| [7493339] | 1 | %====================================================================== | 
|---|
|  | 2 | \chapter{Variadic Functions} | 
|---|
|  | 3 | %====================================================================== | 
|---|
|  | 4 |  | 
|---|
| [f92aa32] | 5 | \section{Design Criteria} % TODO: better section name??? | 
|---|
| [7493339] | 6 | C provides variadic functions through the manipulation of @va_list@ objects. | 
|---|
| [12d3187] | 7 | In C, a variadic function is one which contains at least one parameter, followed by @...@ as the last token in the parameter list. | 
|---|
|  | 8 | In particular, some form of \emph{argument descriptor} or \emph{sentinel value} is needed to inform the function of the number of arguments and their types. | 
|---|
| [7493339] | 9 | Two common argument descriptors are format strings or counter parameters. | 
|---|
| [12d3187] | 10 | It is important to note that both of these mechanisms are inherently redundant, because they require the user to explicitly specify information that the compiler already knows \footnote{While format specifiers can convey some information the compiler does not know, such as whether to print a number in decimal or hexadecimal, the number of arguments is wholly redundant.}. | 
|---|
| [7493339] | 11 | This required repetition is error prone, because it is easy for the user to add or remove arguments without updating the argument descriptor. | 
|---|
|  | 12 | In addition, C requires the programmer to hard code all of the possible expected types. | 
|---|
|  | 13 | As a result, it is cumbersome to write a function that is open to extension. | 
|---|
| [0eb18557] | 14 | For example, a simple function to sum $N$ @int@s, | 
|---|
| [7493339] | 15 | \begin{cfacode} | 
|---|
|  | 16 | int sum(int N, ...) { | 
|---|
|  | 17 | va_list args; | 
|---|
|  | 18 | va_start(args, N); | 
|---|
|  | 19 | int ret = 0; | 
|---|
|  | 20 | while(N) { | 
|---|
|  | 21 | ret += va_arg(args, int);  // have to specify type | 
|---|
|  | 22 | N--; | 
|---|
|  | 23 | } | 
|---|
|  | 24 | va_end(args); | 
|---|
|  | 25 | return ret; | 
|---|
|  | 26 | } | 
|---|
|  | 27 | sum(3, 10, 20, 30);  // need to keep counter in sync | 
|---|
|  | 28 | \end{cfacode} | 
|---|
| [0eb18557] | 29 | The @va_list@ type is a special C data type that abstracts variadic-argument manipulation. | 
|---|
| [7493339] | 30 | The @va_start@ macro initializes a @va_list@, given the last named parameter. | 
|---|
|  | 31 | Each use of the @va_arg@ macro allows access to the next variadic argument, given a type. | 
|---|
|  | 32 | Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call. | 
|---|
|  | 33 | As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures. | 
|---|
|  | 34 | In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined \cite[p.~81]{C11}. | 
|---|
|  | 35 | Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body. | 
|---|
| [0eb18557] | 36 | Since they rely on programmer convention rather than compile-time checks, variadic functions are unsafe. | 
|---|
| [7493339] | 37 |  | 
|---|
|  | 38 | In practice, compilers can provide warnings to help mitigate some of the problems. | 
|---|
| [0eb18557] | 39 | For example, GCC provides the @format@ attribute to specify that a function uses a format string, which allows the compiler to perform some checks related to the standard format-specifiers. | 
|---|
|  | 40 | Unfortunately, this approach does not permit extensions to the format-string syntax, so a programmer cannot extend the attribute to warn for mismatches with custom types. | 
|---|
| [7493339] | 41 |  | 
|---|
|  | 42 | As a result, C's variadic functions are a deficient language feature. | 
|---|
|  | 43 | Two options were examined to provide better, type-safe variadic functions in \CFA. | 
|---|
|  | 44 | \subsection{Whole Tuple Matching} | 
|---|
|  | 45 | Option 1 is to change the argument matching algorithm, so that type parameters can match whole tuples, rather than just their components. | 
|---|
|  | 46 | This option could be implemented with two phases of argument matching when a function contains type parameters and the argument list contains tuple arguments. | 
|---|
|  | 47 | If flattening and structuring fail to produce a match, a second attempt at matching the function and argument combination is made where tuple arguments are not expanded and structure must match exactly, modulo non-tuple implicit conversions. | 
|---|
|  | 48 | For example: | 
|---|
|  | 49 | \begin{cfacode} | 
|---|
|  | 50 | forall(otype T, otype U | { T g(U); }) | 
|---|
|  | 51 | void f(T, U); | 
|---|
|  | 52 |  | 
|---|
|  | 53 | [int, int] g([int, int, int, int]); | 
|---|
|  | 54 |  | 
|---|
|  | 55 | f([1, 2], [3, 4, 5, 6]); | 
|---|
|  | 56 | \end{cfacode} | 
|---|
|  | 57 | With flattening and structuring, the call is first transformed into @f(1, 2, 3, 4, 5, 6)@. | 
|---|
|  | 58 | Since the first argument of type @T@ does not have a tuple type, unification decides that @T=int@ and @1@ is matched as the first parameter. | 
|---|
|  | 59 | Likewise, @U@ does not have a tuple type, so @U=int@ and @2@ is accepted as the second parameter. | 
|---|
|  | 60 | There are now no remaining formal parameters, but there are remaining arguments and the function is not variadic, so the match fails. | 
|---|
|  | 61 |  | 
|---|
|  | 62 | With the addition of an exact matching attempt, @T=[int,int]@ and @U=[int,int,int,int]@, and so the arguments type check. | 
|---|
|  | 63 | Likewise, when inferring assertion @g@, an exact match is found. | 
|---|
|  | 64 |  | 
|---|
| [f92aa32] | 65 | This approach is strict with respect to argument structure, by nature, which makes it syntactically awkward to use in ways that the existing tuple design is not. | 
|---|
|  | 66 | For example, consider a @new@ function that allocates memory using @malloc@, and constructs the result using arbitrary arguments. | 
|---|
| [7493339] | 67 | \begin{cfacode} | 
|---|
|  | 68 | struct Array; | 
|---|
|  | 69 | void ?{}(Array *, int, int, int); | 
|---|
|  | 70 |  | 
|---|
|  | 71 | forall(dtype T, otype Params | sized(T) | { void ?{}(T *, Params); }) | 
|---|
|  | 72 | T * new(Params p) { | 
|---|
|  | 73 | return malloc(){ p }; | 
|---|
|  | 74 | } | 
|---|
|  | 75 | Array(int) * x = new([1, 2, 3]); | 
|---|
|  | 76 | \end{cfacode} | 
|---|
|  | 77 | The call to @new@ is not particularly appealing, since it requires the use of square brackets at the call-site, which is not required in any other function call. | 
|---|
|  | 78 | This shifts the burden from the compiler to the programmer, which is almost always wrong, and creates an odd inconsistency within the language. | 
|---|
|  | 79 | Similarly, in order to pass 0 variadic arguments, an explicit empty tuple must be passed into the argument list, otherwise the exact matching rule would not have an argument to bind against. | 
|---|
|  | 80 |  | 
|---|
| [0eb18557] | 81 | It should be otherwise noted that the addition of an exact matching rule only affects the outcome for polymorphic type-binding when tuples are involved. | 
|---|
| [7493339] | 82 | For non-tuple arguments, exact matching and flattening and structuring are equivalent. | 
|---|
| [0eb18557] | 83 | For tuple arguments to a function without polymorphic formal-parameters, flattening and structuring work whenever an exact match would have worked, since the tuple is flattened and implicitly restructured to its original structure. | 
|---|
| [7493339] | 84 | Thus there is nothing to be gained from permitting the exact matching rule to take effect when a function does not contain polymorphism and none of the arguments are tuples. | 
|---|
|  | 85 |  | 
|---|
|  | 86 | Overall, this option takes a step in the right direction, but is contrary to the flexibility of the existing tuple design. | 
|---|
|  | 87 |  | 
|---|
|  | 88 | \subsection{A New Typeclass} | 
|---|
|  | 89 | A second option is the addition of another kind of type parameter, @ttype@. | 
|---|
|  | 90 | Matching against a @ttype@ parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types. | 
|---|
|  | 91 | In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule. | 
|---|
|  | 92 | This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven variadic templates. | 
|---|
|  | 93 | As such, @ttype@ variables are also referred to as argument packs. | 
|---|
|  | 94 | This approach is the option that has been added to \CFA. | 
|---|
|  | 95 |  | 
|---|
|  | 96 | Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is through recursion. | 
|---|
|  | 97 | Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful. | 
|---|
|  | 98 | Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled. | 
|---|
|  | 99 |  | 
|---|
|  | 100 | For example, a simple translation of the C sum function using @ttype@ is | 
|---|
|  | 101 | \begin{cfacode} | 
|---|
|  | 102 | int sum(void){ return 0; }        // (0) | 
|---|
|  | 103 | forall(ttype Params | { int sum(Params); }) | 
|---|
|  | 104 | int sum(int x, Params rest) { // (1) | 
|---|
|  | 105 | return x+sum(rest); | 
|---|
|  | 106 | } | 
|---|
|  | 107 | sum(10, 20, 30); | 
|---|
|  | 108 | \end{cfacode} | 
|---|
|  | 109 | Since (0) does not accept any arguments, it is not a valid candidate function for the call @sum(10, 20, 30)@. | 
|---|
|  | 110 | In order to call (1), @10@ is matched with @x@, and the argument resolution moves on to the argument pack @rest@, which consumes the remainder of the argument list and @Params@ is bound to @[20, 30]@. | 
|---|
|  | 111 | In order to finish the resolution of @sum@, an assertion parameter that matches @int sum(int, int)@ is required. | 
|---|
| [f92aa32] | 112 | Like in the previous iteration, (0) is not a valid candidate, so (1) is examined with @Params@ bound to @[int]@, requiring the assertion @int sum(int)@. | 
|---|
| [7493339] | 113 | Next, (0) fails, and to satisfy (1) @Params@ is bound to @[]@, requiring an assertion @int sum()@. | 
|---|
|  | 114 | Finally, (0) matches and (1) fails, which terminates the recursion. | 
|---|
|  | 115 | Effectively, this traces as @sum(10, 20, 30)@ $\rightarrow$ @10+sum(20, 30)@ $\rightarrow$ @10+(20+sum(30))@ $\rightarrow$ @10+(20+(30+sum()))@ $\rightarrow$ @10+(20+(30+0))@. | 
|---|
|  | 116 |  | 
|---|
|  | 117 | Interestingly, this version does not require any form of argument descriptor, since the \CFA type system keeps track of all of these details. | 
|---|
|  | 118 | It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments, which could be done simply | 
|---|
|  | 119 | \begin{cfacode} | 
|---|
|  | 120 | int sum(int x, int y){ | 
|---|
|  | 121 | return x+y; | 
|---|
|  | 122 | } | 
|---|
|  | 123 | forall(ttype Params | { int sum(int, Params); }) | 
|---|
|  | 124 | int sum(int x, int y, Params rest) { | 
|---|
|  | 125 | return sum(x+y, rest); | 
|---|
|  | 126 | } | 
|---|
|  | 127 | sum(10);          // invalid | 
|---|
|  | 128 | sum(10, 20);      // valid | 
|---|
|  | 129 | sum(10, 20, 30);  // valid | 
|---|
|  | 130 | ... | 
|---|
|  | 131 | \end{cfacode} | 
|---|
|  | 132 |  | 
|---|
|  | 133 | One more iteration permits the summation of any summable type, as long as all arguments are the same type. | 
|---|
|  | 134 | \begin{cfacode} | 
|---|
|  | 135 | trait summable(otype T) { | 
|---|
|  | 136 | T ?+?(T, T); | 
|---|
|  | 137 | }; | 
|---|
|  | 138 | forall(otype R | summable(R)) | 
|---|
|  | 139 | R sum(R x, R y){ | 
|---|
|  | 140 | return x+y; | 
|---|
|  | 141 | } | 
|---|
|  | 142 | forall(otype R, ttype Params | 
|---|
|  | 143 | | summable(R) | 
|---|
|  | 144 | | { R sum(R, Params); }) | 
|---|
|  | 145 | R sum(R x, R y, Params rest) { | 
|---|
|  | 146 | return sum(x+y, rest); | 
|---|
|  | 147 | } | 
|---|
|  | 148 | sum(3, 10, 20, 30); | 
|---|
|  | 149 | \end{cfacode} | 
|---|
|  | 150 | Unlike C, it is not necessary to hard code the expected type. | 
|---|
|  | 151 | This @sum@ function is naturally open to extension, in that any user-defined type with a @?+?@ operator is automatically able to be used with the @sum@ function. | 
|---|
|  | 152 | That is to say, the programmer who writes @sum@ does not need full program knowledge of every possible data type, unlike what is necessary to write an equivalent function using the standard C mechanisms. | 
|---|
|  | 153 |  | 
|---|
| [12d3187] | 154 | \begin{sloppypar} | 
|---|
| [7493339] | 155 | Going one last step, it is possible to achieve full generality in \CFA, allowing the summation of arbitrary lists of summable types. | 
|---|
|  | 156 | \begin{cfacode} | 
|---|
|  | 157 | trait summable(otype T1, otype T2, otype R) { | 
|---|
|  | 158 | R ?+?(T1, T2); | 
|---|
|  | 159 | }; | 
|---|
|  | 160 | forall(otype T1, otype T2, otype R | summable(T1, T2, R)) | 
|---|
|  | 161 | R sum(T1 x, T2 y) { | 
|---|
|  | 162 | return x+y; | 
|---|
|  | 163 | } | 
|---|
| [0eb18557] | 164 | forall(otype T1, otype T2, otype T3, otype R, ttype Params | 
|---|
| [7493339] | 165 | | summable(T1, T2, T3) | 
|---|
|  | 166 | | { R sum(T3, Params); }) | 
|---|
|  | 167 | R sum(T1 x, T2 y, Params rest ) { | 
|---|
|  | 168 | return sum(x+y, rest); | 
|---|
|  | 169 | } | 
|---|
|  | 170 | sum(3, 10.5, 20, 30.3); | 
|---|
|  | 171 | \end{cfacode} | 
|---|
|  | 172 | The \CFA translator requires adding explicit @double ?+?(int, double)@ and @double ?+?(double, int)@ functions for this call to work, since implicit conversions are not supported for assertions. | 
|---|
| [12d3187] | 173 | \end{sloppypar} | 
|---|
| [7493339] | 174 |  | 
|---|
|  | 175 | A notable limitation of this approach is that it heavily relies on recursive assertions. | 
|---|
|  | 176 | The \CFA translator imposes a limitation on the depth of the recursion for assertion satisfaction. | 
|---|
| [f92aa32] | 177 | Currently, the limit is set to 4, which means that the first version of the @sum@ function is limited to at most 5 arguments, while the second version can support up to 6 arguments. | 
|---|
| [7493339] | 178 | The limit is set low due to inefficiencies in the current implementation of the \CFA expression resolver. | 
|---|
|  | 179 | There is ongoing work to improve the performance of the resolver, and with noticeable gains, the limit can be relaxed to allow longer argument lists to @ttype@ functions. | 
|---|
|  | 180 |  | 
|---|
|  | 181 | C variadic syntax and @ttype@ polymorphism probably should not be mixed, since it is not clear where to draw the line to decide which arguments belong where. | 
|---|
| [f92aa32] | 182 | Furthermore, it might be desirable to disallow polymorphic functions to use C variadic syntax to encourage a \CFA style. | 
|---|
| [7493339] | 183 | Aside from calling C variadic functions, it is not obvious that there is anything that can be done with C variadics that could not also be done with @ttype@ parameters. | 
|---|
|  | 184 |  | 
|---|
|  | 185 | Variadic templates in \CC require an ellipsis token to express that a parameter is a parameter pack and to expand a parameter pack. | 
|---|
|  | 186 | \CFA does not need an ellipsis in either case, since the type class @ttype@ is only used for variadics. | 
|---|
|  | 187 | An alternative design is to use an ellipsis combined with an existing type class. | 
|---|
| [0eb18557] | 188 | This approach was not taken because the largest benefit of the ellipsis token in \CC is the ability to expand a parameter pack within an expression, \eg, in fold expressions, which requires compile-time knowledge of the structure of the parameter pack, which is not available in \CFA. | 
|---|
| [7493339] | 189 | \begin{cppcode} | 
|---|
|  | 190 | template<typename... Args> | 
|---|
|  | 191 | void f(Args &... args) { | 
|---|
|  | 192 | g(&args...);  // expand to addresses of pack elements | 
|---|
|  | 193 | } | 
|---|
|  | 194 | \end{cppcode} | 
|---|
|  | 195 | As such, the addition of an ellipsis token would be purely an aesthetic change in \CFA today. | 
|---|
|  | 196 |  | 
|---|
|  | 197 | It is possible to write a type-safe variadic print routine, which can replace @printf@ | 
|---|
|  | 198 | \begin{cfacode} | 
|---|
|  | 199 | struct S { int x, y; }; | 
|---|
|  | 200 | forall(otype T, ttype Params | | 
|---|
|  | 201 | { void print(T); void print(Params); }) | 
|---|
|  | 202 | void print(T arg, Params rest) { | 
|---|
|  | 203 | print(arg); | 
|---|
|  | 204 | print(rest); | 
|---|
|  | 205 | } | 
|---|
|  | 206 | void print(char * x) { printf("%s", x); } | 
|---|
|  | 207 | void print(int x) { printf("%d", x);  } | 
|---|
|  | 208 | void print(S s) { print("{ ", s.x, ",", s.y, " }"); } | 
|---|
|  | 209 | print("s = ", (S){ 1, 2 }, "\n"); | 
|---|
|  | 210 | \end{cfacode} | 
|---|
|  | 211 | This example routine showcases a variadic-template-like decomposition of the provided argument list. | 
|---|
|  | 212 | The individual @print@ routines allow printing a single element of a type. | 
|---|
|  | 213 | The polymorphic @print@ allows printing any list of types, as long as each individual type has a @print@ function. | 
|---|
|  | 214 | The individual print functions can be used to build up more complicated @print@ routines, such as for @S@, which is something that cannot be done with @printf@ in C. | 
|---|
|  | 215 |  | 
|---|
|  | 216 | It is also possible to use @ttype@ polymorphism to provide arbitrary argument forwarding functions. | 
|---|
|  | 217 | For example, it is possible to write @new@ as a library function. | 
|---|
|  | 218 | \begin{cfacode} | 
|---|
|  | 219 | struct Array; | 
|---|
|  | 220 | void ?{}(Array *, int, int, int); | 
|---|
|  | 221 |  | 
|---|
|  | 222 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); }) | 
|---|
|  | 223 | T * new(Params p) { | 
|---|
|  | 224 | return malloc(){ p }; // construct result of malloc | 
|---|
|  | 225 | } | 
|---|
|  | 226 | Array * x = new(1, 2, 3); | 
|---|
|  | 227 | \end{cfacode} | 
|---|
|  | 228 | In the call to @new@, @Array@ is selected to match @T@, and @Params@ is expanded to match @[int, int, int, int]@. To satisfy the assertions, a constructor with an interface compatible with @void ?{}(Array *, int, int, int)@ must exist in the current scope. | 
|---|
|  | 229 |  | 
|---|
| [12d3187] | 230 | The @new@ function provides the combination of polymorphic @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically-allocated objects. | 
|---|
| [0eb18557] | 231 | This approach provides the type-safety of @new@ in \CC, without the need to specify the allocated type, thanks to return-type inference. | 
|---|
|  | 232 |  | 
|---|
| [7493339] | 233 | \section{Implementation} | 
|---|
|  | 234 |  | 
|---|
|  | 235 | The definition of @new@ | 
|---|
|  | 236 | \begin{cfacode} | 
|---|
|  | 237 | forall(dtype T | sized(T)) T * malloc(); | 
|---|
|  | 238 |  | 
|---|
|  | 239 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); }) | 
|---|
|  | 240 | T * new(Params p) { | 
|---|
|  | 241 | return malloc(){ p }; // construct result of malloc | 
|---|
|  | 242 | } | 
|---|
|  | 243 | \end{cfacode} | 
|---|
| [0eb18557] | 244 | generates the following | 
|---|
| [7493339] | 245 | \begin{cfacode} | 
|---|
|  | 246 | void *malloc(long unsigned int _sizeof_T, long unsigned int _alignof_T); | 
|---|
|  | 247 |  | 
|---|
|  | 248 | void *new( | 
|---|
|  | 249 | void (*_adapter_)(void (*)(), void *, void *), | 
|---|
|  | 250 | long unsigned int _sizeof_T, | 
|---|
|  | 251 | long unsigned int _alignof_T, | 
|---|
|  | 252 | long unsigned int _sizeof_Params, | 
|---|
|  | 253 | long unsigned int _alignof_Params, | 
|---|
|  | 254 | void (* _ctor_T)(void *, void *), | 
|---|
|  | 255 | void *p | 
|---|
|  | 256 | ){ | 
|---|
|  | 257 | void *_retval_new; | 
|---|
|  | 258 | void *_tmp_cp_ret0; | 
|---|
|  | 259 | void *_tmp_ctor_expr0; | 
|---|
|  | 260 | _retval_new= | 
|---|
|  | 261 | (_adapter_(_ctor_T, | 
|---|
|  | 262 | (_tmp_ctor_expr0=(_tmp_cp_ret0=malloc(_sizeof_2tT, _alignof_2tT), | 
|---|
|  | 263 | _tmp_cp_ret0)), | 
|---|
|  | 264 | p), | 
|---|
|  | 265 | _tmp_ctor_expr0); // ?{} | 
|---|
|  | 266 | *(void **)&_tmp_cp_ret0; // ^?{} | 
|---|
|  | 267 | return _retval_new; | 
|---|
|  | 268 | } | 
|---|
|  | 269 | \end{cfacode} | 
|---|
|  | 270 | The constructor for @T@ is called indirectly through the adapter function on the result of @malloc@ and the parameter pack. | 
|---|
| [0eb18557] | 271 | The variable that is allocated and constructed is then returned from @new@. | 
|---|
| [7493339] | 272 |  | 
|---|
|  | 273 | A call to @new@ | 
|---|
|  | 274 | \begin{cfacode} | 
|---|
|  | 275 | struct S { int x, y; }; | 
|---|
|  | 276 | void ?{}(S *, int, int); | 
|---|
|  | 277 |  | 
|---|
|  | 278 | S * s = new(3, 4); | 
|---|
|  | 279 | \end{cfacode} | 
|---|
|  | 280 | Generates the following | 
|---|
|  | 281 | \begin{cfacode} | 
|---|
|  | 282 | struct _tuple2_ {  // _tuple2_(T0, T1) | 
|---|
|  | 283 | void *field_0; | 
|---|
|  | 284 | void *field_1; | 
|---|
|  | 285 | }; | 
|---|
|  | 286 | struct _conc__tuple2_0 {  // _tuple2_(int, int) | 
|---|
|  | 287 | int field_0; | 
|---|
|  | 288 | int field_1; | 
|---|
|  | 289 | }; | 
|---|
|  | 290 | struct _conc__tuple2_0 _tmp_cp1;  // tuple argument to new | 
|---|
|  | 291 | struct S *_tmp_cp_ret1;           // return value from new | 
|---|
|  | 292 | void _thunk0(  // ?{}(S *, [int, int]) | 
|---|
|  | 293 | struct S *_p0, | 
|---|
|  | 294 | struct _conc__tuple2_0 _p1 | 
|---|
|  | 295 | ){ | 
|---|
|  | 296 | _ctor_S(_p0, _p1.field_0, _p1.field_1);  // restructure tuple parameter | 
|---|
|  | 297 | } | 
|---|
|  | 298 | void _adapter(void (*_adaptee)(), void *_p0, void *_p1){ | 
|---|
|  | 299 | // apply adaptee to arguments after casting to actual types | 
|---|
|  | 300 | ((void (*)(struct S *, struct _conc__tuple2_0))_adaptee)( | 
|---|
|  | 301 | _p0, | 
|---|
|  | 302 | *(struct _conc__tuple2_0 *)_p1 | 
|---|
|  | 303 | ); | 
|---|
|  | 304 | } | 
|---|
|  | 305 | struct S *s = (struct S *)(_tmp_cp_ret1= | 
|---|
|  | 306 | new( | 
|---|
|  | 307 | _adapter, | 
|---|
|  | 308 | sizeof(struct S), | 
|---|
|  | 309 | __alignof__(struct S), | 
|---|
|  | 310 | sizeof(struct _conc__tuple2_0), | 
|---|
|  | 311 | __alignof__(struct _conc__tuple2_0), | 
|---|
|  | 312 | (void (*)(void *, void *))&_thunk0, | 
|---|
|  | 313 | (({ // copy construct tuple argument to new | 
|---|
|  | 314 | int *__multassign_L0 = (int *)&_tmp_cp1.field_0; | 
|---|
|  | 315 | int *__multassign_L1 = (int *)&_tmp_cp1.field_1; | 
|---|
|  | 316 | int __multassign_R0 = 3; | 
|---|
|  | 317 | int __multassign_R1 = 4; | 
|---|
|  | 318 | ((*__multassign_L0=__multassign_R0 /* ?{} */) , | 
|---|
|  | 319 | (*__multassign_L1=__multassign_R1 /* ?{} */)); | 
|---|
|  | 320 | }), &_tmp_cp1) | 
|---|
|  | 321 | ), _tmp_cp_ret1); | 
|---|
|  | 322 | *(struct S **)&_tmp_cp_ret1; // ^?{}  // destroy return value from new | 
|---|
|  | 323 | ({  // destroy argument temporary | 
|---|
|  | 324 | int *__massassign_L0 = (int *)&_tmp_cp1.field_0; | 
|---|
|  | 325 | int *__massassign_L1 = (int *)&_tmp_cp1.field_1; | 
|---|
|  | 326 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */)); | 
|---|
|  | 327 | }); | 
|---|
|  | 328 | \end{cfacode} | 
|---|
|  | 329 | Of note, @_thunk0@ is generated to translate calls to @?{}(S *, [int, int])@ into calls to @?{}(S *, int, int)@. | 
|---|
|  | 330 | The call to @new@ constructs a tuple argument using the supplied arguments. | 
|---|
|  | 331 |  | 
|---|
|  | 332 | The @print@ function | 
|---|
|  | 333 | \begin{cfacode} | 
|---|
|  | 334 | forall(otype T, ttype Params | | 
|---|
|  | 335 | { void print(T); void print(Params); }) | 
|---|
|  | 336 | void print(T arg, Params rest) { | 
|---|
|  | 337 | print(arg); | 
|---|
|  | 338 | print(rest); | 
|---|
|  | 339 | } | 
|---|
|  | 340 | \end{cfacode} | 
|---|
| [0eb18557] | 341 | generates the following | 
|---|
| [7493339] | 342 | \begin{cfacode} | 
|---|
|  | 343 | void print_variadic( | 
|---|
|  | 344 | void (*_adapterF_7tParams__P)(void (*)(), void *), | 
|---|
|  | 345 | void (*_adapterF_2tT__P)(void (*)(), void *), | 
|---|
|  | 346 | void (*_adapterF_P2tT2tT__MP)(void (*)(), void *, void *), | 
|---|
|  | 347 | void (*_adapterF2tT_P2tT2tT_P_MP)(void (*)(), void *, void *, void *), | 
|---|
|  | 348 | long unsigned int _sizeof_T, | 
|---|
|  | 349 | long unsigned int _alignof_T, | 
|---|
|  | 350 | long unsigned int _sizeof_Params, | 
|---|
|  | 351 | long unsigned int _alignof_Params, | 
|---|
|  | 352 | void *(*_assign_TT)(void *, void *), | 
|---|
|  | 353 | void (*_ctor_T)(void *), | 
|---|
|  | 354 | void (*_ctor_TT)(void *, void *), | 
|---|
|  | 355 | void (*_dtor_T)(void *), | 
|---|
|  | 356 | void (*print_T)(void *), | 
|---|
|  | 357 | void (*print_Params)(void *), | 
|---|
|  | 358 | void *arg, | 
|---|
|  | 359 | void *rest | 
|---|
|  | 360 | ){ | 
|---|
|  | 361 | void *_tmp_cp0 = __builtin_alloca(_sizeof_T); | 
|---|
|  | 362 | _adapterF_2tT__P(  // print(arg) | 
|---|
|  | 363 | ((void (*)())print_T), | 
|---|
|  | 364 | (_adapterF_P2tT2tT__MP( // copy construct argument | 
|---|
|  | 365 | ((void (*)())_ctor_TT), | 
|---|
|  | 366 | _tmp_cp0, | 
|---|
|  | 367 | arg | 
|---|
|  | 368 | ), _tmp_cp0) | 
|---|
|  | 369 | ); | 
|---|
|  | 370 | _dtor_T(_tmp_cp0);  // destroy argument temporary | 
|---|
|  | 371 | _adapterF_7tParams__P(  // print(rest) | 
|---|
|  | 372 | ((void (*)())print_Params), | 
|---|
|  | 373 | rest | 
|---|
|  | 374 | ); | 
|---|
|  | 375 | } | 
|---|
|  | 376 | \end{cfacode} | 
|---|
|  | 377 | The @print_T@ routine is called indirectly through an adapter function with a copy constructed argument, followed by an indirect call to @print_Params@. | 
|---|
|  | 378 |  | 
|---|
|  | 379 | A call to print | 
|---|
|  | 380 | \begin{cfacode} | 
|---|
|  | 381 | void print(const char * x) { printf("%s", x); } | 
|---|
|  | 382 | void print(int x) { printf("%d", x);  } | 
|---|
|  | 383 |  | 
|---|
|  | 384 | print("x = ", 123, ".\n"); | 
|---|
|  | 385 | \end{cfacode} | 
|---|
| [0eb18557] | 386 | generates the following | 
|---|
| [7493339] | 387 | \begin{cfacode} | 
|---|
|  | 388 | void print_string(const char *x){ | 
|---|
|  | 389 | int _tmp_cp_ret0; | 
|---|
|  | 390 | (_tmp_cp_ret0=printf("%s", x)) , _tmp_cp_ret0; | 
|---|
|  | 391 | *(int *)&_tmp_cp_ret0; // ^?{} | 
|---|
|  | 392 | } | 
|---|
|  | 393 | void print_int(int x){ | 
|---|
|  | 394 | int _tmp_cp_ret1; | 
|---|
|  | 395 | (_tmp_cp_ret1=printf("%d", x)) , _tmp_cp_ret1; | 
|---|
|  | 396 | *(int *)&_tmp_cp_ret1; // ^?{} | 
|---|
|  | 397 | } | 
|---|
|  | 398 |  | 
|---|
|  | 399 | struct _tuple2_ {  // _tuple2_(T0, T1) | 
|---|
|  | 400 | void *field_0; | 
|---|
|  | 401 | void *field_1; | 
|---|
|  | 402 | }; | 
|---|
|  | 403 | struct _conc__tuple2_0 {  // _tuple2_(int, const char *) | 
|---|
|  | 404 | int field_0; | 
|---|
|  | 405 | const char *field_1; | 
|---|
|  | 406 | }; | 
|---|
|  | 407 | struct _conc__tuple2_0 _tmp_cp6;  // _tuple2_(int, const char *) | 
|---|
|  | 408 | const char *_thunk0(const char **_p0, const char *_p1){ | 
|---|
|  | 409 | // const char * ?=?(const char **, const char *) | 
|---|
|  | 410 | return *_p0=_p1; | 
|---|
|  | 411 | } | 
|---|
|  | 412 | void _thunk1(const char **_p0){ // void ?{}(const char **) | 
|---|
|  | 413 | *_p0; // ?{} | 
|---|
|  | 414 | } | 
|---|
|  | 415 | void _thunk2(const char **_p0, const char *_p1){ | 
|---|
|  | 416 | // void ?{}(const char **, const char *) | 
|---|
|  | 417 | *_p0=_p1; // ?{} | 
|---|
|  | 418 | } | 
|---|
|  | 419 | void _thunk3(const char **_p0){ // void ^?{}(const char **) | 
|---|
|  | 420 | *_p0; // ^?{} | 
|---|
|  | 421 | } | 
|---|
| [0111dc7] | 422 | void _thunk4(struct _conc__tuple2_0 _p0){ | 
|---|
|  | 423 | // void print([int, const char *]) | 
|---|
| [7493339] | 424 | struct _tuple1_ { // _tuple1_(T0) | 
|---|
|  | 425 | void *field_0; | 
|---|
|  | 426 | }; | 
|---|
|  | 427 | struct _conc__tuple1_1 { // _tuple1_(const char *) | 
|---|
|  | 428 | const char *field_0; | 
|---|
|  | 429 | }; | 
|---|
|  | 430 | void _thunk5(struct _conc__tuple1_1 _pp0){ // void print([const char *]) | 
|---|
|  | 431 | print_string(_pp0.field_0);  // print(rest.0) | 
|---|
|  | 432 | } | 
|---|
| [0111dc7] | 433 | void _adapter_i_pii_( | 
|---|
|  | 434 | void (*_adaptee)(), | 
|---|
|  | 435 | void *_ret, | 
|---|
|  | 436 | void *_p0, | 
|---|
|  | 437 | void *_p1 | 
|---|
|  | 438 | ){ | 
|---|
| [7493339] | 439 | *(int *)_ret=((int (*)(int *, int))_adaptee)(_p0, *(int *)_p1); | 
|---|
|  | 440 | } | 
|---|
|  | 441 | void _adapter_pii_(void (*_adaptee)(), void *_p0, void *_p1){ | 
|---|
|  | 442 | ((void (*)(int *, int ))_adaptee)(_p0, *(int *)_p1); | 
|---|
|  | 443 | } | 
|---|
|  | 444 | void _adapter_i_(void (*_adaptee)(), void *_p0){ | 
|---|
|  | 445 | ((void (*)(int))_adaptee)(*(int *)_p0); | 
|---|
|  | 446 | } | 
|---|
|  | 447 | void _adapter_tuple1_5_(void (*_adaptee)(), void *_p0){ | 
|---|
| [0111dc7] | 448 | ((void (*)(struct _conc__tuple1_1 ))_adaptee)( | 
|---|
|  | 449 | *(struct _conc__tuple1_1 *)_p0 | 
|---|
|  | 450 | ); | 
|---|
| [7493339] | 451 | } | 
|---|
|  | 452 | print_variadic( | 
|---|
|  | 453 | _adapter_tuple1_5, | 
|---|
|  | 454 | _adapter_i_, | 
|---|
|  | 455 | _adapter_pii_, | 
|---|
|  | 456 | _adapter_i_pii_, | 
|---|
|  | 457 | sizeof(int), | 
|---|
|  | 458 | __alignof__(int), | 
|---|
|  | 459 | sizeof(struct _conc__tuple1_1), | 
|---|
|  | 460 | __alignof__(struct _conc__tuple1_1), | 
|---|
| [0111dc7] | 461 | (void *(*)(void *, void *))_assign_i,    // int ?=?(int *, int) | 
|---|
|  | 462 | (void (*)(void *))_ctor_i,               // void ?{}(int *) | 
|---|
|  | 463 | (void (*)(void *, void *))_ctor_ii,      // void ?{}(int *, int) | 
|---|
|  | 464 | (void (*)(void *))_dtor_ii,              // void ^?{}(int *) | 
|---|
|  | 465 | (void (*)(void *))print_int,             // void print(int) | 
|---|
|  | 466 | (void (*)(void *))&_thunk5,              // void print([const char *]) | 
|---|
|  | 467 | &_p0.field_0,                            // rest.0 | 
|---|
|  | 468 | &(struct _conc__tuple1_1 ){ _p0.field_1 }// [rest.1] | 
|---|
| [7493339] | 469 | ); | 
|---|
|  | 470 | } | 
|---|
|  | 471 | struct _tuple1_ {  // _tuple1_(T0) | 
|---|
|  | 472 | void *field_0; | 
|---|
|  | 473 | }; | 
|---|
|  | 474 | struct _conc__tuple1_6 {  // _tuple_1(const char *) | 
|---|
|  | 475 | const char *field_0; | 
|---|
|  | 476 | }; | 
|---|
|  | 477 | const char *_temp0; | 
|---|
|  | 478 | _temp0="x = "; | 
|---|
|  | 479 | void _adapter_pstring_pstring_string( | 
|---|
|  | 480 | void (*_adaptee)(), | 
|---|
|  | 481 | void *_ret, | 
|---|
|  | 482 | void *_p0, | 
|---|
|  | 483 | void *_p1 | 
|---|
|  | 484 | ){ | 
|---|
|  | 485 | *(const char **)_ret= | 
|---|
|  | 486 | ((const char *(*)(const char **, const char *))_adaptee)( | 
|---|
|  | 487 | _p0, | 
|---|
|  | 488 | *(const char **)_p1 | 
|---|
|  | 489 | ); | 
|---|
|  | 490 | } | 
|---|
|  | 491 | void _adapter_pstring_string(void (*_adaptee)(), void *_p0, void *_p1){ | 
|---|
| [0111dc7] | 492 | ((void (*)(const char **, const char *))_adaptee)( | 
|---|
|  | 493 | _p0, | 
|---|
|  | 494 | *(const char **)_p1 | 
|---|
|  | 495 | ); | 
|---|
| [7493339] | 496 | } | 
|---|
|  | 497 | void _adapter_string_(void (*_adaptee)(), void *_p0){ | 
|---|
|  | 498 | ((void (*)(const char *))_adaptee)(*(const char **)_p0); | 
|---|
|  | 499 | } | 
|---|
|  | 500 | void _adapter_tuple2_0_(void (*_adaptee)(), void *_p0){ | 
|---|
| [0111dc7] | 501 | ((void (*)(struct _conc__tuple2_0 ))_adaptee)( | 
|---|
|  | 502 | *(struct _conc__tuple2_0 *)_p0 | 
|---|
|  | 503 | ); | 
|---|
| [7493339] | 504 | } | 
|---|
|  | 505 | print_variadic( | 
|---|
|  | 506 | _adapter_tuple2_0_, | 
|---|
|  | 507 | _adapter_string_, | 
|---|
|  | 508 | _adapter_pstring_string_, | 
|---|
|  | 509 | _adapter_pstring_pstring_string_, | 
|---|
|  | 510 | sizeof(const char *), | 
|---|
|  | 511 | __alignof__(const char *), | 
|---|
|  | 512 | sizeof(struct _conc__tuple2_0 ), | 
|---|
|  | 513 | __alignof__(struct _conc__tuple2_0 ), | 
|---|
| [0111dc7] | 514 | &_thunk0,     // const char * ?=?(const char **, const char *) | 
|---|
|  | 515 | &_thunk1,     // void ?{}(const char **) | 
|---|
|  | 516 | &_thunk2,     // void ?{}(const char **, const char *) | 
|---|
|  | 517 | &_thunk3,     // void ^?{}(const char **) | 
|---|
|  | 518 | print_string, // void print(const char *) | 
|---|
|  | 519 | &_thunk4,     // void print([int, const char *]) | 
|---|
| [7493339] | 520 | &_temp0,                             // "x = " | 
|---|
|  | 521 | (({  // copy construct tuple argument to print | 
|---|
|  | 522 | int *__multassign_L0 = (int *)&_tmp_cp6.field_0; | 
|---|
|  | 523 | const char **__multassign_L1 = (const char **)&_tmp_cp6.field_1; | 
|---|
|  | 524 | int __multassign_R0 = 123; | 
|---|
|  | 525 | const char *__multassign_R1 = ".\n"; | 
|---|
|  | 526 | ((*__multassign_L0=__multassign_R0 /* ?{} */), | 
|---|
|  | 527 | (*__multassign_L1=__multassign_R1 /* ?{} */)); | 
|---|
|  | 528 | }), &_tmp_cp6)                        // [123, ".\n"] | 
|---|
|  | 529 | ); | 
|---|
|  | 530 | ({  // destroy argument temporary | 
|---|
|  | 531 | int *__massassign_L0 = (int *)&_tmp_cp6.field_0; | 
|---|
|  | 532 | const char **__massassign_L1 = (const char **)&_tmp_cp6.field_1; | 
|---|
|  | 533 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */)); | 
|---|
|  | 534 | }); | 
|---|
|  | 535 | \end{cfacode} | 
|---|
|  | 536 | The type @_tuple2_@ is generated to allow passing the @rest@ argument to @print_variadic@. | 
|---|
|  | 537 | Thunks 0 through 3 provide wrappers for the @otype@ parameters for @const char *@, while @_thunk4@ translates a call to @print([int, const char *])@ into a call to @print_variadic(int, [const char *])@. | 
|---|
|  | 538 | This all builds to a call to @print_variadic@, with the appropriate copy construction of the tuple argument. | 
|---|