[14e1053] | 1 | import os |
---|
| 2 | import sys |
---|
| 3 | import time |
---|
| 4 | import itertools |
---|
| 5 | import matplotlib.pyplot as plt |
---|
| 6 | import matplotlib.ticker as ticks |
---|
| 7 | import math |
---|
| 8 | from scipy import stats as st |
---|
| 9 | import numpy as np |
---|
| 10 | from enum import Enum |
---|
| 11 | from statistics import median |
---|
| 12 | |
---|
| 13 | import matplotlib |
---|
| 14 | matplotlib.use("pgf") |
---|
| 15 | matplotlib.rcParams.update({ |
---|
| 16 | "pgf.texsystem": "pdflatex", |
---|
| 17 | 'font.family': 'serif', |
---|
| 18 | 'text.usetex': True, |
---|
| 19 | 'pgf.rcfonts': False, |
---|
| 20 | 'font.size': 16 |
---|
| 21 | }) |
---|
| 22 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' )) |
---|
| 23 | |
---|
| 24 | readfile = open(sys.argv[1], "r") |
---|
| 25 | |
---|
| 26 | machineName = "" |
---|
| 27 | |
---|
| 28 | if len(sys.argv) > 2: |
---|
| 29 | machineName = sys.argv[2] |
---|
| 30 | |
---|
| 31 | # first line has num times per experiment |
---|
| 32 | line = readfile.readline() |
---|
| 33 | numTimes = int(line) |
---|
| 34 | |
---|
| 35 | # second line has processor args |
---|
| 36 | line = readfile.readline() |
---|
| 37 | procs = [] |
---|
| 38 | for val in line.split(): |
---|
| 39 | procs.append(int(val)) |
---|
| 40 | |
---|
| 41 | # 3rd line has processor for side_chan bench |
---|
| 42 | line = readfile.readline() |
---|
| 43 | sideChanProcs = [] |
---|
| 44 | for val in line.split(): |
---|
| 45 | sideChanProcs.append(int(val)) |
---|
| 46 | |
---|
| 47 | # 4th line has number of variants |
---|
| 48 | line = readfile.readline() |
---|
| 49 | names = line.split() |
---|
| 50 | numVariants = len(names) |
---|
| 51 | |
---|
| 52 | lines = (line.rstrip() for line in readfile) # All lines including the blank ones |
---|
| 53 | lines = (line for line in lines if line) # Non-blank lines |
---|
| 54 | |
---|
| 55 | def sci_format(x, pos): |
---|
| 56 | return '{:.1e}'.format(x).replace('+0', '') |
---|
| 57 | |
---|
| 58 | def sci_format_label(x): |
---|
| 59 | return '{:.2e}'.format(x).replace('+0', '') |
---|
| 60 | |
---|
| 61 | class Bench(Enum): |
---|
| 62 | Unset = 0 |
---|
| 63 | Contend2 = 1 |
---|
| 64 | Contend4 = 2 |
---|
| 65 | Contend8 = 3 |
---|
| 66 | Spin2 = 4 |
---|
| 67 | Spin4 = 5 |
---|
| 68 | Spin8 = 6 |
---|
| 69 | SideChan = 7 |
---|
| 70 | Future = 8 |
---|
| 71 | Order = 9 |
---|
| 72 | |
---|
| 73 | nameSet = False |
---|
| 74 | currBench = Bench.Unset # default val |
---|
| 75 | count = 0 |
---|
| 76 | procCount = 0 |
---|
| 77 | currVariant = 0 |
---|
| 78 | name = "" |
---|
| 79 | title = "" |
---|
| 80 | experiment_duration = 10.0 |
---|
| 81 | var_name = "" |
---|
| 82 | future_variants=["CFA", "uC++"] |
---|
| 83 | future_names=["OR", "AND", "AND-OR", "OR-AND"] |
---|
| 84 | future_data=[[0.0 for i in range(len(future_names))] for j in range(2)] |
---|
| 85 | future_bars=[[[0.0 for i in range(len(future_names))],[0.0 for k in range(len(future_names))]] for j in range(2)] |
---|
| 86 | curr_future=0 |
---|
| 87 | sendData = [0.0 for j in range(numVariants)] |
---|
| 88 | data = [[0.0 for i in range(len(procs))] for j in range(numVariants)] |
---|
| 89 | bars = [[[0.0 for i in range(len(procs))],[0.0 for k in range(len(procs))]] for j in range(numVariants)] |
---|
| 90 | sideData = [[0.0 for i in range(len(sideChanProcs))] for j in range(numVariants)] |
---|
| 91 | sideBars = [[[0.0 for i in range(len(sideChanProcs))],[0.0 for k in range(len(sideChanProcs))]] for j in range(numVariants)] |
---|
| 92 | tempData = [0.0 for i in range(numTimes)] |
---|
| 93 | orderData = [0.0 for i in range(numVariants)] |
---|
| 94 | for idx, line in enumerate(lines): |
---|
| 95 | # print(line) |
---|
| 96 | |
---|
| 97 | if currBench == Bench.Unset: |
---|
| 98 | if line == "contend2:": |
---|
| 99 | name = "Contend_2" |
---|
| 100 | title = "2 Clause Contend" |
---|
| 101 | currBench = Bench.Contend2 |
---|
| 102 | elif line == "contend4:": |
---|
| 103 | name = "Contend_4" |
---|
| 104 | title = "4 Clause Contend" |
---|
| 105 | currBench = Bench.Contend4 |
---|
| 106 | elif line == "contend8:": |
---|
| 107 | name = "Contend_8" |
---|
| 108 | title = "8 Clause Contend" |
---|
| 109 | currBench = Bench.Contend8 |
---|
| 110 | elif line == "spin2:": |
---|
| 111 | name = "Spin_2" |
---|
| 112 | title = "2 Clause Spin" |
---|
| 113 | currBench = Bench.Spin2 |
---|
| 114 | elif line == "spin4:": |
---|
| 115 | name = "Spin_4" |
---|
| 116 | title = "4 Clause Spin" |
---|
| 117 | currBench = Bench.Spin4 |
---|
| 118 | elif line == "spin8:": |
---|
| 119 | name = "Spin_8" |
---|
| 120 | title = "8 Clause Spin" |
---|
| 121 | currBench = Bench.Spin8 |
---|
| 122 | elif line == "sidechan:": |
---|
| 123 | name = "Sidechan" |
---|
| 124 | currBench = Bench.SideChan |
---|
| 125 | elif line[0:6] == "future": |
---|
| 126 | name = "Future" |
---|
| 127 | title = "Future Synchronization" |
---|
| 128 | currBench = Bench.Future |
---|
| 129 | elif line == "order:": |
---|
| 130 | name = "order" |
---|
| 131 | currBench = Bench.Order |
---|
| 132 | else: |
---|
| 133 | print("Expected benchmark name") |
---|
| 134 | print("Line: " + line) |
---|
| 135 | sys.exit() |
---|
| 136 | continue |
---|
| 137 | |
---|
| 138 | if line[0:5] == "cores": |
---|
| 139 | continue |
---|
| 140 | |
---|
| 141 | if not nameSet: |
---|
| 142 | nameSet = True |
---|
| 143 | continue |
---|
| 144 | |
---|
| 145 | lineArr = line.split() |
---|
| 146 | tempData[count] = float(lineArr[-1]) / experiment_duration |
---|
| 147 | count += 1 |
---|
| 148 | |
---|
| 149 | if currBench == Bench.Future: |
---|
| 150 | if count == numTimes: |
---|
| 151 | currMedian = median( tempData ) |
---|
| 152 | future_data[currVariant][curr_future] = currMedian |
---|
| 153 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData)) |
---|
| 154 | future_bars[currVariant][0][curr_future] = currMedian - lower |
---|
| 155 | future_bars[currVariant][1][curr_future] = upper - currMedian |
---|
| 156 | count = 0 |
---|
| 157 | nameSet = False |
---|
| 158 | currVariant += 1 |
---|
| 159 | if currVariant == 2: |
---|
| 160 | curr_future += 1 |
---|
| 161 | # reset |
---|
| 162 | currBench = Bench.Unset |
---|
| 163 | currVariant = 0 |
---|
| 164 | if curr_future == len(future_names): |
---|
| 165 | x = np.arange(len(future_names)) # the label locations |
---|
| 166 | width = 0.45 # the width of the bars |
---|
| 167 | multiplier = .5 |
---|
| 168 | fig, ax = plt.subplots(layout='constrained') |
---|
| 169 | plt.title(title + " Benchmark") |
---|
| 170 | plt.ylabel("Throughput (statement completions per second)") |
---|
| 171 | plt.xlabel("Operation") |
---|
| 172 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format)) |
---|
| 173 | for idx, arr in enumerate(future_data): |
---|
| 174 | offset = width * multiplier |
---|
| 175 | rects = ax.bar(x + offset, arr, width, label=future_variants[idx], yerr=[future_bars[idx][0], future_bars[idx][1]]) |
---|
| 176 | # ax.bar_label(rects, padding=3, fmt='%.1e') |
---|
| 177 | ax.bar_label(rects, padding=3, fmt=sci_format_label) |
---|
| 178 | multiplier += 1 |
---|
| 179 | plt.xticks(x + width, future_names) |
---|
| 180 | |
---|
| 181 | ax.legend(future_variants, loc='lower right') |
---|
| 182 | # fig.savefig("plots/" + machineName + name + ".png") |
---|
| 183 | plt.savefig("plots/" + machineName + name + ".pgf") |
---|
| 184 | fig.clf() |
---|
| 185 | |
---|
| 186 | elif currBench == Bench.Order: |
---|
| 187 | if count == numTimes: |
---|
| 188 | currMedian = median( tempData ) |
---|
| 189 | orderData[currVariant] = currMedian |
---|
| 190 | count = 0 |
---|
| 191 | currVariant += 1 |
---|
| 192 | procCount = 0 |
---|
| 193 | nameSet = False |
---|
| 194 | if currVariant == numVariants: |
---|
| 195 | fileName = "data/" + machineName + "Order" |
---|
| 196 | f = open(fileName, 'w') |
---|
| 197 | f.write(" & ".join(map(lambda a: str(int(a)), orderData))) |
---|
| 198 | |
---|
| 199 | # reset |
---|
| 200 | currBench = Bench.Unset |
---|
| 201 | currVariant = 0 |
---|
| 202 | |
---|
| 203 | elif currBench == Bench.SideChan: |
---|
| 204 | if count == numTimes: |
---|
| 205 | currMedian = median( tempData ) |
---|
| 206 | sideData[currVariant][procCount] = currMedian |
---|
| 207 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData)) |
---|
| 208 | sideBars[currVariant][0][procCount] = currMedian - lower |
---|
| 209 | sideBars[currVariant][1][procCount] = upper - currMedian |
---|
| 210 | count = 0 |
---|
| 211 | procCount += 1 |
---|
| 212 | if procCount == len(sideChanProcs): |
---|
| 213 | procCount = 0 |
---|
| 214 | nameSet = False |
---|
| 215 | currVariant += 1 |
---|
| 216 | |
---|
| 217 | if currVariant == numVariants: |
---|
| 218 | fig, ax = plt.subplots() |
---|
| 219 | plt.title(name + " Benchmark") |
---|
| 220 | plt.ylabel("Throughput (channel operations per second)") |
---|
| 221 | plt.xlabel("Cores") |
---|
| 222 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format)) |
---|
| 223 | for idx, arr in enumerate(sideData): |
---|
| 224 | plt.errorbar( sideChanProcs, arr, [sideBars[idx][0], sideBars[idx][1]], capsize=2, marker=next(marker) ) |
---|
| 225 | plt.xticks(sideChanProcs) |
---|
| 226 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' )) |
---|
| 227 | # plt.yscale("log") |
---|
| 228 | ax.legend(names) |
---|
| 229 | # fig.savefig("plots/" + machineName + name + ".png") |
---|
| 230 | plt.savefig("plots/" + machineName + name + ".pgf") |
---|
| 231 | fig.clf() |
---|
| 232 | |
---|
| 233 | # reset |
---|
| 234 | currBench = Bench.Unset |
---|
| 235 | currVariant = 0 |
---|
| 236 | else: |
---|
| 237 | if count == numTimes: |
---|
| 238 | currMedian = median( tempData ) |
---|
| 239 | data[currVariant][procCount] = currMedian |
---|
| 240 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData)) |
---|
| 241 | bars[currVariant][0][procCount] = currMedian - lower |
---|
| 242 | bars[currVariant][1][procCount] = upper - currMedian |
---|
| 243 | count = 0 |
---|
| 244 | procCount += 1 |
---|
| 245 | |
---|
| 246 | if procCount == len(procs): |
---|
| 247 | procCount = 0 |
---|
| 248 | nameSet = False |
---|
| 249 | currVariant += 1 |
---|
| 250 | |
---|
| 251 | if currVariant == numVariants: |
---|
| 252 | fig, ax = plt.subplots(layout='constrained') |
---|
| 253 | plt.title(title + " Benchmark") |
---|
| 254 | plt.ylabel("Throughput (channel operations per second)") |
---|
| 255 | plt.xlabel("Cores") |
---|
| 256 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format)) |
---|
| 257 | for idx, arr in enumerate(data): |
---|
| 258 | plt.errorbar( procs, arr, [bars[idx][0], bars[idx][1]], capsize=2, marker=next(marker) ) |
---|
| 259 | plt.xticks(procs) |
---|
| 260 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' )) |
---|
| 261 | # plt.yscale("log") |
---|
| 262 | # plt.ylim(1, None) |
---|
| 263 | # ax.get_yaxis().set_major_formatter(ticks.ScalarFormatter()) |
---|
| 264 | # else: |
---|
| 265 | # plt.ylim(0, None) |
---|
| 266 | ax.legend(names) |
---|
| 267 | # fig.savefig("plots/" + machineName + name + ".png") |
---|
| 268 | plt.savefig("plots/" + machineName + name + ".pgf") |
---|
| 269 | fig.clf() |
---|
| 270 | |
---|
| 271 | # reset |
---|
| 272 | currBench = Bench.Unset |
---|
| 273 | currVariant = 0 |
---|