| 1 | import os
|
|---|
| 2 | import sys
|
|---|
| 3 | import time
|
|---|
| 4 | import matplotlib.pyplot as plt
|
|---|
| 5 | import matplotlib.ticker as ticks
|
|---|
| 6 | import math
|
|---|
| 7 | from scipy import stats as st
|
|---|
| 8 | import numpy as np
|
|---|
| 9 | from enum import Enum
|
|---|
| 10 | from statistics import median
|
|---|
| 11 |
|
|---|
| 12 | import matplotlib
|
|---|
| 13 | matplotlib.use("pgf")
|
|---|
| 14 | matplotlib.rcParams.update({
|
|---|
| 15 | "pgf.texsystem": "pdflatex",
|
|---|
| 16 | 'font.family': 'serif',
|
|---|
| 17 | 'text.usetex': True,
|
|---|
| 18 | 'pgf.rcfonts': False,
|
|---|
| 19 | })
|
|---|
| 20 |
|
|---|
| 21 | readfile = open(sys.argv[1], "r")
|
|---|
| 22 |
|
|---|
| 23 | machineName = ""
|
|---|
| 24 |
|
|---|
| 25 | if len(sys.argv) > 2:
|
|---|
| 26 | machineName = sys.argv[2]
|
|---|
| 27 |
|
|---|
| 28 | # first line has num times per experiment
|
|---|
| 29 | line = readfile.readline()
|
|---|
| 30 | numTimes = int(line)
|
|---|
| 31 |
|
|---|
| 32 | # second line has processor args
|
|---|
| 33 | line = readfile.readline()
|
|---|
| 34 | procs = []
|
|---|
| 35 | for val in line.split():
|
|---|
| 36 | procs.append(int(val))
|
|---|
| 37 |
|
|---|
| 38 | # 3rd line has num locks args
|
|---|
| 39 | line = readfile.readline()
|
|---|
| 40 | locks = []
|
|---|
| 41 | for val in line.split():
|
|---|
| 42 | locks.append(int(val))
|
|---|
| 43 |
|
|---|
| 44 | # 4th line has number of variants
|
|---|
| 45 | line = readfile.readline()
|
|---|
| 46 | names = line.split()
|
|---|
| 47 | numVariants = len(names)
|
|---|
| 48 |
|
|---|
| 49 | lines = (line.rstrip() for line in readfile) # All lines including the blank ones
|
|---|
| 50 | lines = (line for line in lines if line) # Non-blank lines
|
|---|
| 51 |
|
|---|
| 52 | nameSet = False
|
|---|
| 53 | currLocks = -1 # default val
|
|---|
| 54 | count = 0
|
|---|
| 55 | procCount = 0
|
|---|
| 56 | currVariant = 0
|
|---|
| 57 | name = "Aggregate Lock"
|
|---|
| 58 | var_name = ""
|
|---|
| 59 | sendData = [0.0 for j in range(numVariants)]
|
|---|
| 60 | data = [[0.0 for i in range(len(procs))] for j in range(numVariants)]
|
|---|
| 61 | bars = [[[0.0 for i in range(len(procs))],[0.0 for k in range(len(procs))]] for j in range(numVariants)]
|
|---|
| 62 | tempData = [0.0 for i in range(numTimes)]
|
|---|
| 63 | for idx, line in enumerate(lines):
|
|---|
| 64 | # print(line)
|
|---|
| 65 |
|
|---|
| 66 | if currLocks == -1:
|
|---|
| 67 | lineArr = line.split()
|
|---|
| 68 | currLocks = lineArr[-1]
|
|---|
| 69 | continue
|
|---|
| 70 |
|
|---|
| 71 | if line[0:5] == "cores":
|
|---|
| 72 | continue
|
|---|
| 73 |
|
|---|
| 74 | if not nameSet:
|
|---|
| 75 | nameSet = True
|
|---|
| 76 | continue
|
|---|
| 77 |
|
|---|
| 78 | lineArr = line.split()
|
|---|
| 79 | tempData[count] = float(lineArr[-1])
|
|---|
| 80 | count += 1
|
|---|
| 81 | if count == numTimes:
|
|---|
| 82 | currMedian = median( tempData )
|
|---|
| 83 | data[currVariant][procCount] = currMedian
|
|---|
| 84 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
|---|
| 85 | bars[currVariant][0][procCount] = currMedian - lower
|
|---|
| 86 | bars[currVariant][1][procCount] = upper - currMedian
|
|---|
| 87 | count = 0
|
|---|
| 88 | procCount += 1
|
|---|
| 89 |
|
|---|
| 90 | if procCount == len(procs):
|
|---|
| 91 | procCount = 0
|
|---|
| 92 | nameSet = False
|
|---|
| 93 | currVariant += 1
|
|---|
| 94 |
|
|---|
| 95 | if currVariant == numVariants:
|
|---|
| 96 | fig, ax = plt.subplots()
|
|---|
| 97 | plt.title(name + " Benchmark: " + str(currLocks) + " Locks")
|
|---|
| 98 | plt.ylabel("Throughput (entries)")
|
|---|
| 99 | plt.xlabel("Cores")
|
|---|
| 100 | for idx, arr in enumerate(data):
|
|---|
| 101 | plt.errorbar( procs, arr, [bars[idx][0], bars[idx][1]], capsize=2, marker='o' )
|
|---|
| 102 | plt.yscale("log")
|
|---|
| 103 | plt.xticks(procs)
|
|---|
| 104 | ax.legend(names)
|
|---|
| 105 | # fig.savefig("plots/" + machineName + "Aggregate_Lock_" + str(currLocks) + ".png")
|
|---|
| 106 | plt.savefig("plots/" + machineName + "Aggregate_Lock_" + str(currLocks) + ".pgf")
|
|---|
| 107 | fig.clf()
|
|---|
| 108 |
|
|---|
| 109 | # reset
|
|---|
| 110 | currLocks = -1
|
|---|
| 111 | currVariant = 0
|
|---|