1 | #include <locks.hfa>
|
---|
2 | #include <mutex_stmt.hfa>
|
---|
3 | #include <stdio.h>
|
---|
4 | #include <stdlib.h>
|
---|
5 |
|
---|
6 | #include "../bench.h"
|
---|
7 |
|
---|
8 | test_spinlock LOCKS;
|
---|
9 |
|
---|
10 | test_spinlock ** lock_arr;
|
---|
11 |
|
---|
12 | inline void locks( size_t * arr ) {
|
---|
13 | if (num_locks == 2) {
|
---|
14 | mutex( *lock_arr[arr[0]], *lock_arr[arr[1]] ) {}
|
---|
15 | } else if (num_locks == 4) {
|
---|
16 | mutex( *lock_arr[arr[0]], *lock_arr[arr[1]], *lock_arr[arr[2]], *lock_arr[arr[3]] ) {}
|
---|
17 | } else if (num_locks == 8) {
|
---|
18 | mutex( *lock_arr[arr[0]], *lock_arr[arr[1]], *lock_arr[arr[2]], *lock_arr[arr[3]], *lock_arr[arr[4]], *lock_arr[arr[5]], *lock_arr[arr[6]], *lock_arr[arr[7]] ) {}
|
---|
19 | }
|
---|
20 | }
|
---|
21 |
|
---|
22 | bool done = false;
|
---|
23 | uint64_t total = 0;
|
---|
24 | size_t num_gen = 100; // number of rand orderings per thd
|
---|
25 | size_t ** rand_arrs;
|
---|
26 |
|
---|
27 | // generate repeatable orderings for each experiment
|
---|
28 | void gen_orders() {
|
---|
29 | rand_arrs = aalloc( threads );
|
---|
30 | for ( i; threads )
|
---|
31 | rand_arrs[i] = aalloc( num_locks * num_gen );
|
---|
32 |
|
---|
33 | size_t work_arr[num_locks];
|
---|
34 |
|
---|
35 | for ( i; num_locks )
|
---|
36 | work_arr[i] = i;
|
---|
37 |
|
---|
38 | size_t curr_idx;
|
---|
39 | for ( i; threads ) {
|
---|
40 | state = i;
|
---|
41 | curr_idx = 0;
|
---|
42 | for ( j; num_gen ) {
|
---|
43 | for ( size_t k = num_locks; k > 0; k-- ) {
|
---|
44 | size_t rand_idx = next_int() % k; // choose one of remaining elems in work_arr
|
---|
45 | rand_arrs[i][curr_idx] = work_arr[rand_idx];
|
---|
46 | curr_idx++;
|
---|
47 |
|
---|
48 | // swap chosen elem to end so it isn't picked again
|
---|
49 | size_t temp = work_arr[rand_idx];
|
---|
50 | work_arr[rand_idx] = work_arr[k - 1];
|
---|
51 | work_arr[k - 1] = temp;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | thread worker { size_t * my_arr; };
|
---|
59 | static inline void ?{}( worker & this, cluster & clu, size_t id ) {
|
---|
60 | ((thread &)this){ clu };
|
---|
61 | this.my_arr = rand_arrs[id];
|
---|
62 | }
|
---|
63 |
|
---|
64 | void main( worker & w ) with(w) {
|
---|
65 | uint64_t count = 0;
|
---|
66 | while (true) {
|
---|
67 | locks( my_arr + (count % num_gen) * num_locks );
|
---|
68 | count++;
|
---|
69 | if (done) break;
|
---|
70 | }
|
---|
71 | __atomic_add_fetch(&total, count, __ATOMIC_SEQ_CST);
|
---|
72 | }
|
---|
73 |
|
---|
74 | int main( int argc, char * argv[] ) {
|
---|
75 | BENCH_START()
|
---|
76 | if ( num_locks == -1 ) { printf("must pass # of locks to program!\n"); exit( EXIT_FAILURE ); }
|
---|
77 | cluster clus;
|
---|
78 | processor * proc[threads];
|
---|
79 | for ( i; threads ) // create procs
|
---|
80 | (*(proc[i] = alloc())){clus};
|
---|
81 |
|
---|
82 | lock_arr = aalloc( num_locks );
|
---|
83 |
|
---|
84 | if (num_locks >= 2) {
|
---|
85 | lock_arr[0] = &l1; lock_arr[1] = &l2;
|
---|
86 | }
|
---|
87 | if (num_locks >= 4) {
|
---|
88 | lock_arr[2] = &l3; lock_arr[3] = &l4;
|
---|
89 | }
|
---|
90 | if (num_locks == 8) {
|
---|
91 | lock_arr[4] = &l5; lock_arr[5] = &l6; lock_arr[6] = &l7; lock_arr[7] = &l8;
|
---|
92 | }
|
---|
93 |
|
---|
94 | gen_orders();
|
---|
95 |
|
---|
96 | worker * w[threads];
|
---|
97 | for ( i; threads ) // create threads
|
---|
98 | (*(w[i] = alloc())){ clus, i };
|
---|
99 |
|
---|
100 | sleep( 10`s );
|
---|
101 | done = true;
|
---|
102 |
|
---|
103 | for ( i; threads ) // delete threads
|
---|
104 | delete(w[i]);
|
---|
105 |
|
---|
106 | for ( i; threads ) // delete procs
|
---|
107 | delete(proc[i]);
|
---|
108 |
|
---|
109 | for ( i; threads )
|
---|
110 | adelete(rand_arrs[i]);
|
---|
111 | adelete(rand_arrs);
|
---|
112 |
|
---|
113 | adelete(lock_arr);
|
---|
114 |
|
---|
115 | printf( "%lu\n", total );
|
---|
116 | }
|
---|
117 |
|
---|
118 | // Local Variables: //
|
---|
119 | // tab-width: 4 //
|
---|
120 | // End: //
|
---|