1 | ## User-defined Conversions ##
|
---|
2 | C's implicit "usual arithmetic conversions" define a structure among the
|
---|
3 | built-in types consisting of _unsafe_ narrowing conversions and a hierarchy of
|
---|
4 | _safe_ widening conversions.
|
---|
5 | There is also a set of _explicit_ conversions that are only allowed through a
|
---|
6 | cast expression.
|
---|
7 | I propose that safe, unsafe, and explicit (cast) conversions be expressed as
|
---|
8 | constructor variants.
|
---|
9 | Throughout this article, I will use the following operator names for
|
---|
10 | constructors and conversion functions from `From` to `To`:
|
---|
11 |
|
---|
12 | void ?{} ( To&, To ); // copy constructor
|
---|
13 | void ?{} ( To&, From ); // explicit constructor
|
---|
14 | void ?{explicit} ( To&, From ); // explicit cast conversion
|
---|
15 | void ?{safe} ( To&, From ); // implicit safe conversion
|
---|
16 | void ?{unsafe} ( To&, From ); // implicit unsafe conversion
|
---|
17 |
|
---|
18 | It has been suggested that all constructors would define unsafe implicit
|
---|
19 | conversions; this is elegant, but interacts poorly with tuples.
|
---|
20 | Essentially, without making this distinction, a constructor like the following
|
---|
21 | would add an interpretation of any two `int`s as a `Coord`, needlessly
|
---|
22 | multiplying the space of possible interpretations of all functions:
|
---|
23 |
|
---|
24 | void ?{}( Coord& this, int x, int y );
|
---|
25 |
|
---|
26 | That said, it would certainly be possible to make a multiple-argument implicit
|
---|
27 | conversion, as below, though the argument above suggests this option should be
|
---|
28 | used infrequently:
|
---|
29 |
|
---|
30 | void ?{unsafe}( Coord& this, int x, int y );
|
---|
31 |
|
---|
32 | An alternate possibility would be to only count two-arg constructors
|
---|
33 | `void ?{} ( To&, From )` as unsafe conversions; under this semantics, safe and
|
---|
34 | explicit conversions should also have a compiler-enforced restriction to
|
---|
35 | ensure that they are two-arg functions (this restriction may be valuable
|
---|
36 | regardless).
|
---|
37 |
|
---|
38 | Regardless of syntax, there should be a type assertion that expresses `From`
|
---|
39 | is convertable to `To`.
|
---|
40 | If user-defined conversions are not added to the language,
|
---|
41 | `void ?{} ( To&, From )` may be a suitable representation, relying on
|
---|
42 | conversions on the argument types to account for transitivity.
|
---|
43 | Since `To&` should be an exact match on `To`, this should put all the implicit
|
---|
44 | conversions on the RHS.
|
---|
45 | On the other hand, under some models (like [1]), implicit conversions are not
|
---|
46 | allowed in assertion parameters, so another assertion syntax specific to
|
---|
47 | conversions may be required, e.g. `From -> To`.
|
---|
48 | It has also been suggested that, for programmer control, no implicit
|
---|
49 | conversions (except, possibly, for polymorphic specialization) should be
|
---|
50 | allowed in resolution of cast operators.
|
---|
51 |
|
---|
52 | [1] ../working/assertion_resolution.md
|
---|
53 |
|
---|
54 | ### Constructor Idiom ###
|
---|
55 | Basing our notion of conversions off otherwise normal Cforall functions means
|
---|
56 | that we can use the full range of Cforall features for conversions, including
|
---|
57 | polymorphism.
|
---|
58 | In an earlier version of this proposal, Glen Ditchfield defines a
|
---|
59 | _constructor idiom_ that can be used to create chains of safe conversions
|
---|
60 | without duplicating code; given a type `Safe` which members of another type
|
---|
61 | `From` can be directly converted to, the constructor idiom allows us to write
|
---|
62 | a conversion for any type `To` which `Safe` converts to:
|
---|
63 |
|
---|
64 | forall(otype To | { void ?{safe}( To&, Safe ) })
|
---|
65 | void ?{safe}( To& this, From that ) {
|
---|
66 | Safe tmp = /* some expression involving that */;
|
---|
67 | this{ tmp }; // initialize from assertion parameter
|
---|
68 | }
|
---|
69 |
|
---|
70 | This idiom can also be used with only minor variations for a parallel set of
|
---|
71 | unsafe conversions.
|
---|
72 |
|
---|
73 | Glen's original suggestion said the copy constructor for `To` should also be
|
---|
74 | accepted as a resolution for `void ?{safe}( To&, Safe )` (`Safe` == `To`),
|
---|
75 | allowing this same code to be used for the single-step conversion as well.
|
---|
76 | This proposal does come at the cost of an extra copy initialization of the
|
---|
77 | target value, though.
|
---|
78 |
|
---|
79 | Contrariwise, if a monomorphic conversion from `From` to `Safe` is written,
|
---|
80 | e.g:
|
---|
81 |
|
---|
82 | void ?{safe}( Safe& this, From that ) {
|
---|
83 | this{ /* some parameters involving that */ };
|
---|
84 | }
|
---|
85 |
|
---|
86 | Then the code for a transitive conversion from `From` to any `To` type
|
---|
87 | convertable from `Safe` is written:
|
---|
88 |
|
---|
89 | forall(otype To | { void ?{safe}( To&, Safe ) })
|
---|
90 | void ?{safe}( To& this, From that ) {
|
---|
91 | Safe tmp = that; // uses monomorphic conversion
|
---|
92 | this{ tmp }; // initialize from assertion parameter
|
---|
93 | }
|
---|
94 |
|
---|
95 | Given the entirely-boilerplate nature of this code, but negative performance
|
---|
96 | implications of the unmodified constructor idiom, it might be fruitful to have
|
---|
97 | transitive and single step conversion operators, and let CFA build the
|
---|
98 | transitive conversions; some possible names:
|
---|
99 |
|
---|
100 | void ?{safe} (To&, From); void ?{final safe} (To&, From); // single-step
|
---|
101 | void ?{safe*} (To&, From); void ?{safe} (To&, From); // transitive
|
---|
102 |
|
---|
103 | What selective non-use of the constructor idiom gives us is the ability to
|
---|
104 | define a conversion that may only be the *last* conversion in a chain of such.
|
---|
105 | One use for this is to solve the problem that `explicit` conversions were
|
---|
106 | added to C++ for, that of conversions to `bool` chaining to become conversions
|
---|
107 | to any arithmetic type.
|
---|
108 | Another use is to unambiguously represent the full hierarchy of implicit
|
---|
109 | conversions in C by making sign conversions non-transitive, allowing the
|
---|
110 | compiler to resolve e.g. `int -> unsigned long` as
|
---|
111 | `int -> long -> unsigned long` over `int -> unsigned int -> unsigned long`.
|
---|
112 | See [2] for more details.
|
---|
113 |
|
---|
114 | [2] ../working/glen_conversions/index.html#usual
|
---|
115 |
|
---|
116 | ### Appendix A: Partial and Total Orders ###
|
---|
117 | The `<=` relation on integers is a commonly known _total order_, and
|
---|
118 | intuitions based on how it works generally apply well to other total orders.
|
---|
119 | Formally, a total order is some binary relation `<=` over a set `S` such that
|
---|
120 | for any two members `a` and `b` of `S`, `a <= b` or `b <= a` (if both, `a` and
|
---|
121 | `b` must be equal, the _antisymmetry_ property); total orders also have a
|
---|
122 | _transitivity_ property, that if `a <= b` and `b <= c`, then `a <= c`.
|
---|
123 | If `a` and `b` are distinct elements and `a <= b`, we may write `a < b`.
|
---|
124 |
|
---|
125 | A _partial order_ is a generalization of this concept where the `<=` relation
|
---|
126 | is not required to be defined over all pairs of elements in `S` (though there
|
---|
127 | is a _reflexivity_ requirement that for all `a` in `S`, `a <= a`); in other
|
---|
128 | words, it is possible for two elements `a` and `b` of `S` to be
|
---|
129 | _incomparable_, unable to be ordered with respect to one another (any `a` and
|
---|
130 | `b` for which either `a <= b` or `b <= a` are called _comparable_).
|
---|
131 | Antisymmetry and transitivity are also required for a partial order, so all
|
---|
132 | total orders are also partial orders by definition.
|
---|
133 | One fairly natural partial order is the "subset of" relation over sets from
|
---|
134 | the same universe; `{ }` is a subset of both `{ 1 }` and `{ 2 }`, which are
|
---|
135 | both subsets of `{ 1, 2 }`, but neither `{ 1 }` nor `{ 2 }` is a subset of the
|
---|
136 | other - they are incomparable under this relation.
|
---|
137 |
|
---|
138 | We can compose two (or more) partial orders to produce a new partial order on
|
---|
139 | tuples drawn from both (or all the) sets.
|
---|
140 | For example, given `a` and `c` from set `S` and `b` and `d` from set `R`,
|
---|
141 | where both `S` and `R` both have partial orders defined on them, we can define
|
---|
142 | a ordering relation between `(a, b)` and `(c, d)`.
|
---|
143 | One common order is the _lexicographical order_, where `(a, b) <= (c, d)` iff
|
---|
144 | `a < c` or both `a = c` and `b <= d`; this can be thought of as ordering by
|
---|
145 | the first set and "breaking ties" by the second set.
|
---|
146 | Another common order is the _product order_, which can be roughly thought of
|
---|
147 | as "all the components are ordered the same way"; formally `(a, b) <= (c, d)`
|
---|
148 | iff `a <= c` and `b <= d`.
|
---|
149 | One difference between the lexicographical order and the product order is that
|
---|
150 | in the lexicographical order if both `a` and `c` and `b` and `d` are
|
---|
151 | comparable then `(a, b)` and `(c, d)` will be comparable, while in the product
|
---|
152 | order you can have `a <= c` and `d <= b` (both comparable) which will make
|
---|
153 | `(a, b)` and `(c, d)` incomparable.
|
---|
154 | The product order, on the other hand, has the benefit of not prioritizing one
|
---|
155 | order over the other.
|
---|
156 |
|
---|
157 | Any partial order has a natural representation as a directed acyclic graph
|
---|
158 | (DAG).
|
---|
159 | Each element `a` of the set becomes a node of the DAG, with an arc pointing to
|
---|
160 | its _covering_ elements, any element `b` such that `a < b` but where there is
|
---|
161 | no `c` such that `a < c` and `c < b`.
|
---|
162 | Intuitively, the covering elements are the "next ones larger", where you can't
|
---|
163 | fit another element between the two.
|
---|
164 | Under this construction, `a < b` is equivalent to "there is a path from `a` to
|
---|
165 | `b` in the DAG", and the lack of cycles in the directed graph is ensured by
|
---|
166 | the antisymmetry property of the partial order.
|
---|
167 |
|
---|
168 | Partial orders can be generalized to _preorders_ by removing the antisymmetry
|
---|
169 | property.
|
---|
170 | In a preorder the relation is generally called `<~`, and it is possible for
|
---|
171 | two distict elements `a` and `b` to have `a <~ b` and `b <~ a` - in this case
|
---|
172 | we write `a ~ b`; `a <~ b` and not `a ~ b` is written `a < b`.
|
---|
173 | Preorders may also be represented as directed graphs, but in this case the
|
---|
174 | graph may contain cycles.
|
---|
175 |
|
---|
176 | ### Appendix B: Building a Conversion Graph from Un-annotated Single Steps ###
|
---|
177 | The short answer is that it's impossible.
|
---|
178 |
|
---|
179 | The longer answer is that it has to do with what's essentially a diamond
|
---|
180 | inheritance problem.
|
---|
181 | In C, `int` converts to `unsigned int` and also `long` "safely"; both convert
|
---|
182 | to `unsigned long` safely, and it's possible to chain the conversions to
|
---|
183 | convert `int` to `unsigned long`.
|
---|
184 | There are two constraints here; one is that the `int` to `unsigned long`
|
---|
185 | conversion needs to cost more than the other two (because the types aren't as
|
---|
186 | "close" in a very intuitive fashion), and the other is that the system needs a
|
---|
187 | way to choose which path to take to get to the destination type.
|
---|
188 | Now, a fairly natural solution for this would be to just say "C knows how to
|
---|
189 | convert from `int` to `unsigned long`, so we just put in a direct conversion
|
---|
190 | and make the compiler smart enough to figure out the costs" - this is the
|
---|
191 | approach taken by the existing compiler, but given that in a user-defined
|
---|
192 | conversion proposal the users can build an arbitrary graph of conversions,
|
---|
193 | this case still needs to be handled.
|
---|
194 |
|
---|
195 | We can define a preorder over the types by saying that `a <~ b` if there
|
---|
196 | exists a chain of conversions from `a` to `b` (see Appendix A for description
|
---|
197 | of preorders and related constructs).
|
---|
198 | This preorder roughly corresponds to a more usual type-theoretic concept of
|
---|
199 | subtyping ("if I can convert `a` to `b`, `a` is a more specific type than
|
---|
200 | `b`"); however, since this graph is arbitrary, it may contain cycles, so if
|
---|
201 | there is also a path to convert `b` to `a` they are in some sense equivalently
|
---|
202 | specific.
|
---|
203 |
|
---|
204 | Now, to compare the cost of two conversion chains `(s, x1, x2, ... xn)` and
|
---|
205 | `(s, y1, y2, ... ym)`, we have both the length of the chains (`n` versus `m`)
|
---|
206 | and this conversion preorder over the destination types `xn` and `ym`.
|
---|
207 | We could define a preorder by taking chain length and breaking ties by the
|
---|
208 | conversion preorder, but this would lead to unexpected behaviour when closing
|
---|
209 | diamonds with an arm length of longer than 1.
|
---|
210 | Consider a set of types `A`, `B1`, `B2`, `C` with the arcs `A->B1`, `B1->B2`,
|
---|
211 | `B2->C`, and `A->C`.
|
---|
212 | If we are comparing conversions from `A` to both `B2` and `C`, we expect the
|
---|
213 | conversion to `B2` to be chosen because it's the more specific type under the
|
---|
214 | conversion preorder, but since its chain length is longer than the conversion
|
---|
215 | to `C`, it loses and `C` is chosen.
|
---|
216 | However, taking the conversion preorder and breaking ties or ambiguities by
|
---|
217 | chain length also doesn't work, because of cases like the following example
|
---|
218 | where the transitivity property is broken and we can't find a global maximum:
|
---|
219 |
|
---|
220 | `X->Y1->Y2`, `X->Z1->Z2->Z3->W`, `X->W`
|
---|
221 |
|
---|
222 | In this set of arcs, if we're comparing conversions from `X` to each of `Y2`,
|
---|
223 | `Z3` and `W`, converting to `Y2` is cheaper than converting to `Z3`, because
|
---|
224 | there are no conversions between `Y2` and `Z3`, and `Y2` has the shorter chain
|
---|
225 | length.
|
---|
226 | Also, comparing conversions from `X` to `Z3` and to `W`, we find that the
|
---|
227 | conversion to `Z3` is cheaper, because `Z3 < W` by the conversion preorder,
|
---|
228 | and so is considered to be the nearer type.
|
---|
229 | By transitivity, then, the conversion from `X` to `Y2` should be cheaper than
|
---|
230 | the conversion from `X` to `W`, but in this case the `Y2` and `W` are
|
---|
231 | incomparable by the conversion preorder, so the tie is broken by the shorter
|
---|
232 | path from `X` to `W` in favour of `W`, contradicting the transitivity property
|
---|
233 | for this proposed order.
|
---|
234 |
|
---|
235 | Without transitivity, we would need to compare all pairs of conversions, which
|
---|
236 | would be expensive, and possibly not yield a minimal-cost conversion even if
|
---|
237 | all pairs were comparable.
|
---|
238 | In short, this ordering is infeasible, and by extension I believe any ordering
|
---|
239 | composed solely of single-step conversions between types with no further
|
---|
240 | user-supplied information will be insufficiently powerful to express the
|
---|
241 | built-in conversions between C's types.
|
---|