | procCount += 1
|
---|
| 245 |
|
---|
| 246 | if procCount == len(procs):
|
---|
| 247 | procCount = 0
|
---|
| 248 | nameSet = False
|
---|
| 249 | currVariant += 1
|
---|
| 250 |
|
---|
| 251 | if currVariant == numVariants:
|
---|
| 252 | fig, ax = plt.subplots(layout='constrained')
|
---|
| 253 | plt.title(title + " Benchmark")
|
---|
| 254 | plt.ylabel("Throughput (channel operations per second)")
|
---|
| 255 | plt.xlabel("Cores")
|
---|
| 256 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
| 257 | for idx, arr in enumerate(data):
|
---|
| 258 | plt.errorbar( procs, arr, [bars[idx][0], bars[idx][1]], capsize=2, marker=next(marker) )
|
---|
| 259 | plt.xticks(procs)
|
---|
| 260 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
| 261 | # plt.yscale("log")
|
---|
| 262 | # plt.ylim(1, None)
|
---|
| 263 | # ax.get_yaxis().set_major_formatter(ticks.ScalarFormatter())
|
---|
| 264 | # else:
|
---|
| 265 | # plt.ylim(0, None)
|
---|
| 266 | ax.legend(names)
|
---|
| 267 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
| 268 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
| 269 | fig.clf()
|
---|
| 270 |
|
---|
| 271 | # reset
|
---|
| 272 | currBench = Bench.Unset
|
---|
| 273 | currVariant = 0
|
---|