1 | import os
|
---|
2 | import sys
|
---|
3 | import time
|
---|
4 | import itertools
|
---|
5 | import matplotlib.pyplot as plt
|
---|
6 | import matplotlib.ticker as ticks
|
---|
7 | import math
|
---|
8 | from scipy import stats as st
|
---|
9 | import numpy as np
|
---|
10 | from enum import Enum
|
---|
11 | from statistics import median
|
---|
12 |
|
---|
13 | import matplotlib
|
---|
14 | matplotlib.use("pgf")
|
---|
15 | matplotlib.rcParams.update({
|
---|
16 | "pgf.texsystem": "pdflatex",
|
---|
17 | 'font.family': 'serif',
|
---|
18 | 'text.usetex': True,
|
---|
19 | 'pgf.rcfonts': False,
|
---|
20 | 'font.size': 16
|
---|
21 | })
|
---|
22 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
23 |
|
---|
24 | def sci_format(x, pos):
|
---|
25 | return '{:.1e}'.format(x).replace('+0', '')
|
---|
26 |
|
---|
27 | readfile = open(sys.argv[1], "r")
|
---|
28 |
|
---|
29 | machineName = ""
|
---|
30 |
|
---|
31 | if len(sys.argv) > 2:
|
---|
32 | machineName = sys.argv[2]
|
---|
33 |
|
---|
34 | # first line has num times per experiment
|
---|
35 | line = readfile.readline()
|
---|
36 | numTimes = int(line)
|
---|
37 |
|
---|
38 | # second line has processor args
|
---|
39 | line = readfile.readline()
|
---|
40 | procs = []
|
---|
41 | for val in line.split():
|
---|
42 | procs.append(int(val))
|
---|
43 |
|
---|
44 | # 3rd line has number of variants
|
---|
45 | line = readfile.readline()
|
---|
46 | names = line.split()
|
---|
47 | numVariants = len(names)
|
---|
48 |
|
---|
49 | lines = (line.rstrip() for line in readfile) # All lines including the blank ones
|
---|
50 | lines = (line for line in lines if line) # Non-blank lines
|
---|
51 |
|
---|
52 | class Bench(Enum):
|
---|
53 | Unset = 0
|
---|
54 | Contend = 1
|
---|
55 | Zero = 2
|
---|
56 | Barrier = 3
|
---|
57 | Churn = 4
|
---|
58 | Daisy_Chain = 5
|
---|
59 | Hot_Potato = 6
|
---|
60 | Pub_Sub = 7
|
---|
61 |
|
---|
62 | nameSet = False
|
---|
63 | currBench = Bench.Unset # default val
|
---|
64 | count = 0
|
---|
65 | procCount = 0
|
---|
66 | currVariant = 0
|
---|
67 | experiment_duration = 10.0
|
---|
68 | name = ""
|
---|
69 | title = ""
|
---|
70 | var_name = ""
|
---|
71 | sendData = [0.0 for j in range(numVariants)]
|
---|
72 | data = [[0.0 for i in range(len(procs))] for j in range(numVariants)]
|
---|
73 | bars = [[[0.0 for i in range(len(procs))],[0.0 for k in range(len(procs))]] for j in range(numVariants)]
|
---|
74 | tempData = [0.0 for i in range(numTimes)]
|
---|
75 | for idx, line in enumerate(lines):
|
---|
76 | # print(line)
|
---|
77 |
|
---|
78 | if currBench == Bench.Unset:
|
---|
79 | if line == "contend:":
|
---|
80 | name = "Channel_Contention"
|
---|
81 | title = "Channel Contention"
|
---|
82 | currBench = Bench.Contend
|
---|
83 | elif line == "zero:":
|
---|
84 | name = "Zero"
|
---|
85 | currBench = Bench.Zero
|
---|
86 | elif line == "barrier:":
|
---|
87 | name = "Barrier"
|
---|
88 | currBench = Bench.Barrier
|
---|
89 | elif line == "churn:":
|
---|
90 | name = "Churn"
|
---|
91 | currBench = Bench.Churn
|
---|
92 | elif line == "daisy_chain:":
|
---|
93 | name = "Daisy_Chain"
|
---|
94 | currBench = Bench.Daisy_Chain
|
---|
95 | elif line == "hot_potato:":
|
---|
96 | name = "Hot_Potato"
|
---|
97 | currBench = Bench.Hot_Potato
|
---|
98 | elif line == "pub_sub:":
|
---|
99 | name = "Pub_Sub"
|
---|
100 | currBench = Bench.Pub_Sub
|
---|
101 | else:
|
---|
102 | print("Expected benchmark name")
|
---|
103 | print("Line: " + line)
|
---|
104 | sys.exit()
|
---|
105 | continue
|
---|
106 |
|
---|
107 | if line[0:5] == "cores":
|
---|
108 | continue
|
---|
109 |
|
---|
110 | if not nameSet:
|
---|
111 | nameSet = True
|
---|
112 | continue
|
---|
113 |
|
---|
114 | lineArr = line.split()
|
---|
115 | tempData[count] = float(lineArr[-1]) / experiment_duration
|
---|
116 | count += 1
|
---|
117 | if count == numTimes:
|
---|
118 | currMedian = median( tempData )
|
---|
119 | data[currVariant][procCount] = currMedian
|
---|
120 | lower, upper = st.t.interval(0.95, numTimes - 1, loc=np.mean(tempData), scale=st.sem(tempData))
|
---|
121 | bars[currVariant][0][procCount] = currMedian - lower
|
---|
122 | bars[currVariant][1][procCount] = upper - currMedian
|
---|
123 | count = 0
|
---|
124 | procCount += 1
|
---|
125 |
|
---|
126 | if procCount == len(procs):
|
---|
127 | procCount = 0
|
---|
128 | nameSet = False
|
---|
129 | currVariant += 1
|
---|
130 |
|
---|
131 | if currVariant == numVariants:
|
---|
132 | fig, ax = plt.subplots(layout='constrained')
|
---|
133 | if title != "":
|
---|
134 | plt.title(title + " Benchmark")
|
---|
135 | title = ""
|
---|
136 | else:
|
---|
137 | plt.title(name + " Benchmark")
|
---|
138 | plt.ylabel("Throughput (channel operations per second)")
|
---|
139 | plt.xlabel("Cores")
|
---|
140 | ax.yaxis.set_major_formatter(ticks.FuncFormatter(sci_format))
|
---|
141 | for idx, arr in enumerate(data):
|
---|
142 | plt.errorbar( procs, arr, [bars[idx][0], bars[idx][1]], capsize=2, marker=next(marker) )
|
---|
143 | marker = itertools.cycle(('o', 's', 'D', 'x', 'p', '^', 'h', '*', 'v' ))
|
---|
144 | # plt.yscale("log")
|
---|
145 | # plt.ylim(1, None)
|
---|
146 | # ax.get_yaxis().set_major_formatter(ticks.ScalarFormatter())
|
---|
147 | # else:
|
---|
148 | # plt.ylim(0, None)
|
---|
149 | plt.xticks(procs)
|
---|
150 | ax.legend(names)
|
---|
151 | # fig.savefig("plots/" + machineName + name + ".png")
|
---|
152 | plt.savefig("plots/" + machineName + name + ".pgf")
|
---|
153 | fig.clf()
|
---|
154 |
|
---|
155 | # reset
|
---|
156 | currBench = Bench.Unset
|
---|
157 | currVariant = 0
|
---|