source: doc/proposals/enum.tex @ 5ddb8bf

Last change on this file since 5ddb8bf was 5ddb8bf, checked in by JiadaL <j82liang@…>, 12 months ago

(Not really readable right now. Will clean up today and probably tomorrow) 1. Remove implicit conversion; 2. Companion trait;

  • Property mode set to 100644
File size: 35.7 KB
Line 
1\documentclass[12pt]{article}
2\usepackage{fullpage,times}
3\usepackage{pslatex}                    % reduce size of san serif font
4\usepackage{xcolor}
5\usepackage{listings}
6%\usepackage{array}
7\usepackage{graphics}
8\usepackage{xspace}
9
10\makeatletter
11\renewcommand\section{\@startsection{section}{1}{\z@}{-3.0ex \@plus -1ex \@minus -.2ex}{1.5ex \@plus .2ex}{\normalfont\large\bfseries}}
12\renewcommand\subsection{\@startsection{subsection}{2}{\z@}{-2.75ex \@plus -1ex \@minus -.2ex}{1.25ex \@plus .2ex}{\normalfont\normalsize\bfseries}}
13\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}{-2.5ex \@plus -1ex \@minus -.2ex}{1.0ex \@plus .2ex}{\normalfont\normalsize\bfseries}}
14\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}{-2.0ex \@plus -1ex \@minus -.2ex}{-1em}{\normalfont\normalsize\bfseries}}
15\renewcommand\subparagraph{\@startsection{subparagraph}{4}{\z@}{-1.5ex \@plus -1ex \@minus -.2ex}{-1em}{\normalfont\normalsize\bfseries\itshape}}
16
17% Denote newterms in particular font and index them without particular font and in lowercase, e.g., \newterm{abc}.
18% The option parameter provides an index term different from the new term, e.g., \newterm[\texttt{abc}]{abc}
19% The star version does not lowercase the index information, e.g., \newterm*{IBM}.
20\newcommand{\newtermFontInline}{\emph}
21\newcommand{\newterm}{\protect\@ifstar\@snewterm\@newterm}
22\newcommand{\@newterm}[2][\@empty]{\lowercase{\def\temp{#2}}{\newtermFontInline{#2}}\ifx#1\@empty\index{\temp}\else\index{#1@{\protect#2}}\fi}
23\newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi}
24\makeatother
25
26\usepackage[ignoredisplayed]{enumitem}  % do not affect trivlist
27\setlist{labelsep=1ex}% global
28\setlist[itemize]{topsep=0.5ex,parsep=0.25ex,itemsep=0.25ex,listparindent=\parindent,leftmargin=\parindent}% global
29\setlist[itemize,1]{label=\textbullet}% local
30%\renewcommand{\labelitemi}{{\raisebox{0.25ex}{\footnotesize$\bullet$}}}
31\setlist[enumerate]{topsep=0.5ex,parsep=0.25ex,itemsep=0.25ex,listparindent=\parindent}% global
32\setlist[enumerate,2]{leftmargin=\parindent,labelsep=*,align=parleft,label=\alph*.}% local
33\setlist[description]{topsep=0.5ex,itemsep=0pt,listparindent=\parindent,leftmargin=\parindent,labelsep=1.5ex}
34
35\newenvironment{cquote}{%
36        \list{}{\lstset{resetmargins=true,aboveskip=0pt,belowskip=0pt}\topsep=4pt\parsep=0pt\leftmargin=\parindent\rightmargin\leftmargin}%
37        \item\relax
38}{%
39        \endlist
40}% cquote
41
42\setlength{\topmargin}{-0.45in}                                                 % move running title into header
43\setlength{\headsep}{0.25in}
44\setlength{\textheight}{9.0in}
45
46\newcommand{\CFAIcon}{\textsf{C\raisebox{\depth}{\rotatebox{180}A}}} % Cforall icon
47\newcommand{\CFA}{\protect\CFAIcon\xspace}                              % CFA symbolic name
48\newcommand{\CCIcon}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}} % C++ icon
49\newcommand{\CC}[1][]{\protect\CCIcon{#1}\xspace}               % C++ symbolic name
50\newcommand{\PAB}[1]{{\color{red}PAB: #1}}
51
52% \definecolor{mGreen}{rgb}{0,0.6,0}
53% \definecolor{mGray}{rgb}{0.5,0.5,0.5}
54% \definecolor{mPurple}{rgb}{0.58,0,0.82}
55% \definecolor{backgroundColour}{rgb}{0.95,0.95,0.92}
56
57\lstdefinestyle{CStyle}{
58%    backgroundcolor=\color{backgroundColour},   
59%    commentstyle=\color{mGreen},
60%    keywordstyle=\color{magenta},
61        stringstyle=\small\tt,                                  % use typewriter font
62%    stringstyle=\color{mPurple},
63    columns=fullflexible,
64    basicstyle=\small\linespread{0.9}\sf,       % reduce line spacing and use sanserif font
65%   basicstyle=\footnotesize,
66    breakatwhitespace=false,         
67%    breaklines=true,                 
68    captionpos=b,                   
69    keepspaces=true,                 
70        escapechar=\$,                                                  % LaTeX escape in CFA code
71%    numbers=left,                   
72%    numbersep=5pt,                 
73%    numberstyle=\tiny\color{mGray},
74%    showspaces=false,               
75    showstringspaces=false,
76%    showtabs=false,                 
77        showlines=true,                                                 % show blank lines at end of code
78    tabsize=5,
79    language=C,
80        aboveskip=4pt,                                                  % spacing above/below code block
81        belowskip=2pt,
82        xleftmargin=\parindent,                 % indent code to paragraph indentation
83}
84\lstset{style=CStyle,moredelim=**[is][\color{red}]{@}{@}}
85\lstMakeShortInline@                            % single-character for \lstinline
86
87\begin{document}
88
89\title{\vspace*{-0.5in}Enumeration in \CFA}
90\author{Jiada Liang}
91
92\maketitle
93
94\begin{abstract}
95An enumeration is a type that defines a list of named constant values in C (and other languages).
96C and \CC use an integral type as the underlying representation of an enumeration.
97\CFA extends C enumerations to allow all basic and custom types for the inner representation.
98\end{abstract}
99
100\section{C-Style Enum}
101
102\CFA supports the C-Style enumeration using the same syntax and semantics.
103\begin{lstlisting}[label=lst:weekday]
104enum Weekday { Monday, Tuesday, Wednesday, Thursday=10, Friday, Saturday, Sunday };
105                $\(\uparrow\)$                                                                      $\(\uparrow\)$
106    ${\rm \newterm{enumeration name}}$                                        ${\rm \newterm{enumerator names}}
107\end{lstlisting}
108The example defines an enumeration type @Weekday@ with ordered enumerators @Monday@, @Tuesday@, @Wednesday@, @Thursday@, @Friday@, @Saturday@ and @Sunday@.
109The successor of @Tuesday@ is @Monday@ and the predecessor of @Tuesday@ is @Wednesday@.
110A C enumeration is an integral type, with consecutive enumerator values assigned by the compiler starting at zero or the next explicitly initialized value by the programmer.
111For example, @Monday@ to @Wednesday@ have values 0--2 implicitly set by the compiler, @Thursday@ is explicitly set to @10@ by the programmer, and @Friday@ to @Sunday@ have values 11--13 implicitly set by the compiler.
112
113There are 3 attributes for an enumeration: \newterm{position}, \newterm{label}, and \newterm{value}:
114\begin{cquote}
115\small\sf\setlength{\tabcolsep}{3pt}
116\begin{tabular}{rccccccccccc}
117@enum@ Weekday \{       & Monday,       & Tuesday,      & Wednesday,    & Thursday=10,  & Friday,       & Saturday,     & Sunday \}; \\
118\it position            & 0                     & 1                     & 2                             & 3                             & 4                     & 5                     & 6                     \\
119\it label                       & Monday        & Tuesday       & Wednesday             & Thursday              & Friday        & Saturday      & Sunday        \\
120\it value                       & 0                     & 1                     & 2                             & 10                    & 11            & 12            & 13
121\end{tabular}
122\end{cquote}
123
124The enumerators of an enumeration are unscoped, i.e., enumerators declared inside of an @enum@ are visible in the enclosing scope of the @enum@ type.
125\begin{lstlisting}[label=lst:enum_scope]
126{
127        enum Weekday { ... };   // enumerators implicitly projected into local scope
128        Weekday weekday = Monday;
129        weekday = Friday;
130        int i = Sunday  // i == 13
131}
132int j = Wednesday; // ERROR! Wednesday is not declared in this scope
133\end{lstlisting}
134
135\section{\CFA-Style Enum}
136
137A \CFA enumeration is parameterized by a type specifying each enumerator's type.
138\CFA allows any object type for the enumerators, and values assigned to enumerators must be from the declared type.
139\begin{lstlisting}[label=lst:color]
140enum Colour( @char *@ ) { Red = "R", Green = "G", Blue = "B"  };
141\end{lstlisting}
142The type of @Colour@ is @char *@ and each enumerator is initialized with a C string.
143Only types with a defined ordering can be automatically initialized (see Section~\ref{s:AutoInitializable}).
144
145% An instance of \CFA-enum (denoted as @<enum_instance>@) is a label for the defined enum name.
146% The label can be retrieved by calling the function @label( <enum_instance> )@.
147% Similarly, the @value()@ function returns the value used to initialize the \CFA-enum.
148
149\subsection{Enumerator Scoping}
150
151A \CFA-enum can be scoped, meaning the enumerator constants are not projected into the enclosing scope.
152\begin{lstlisting}
153enum Colour( char * ) @!@ { ... };
154\end{lstlisting}
155where the @'!'@ implies the enumerators are \emph{not} projected.
156The enumerators of a scoped enumeration are accessed using qualifications, like the fields of an aggregate.
157% The syntax of $qualified\_expression$ for \CFA-enum is the following:
158% $$<qualified\_expression> := <enum\_type>.<enumerator>$$
159\begin{lstlisting}
160Colour colour = @Colour.@Red;   // qualification
161colour = @Colour.@Blue;
162\end{lstlisting}
163
164\section{Enumeration Pseudo-functions}
165Pseudo-functions are function-like operators that do not result in any run-time computations, i.e., like @sizeof@. Instead, the call to functions will be substituted into other expressions in compilation time.
166
167\subsection{Enumerator Attributes}
168The attributes of an enumerator are accessed by pseudo-functions @position@, @value@, and @label@.
169\begin{lstlisting}
170int green_pos = @position@( Colour.Green );     // 1
171char * green_value = @value@( Colour.Green ); / "G"
172char * green_label = @label@( Colour.Green ); // "Green"
173\end{lstlisting}
174
175\subsection{enumerate()}
176\begin{lstlisting}[label=lst:c_switch]
177enum(int) C_ENUM { First, Second, Third = First, Fourth };
178int v(C_ENUM e) { 
179    switch( e ) {
180        case First: return 0; break;
181        case Second: return 1; break;
182        // case Thrid: return 2; break;
183        // case Fourth: return 3; break;
184    };
185};
186\end{lstlisting}
187In the @C_ENUM@ example, @Third@ is an alias of @First@ and @Fourth@ is an alias of @Second@. Programmers cannot make case branches for @Third@ and @Fourth@ because the switch statement matches cases by the enumerator's value. Case First and Third, or Second and Fourth, has duplicate case values.
188
189@enumerate()@ is a pseudo-function that makes the switch statement match by an enumerator instead.
190\begin{lstlisting}[label=lst:c_switch_enumerate]
191enum(double) C_ENUM { First, Second, Third = First, Fourth };
192C_ENUM variable_a = First, variable_b = Second, variable_c = Thrid, variable_d = Fourth;
193int v(C_ENUM e) { 
194    switch( enumeratate( e ) ) {
195        case First: return e; break;
196        case Second: return value( e ); break;
197        case Thrid: return label( e ); break;
198        case Fourth: return position( e ); break;
199    };
200};
201p(variable_a); // 0
202p(variable_b); // 1
203p(variable_c); // "Third"
204p(variable_d); // 3
205\end{lstlisting}
206
207\section{Enumeration Characteristic}
208
209\subsection{Enumerator Storage}
210
211Although \CFA enumeration captures three different attributes, an enumeration instance does not store all this information.
212The @sizeof@ a \CFA enumeration instance is always 4 bytes, the same size as a C enumeration instance (@sizeof( int )@).
213It comes from the fact that:
214\begin{enumerate}
215\item
216a \CFA enumeration is always statically typed;
217\item
218it is always resolved as one of its attributes regarding real usage.
219\end{enumerate}
220When creating an enumeration instance @colour@ and assigning it with the enumerator @Color.Green@, the compiler allocates an integer variable and stores the position 1.
221The invocations of $positions()$, $value()$, and $label()$ turn into calls to special functions defined in the prelude:
222\begin{lstlisting}[label=lst:companion_call]
223position( green );
224>>> position( Colour, 1 ) -> int
225value( green );
226>>> value( Colour, 1 ) -> T
227label( green );
228>>> label( Colour, 1) -> char *
229\end{lstlisting}
230@T@ represents the type declared in the \CFA enumeration defined and @char *@ in the example.
231These generated functions are $Companion Functions$, they take an $companion$ object and the position as parameters.
232
233\subsection{Enumeration as Value}
234An \CFA enumeration with base type T can be used seamlessly as T.
235\begin{lstlisting}[label=lst:implicit_conversion]
236char * green_value = Colour.Green; // "G"
237// Is equivalent to
238char * green_value = value( Color.Green ); "G"
239\end{lstlisting}
240\CFA recognizes @Colour.Green@ as an Expression with enumeration type. [reference to resolution distance] An enumeration type can be safely converted into its value type T, @char *@ in the example. When assigning @Colour.Green@ to a reference @green_value@, which has type @char *@, the compiler adds the distance between an enumeration and type T, and the distance between type T and @char *@. If the distance is safe, \CFA will replace the expression @Colour.Green@ with @value( Colour.Green )@.
241
242\subsection{Variable Overloading}
243\begin{lstlisting}[label=lst:variable_overload]
244void foo(Colour c) { return value( c ); }
245void bar(char * s) { return s; }
246Colour green = Colour.Green; // "G"
247char * green = "Green";
248foo( green ); // "G"
249bar( green ); // "Green"
250\end{lstlisting}
251
252\subsection{Function Overloading}
253\begin{lstlisting}[label=lst:function_overload]
254void foo(Colour c) { return "It is an enum"; }
255void foo(char * s) { return "It is a string"; }
256foo( green ); // "It is an enum"
257\end{lstlisting}
258
259As a consequence, the semantics of using \CFA enumeration as a flag for selection is identical to C enumeration.
260
261
262% \section{Enumeration Features}
263
264A trait is a collection of constraints in \CFA that can be used to describe types.
265The \CFA standard library defines traits to categorize types with related enumeration features.
266
267\section{Enumerator Initialization}
268An enumerator must have a deterministic immutable value, either be explicitly initialized in the enumeration definition, or implicitly initialized by rules.
269
270\subsection{C Enumeration Rule}
271A C enumeration has an integral type. If not initialized, the first enumerator implicitly has the integral value 0, and other enumerators have a value equal to its $predecessor + 1$.
272
273\subsection{Auto Initializable}
274\label{s:AutoInitializable}
275
276
277\CFA enumerations have the same rule in enumeration constant initialization.
278However, only \CFA types that have defined traits for @zero_t@, @one_t@, and an addition operator can be automatically initialized by \CFA.
279
280Specifically, a type is auto-initializable only if it satisfies the trait @AutoInitializable@:
281\begin{lstlisting}
282forall(T)
283trait AutoInitializable {
284        void ?()( T & t, zero_t );
285        S ?++( T & t);
286};
287\end{lstlisting}
288An example of a user-defined @AutoInitializable@ is:
289\begin{lstlisting}[label=lst:sample_auto_Initializable]
290struct Odd { int i; };
291void ?()( Odd & t, zero_t ) { t.i = 1; };
292Odd ?++( Odd t1 ) { return Odd( t1.i + 2); };
293\end{lstlisting}
294When the type of an enumeration is @AutoInitializable@, implicit initialization is available.
295\begin{lstlisting}[label=lst:sample_auto_Initializable_usage]
296enum AutoInitUsage(Odd) {
297        A, B, C = 7, D
298};
299\end{lstlisting}
300In the example, no initializer is specified for the first enumeration constant @A@, so \CFA initializes it with the value of @zero_t@, which is 1.
301@B@ and @D@ have the values of their $predecessor++$, where @one_t@ has the value 2.
302Therefore, the enumeration is initialized as follows:
303\begin{lstlisting}[label=lst:sample_auto_Initializable_usage_gen]
304enum AutoInitUsage(Odd) {
305        A = 1, B = 3, C = 7, D = 9
306};
307\end{lstlisting}
308Note that there is no mechanism to prevent an even value for the direct initialization, such as @C = 6@.
309
310In \CFA, character, integral, float, and imaginary types are all @AutoInitialiable@.
311\begin{lstlisting}[label=lst:letter]
312enum Alphabet( int ) {
313        A = 'A', B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
314        a = 'a', b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
315};
316print( "%c, %c, %c", Alphabet.F, Alphabet.o, Alphabet.z );
317>>> F, o, z
318\end{lstlisting}
319\section{Enumeration Features}
320\subsection{Iteration and Range}
321
322It is convenient to iterate over a \CFA enumeration value, e.g.:
323\begin{lstlisting}[label=lst:range_functions]
324for ( Alphabet alph; Alphabet ) { sout | alph; }
325>>> A B C ... D
326\end{lstlisting}
327The for-loop uses the enumeration type @Alphabet@ its range, and iterates through all enumerators in the order defined in the enumeration.
328@alph@ is the iterating enumeration object, which returns the value of an @Alphabet@ in this context according to the precedence rule.
329
330\textbullet\ \CFA offers a shorthand for iterating all enumeration constants:
331\begin{lstlisting}[label=lst:range_functions]
332for ( Alphabet alph ) { sout | alph; }
333>>> A B C ... D
334\end{lstlisting}
335
336The following are examples for constructing for-control using an enumeration. Note that the type declaration of the iterating variable is optional, because \CFA can infer the type as EnumInstType based on the range expression, and possibly convert it to one of its attribute types.
337
338\textbullet\ H is implicit up-to exclusive range [0, H).
339\begin{lstlisting}[label=lst:range_function_1]
340for ( alph; Alphabet.D ) { sout | alph; }
341>>> A B C
342\end{lstlisting}
343
344\textbullet\ ~= H is implicit up-to inclusive range [0,H].
345\begin{lstlisting}[label=lst:range_function_2]
346for ( alph; ~= Alphabet.D ) { sout | alph; }
347>>> A B C D
348\end{lstlisting}
349
350\textbullet\ L ~ H is explicit up-to exclusive range [L,H).
351\begin{lstlisting}[label=lst:range_function_3]
352for ( alph; Alphabet.B ~ Alphabet.D  ) { sout | alph; }
353// for ( Alphabet alph = Alphabet.B; alph < Alphabet.D; alph += 1  ); 1 is one_t
354>>> B C
355\end{lstlisting}
356
357\textbullet\ L ~= H is explicit up-to inclusive range [L,H].
358\begin{lstlisting}[label=lst:range_function_4]
359for ( alph; Alphabet.B ~= Alphabet.D  ) { sout | alph; }
360>>> B C D
361\end{lstlisting}
362
363\textbullet\ L -~ H is explicit down-to exclusive range [H,L), where L and H are implicitly interchanged to make the range down-to.
364\begin{lstlisting}[label=lst:range_function_5]
365for ( alph; Alphabet.D -~ Alphabet.B  ) { sout | alph; }
366>>> D C
367\end{lstlisting}
368
369\textbullet\ L -~= H is explicit down-to exclusive range [H,L], where L and H are implicitly interchanged to make the range down-to.
370\begin{lstlisting}[label=lst:range_function_6]
371for ( alph; Alphabet.D -~= Alphabet.B  ) { sout | alph; }
372>>> D C B
373\end{lstlisting}
374
375A user can specify the ``step size'' of an iteration. There are two different stepping schemes of enumeration for-loop.
376\begin{lstlisting}[label=lst:range_function_stepping]
377enum(int) Sequence { A = 10, B = 12, C = 14, D = 16, D  = 18 };
378for ( s; Sequence.A ~= Sequence.D ~ 1  ) { sout | alph; }
379>>> 10 12 14 16 18
380for ( s; Sequence.A ~= Sequence.D; s+=1  ) { sout | alph; }
381>>> 10 11 12 13 14 15 16 17 18
382\end{lstlisting}
383The first syntax is stepping to the next enumeration constant, which is the default stepping scheme if not explicitly specified. The second syntax, on the other hand, is to call @operator+=@ @one_type@ on the @value( s )@. Therefore, the second syntax is equivalent to
384\begin{lstlisting}[label=lst:range_function_stepping_converted]
385for ( typeof( value(Sequence.A) ) s=value( Sequence.A ); s <= Sequence.D; s+=1  ) { sout | alph; }
386>>> 10 11 12 13 14 15 16 17 18
387\end{lstlisting}
388
389% \PAB{Explain what each loop does.}
390
391It is also possible to iterate over an enumeration's labels, implicitly or explicitly:
392\begin{lstlisting}[label=lst:range_functions_label_implicit]
393for ( char * alph; Alphabet )
394\end{lstlisting}
395This for-loop implicitly iterates every label of the enumeration, because a label is the only valid resolution to the ch with type @char *@ in this case.
396If the value can also be resolved as the @char *@, you might iterate the labels explicitly with the array iteration.
397\begin{lstlisting}[label=lst:range_functions_label_implicit]
398for ( char * ch; labels( Alphabet ) )
399\end{lstlisting}
400
401
402% \subsection{Non-uniform Type}
403% TODO: Working in Progress, might need to change other sections. Conflict with the resolution right now.
404
405% \begin{lstlisting}
406% enum T( int, char * ) {
407%     a=42, b="Hello World"
408% };
409% \end{lstlisting}
410% The enum T declares two different types: int and char *. The enumerators of T hold values of one of the declared types.
411
412\subsection{Enumeration Inheritance}
413
414\begin{lstlisting}[label=lst:EnumInline]
415enum( char * ) Name { Jack = "Jack", Jill = "Jill" };
416enum /* inferred */ Name2 { inline Name, Sue = "Sue", Tom = "Tom" };
417\end{lstlisting}
418\lstinline{Inline} allows Enumeration Name2 to inherit enumerators from Name1 by containment, and a Name enumeration is a subtype of enumeration Name2. An enumeration instance of type Name can be used where an instance of Name2 is expected.
419\begin{lstlisting}[label=lst:EnumInline]
420Name Fred;
421void f( Name2 );
422f( Fred );
423\end{lstlisting}
424If enumeration A declares @inline B@ in its enumeration body, enumeration A is the "inlining enum" and enumeration B is the "inlined enum".
425
426An enumeration can inline at most one other enumeration. The inline declaration must be placed before the first enumerator of the inlining enum. The inlining enum has all the enumerators from the inlined enum, with the same labels, values, and position.
427\begin{lstlisting}[label=lst:EnumInline]
428enum /* inferred */ Name2 { inline Name, Sue = "Sue", Tom = "Tom" };
429// is equivalent to enum Name2 { Jack = "Jack", Jill="Jill", Sue = "Sue", Tom = "Tom" };
430\end{lstlisting}
431Name.Jack is equivalent to Name2.Jack. Their attributes are all identical. Opening both Name and Name2 in the same scope will not introduce ambiguity.
432\begin{lstlisting}[label=lst:EnumInline]
433with( Name, Name2 ) { Jack; } // Name.Jack and Name2.Jack are equivalent. No ambiguity
434\end{lstlisting}
435
436\section{Implementation}
437
438\subsection{Compiler Representation}
439The definition of an enumeration is represented by an internal type called @EnumDecl@. At the minimum, it stores all the information needed to construct the companion object. Therefore, an @EnumDecl@ can be represented as the following:
440\begin{lstlisting}[label=lst:EnumDecl]
441forall(T)
442class EnumDecl {
443    T* values;
444    char** label;
445};
446\end{lstlisting}
447
448The internal representation of an enumeration constant is @EnumInstType@.
449An @EnumInstType@ has a reference to the \CFA-enumeration declaration and the position of the enumeration constant.
450\begin{lstlisting}[label=lst:EnumInstType]
451class EnumInstType {
452    EnumDecl enumDecl;
453    int position;
454};
455\end{lstlisting}
456In the later discussion, we will use @EnumDecl<T>@ to symbolize a @EnumDecl@ parameterized by type T, and @EnumInstType<T>@ is a declared instance of @EnumDecl<T>@.
457
458\begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_data]
459const T * const values;
460const char * label;
461int length;
462\end{lstlisting}
463Companion data are necessary information to represent an enumeration. They are stored as standalone pieces, rather than a structure. Those data will be loaded "on demand".
464Companion data are needed only if the according pseudo-functions are called. For example, the value of the enumeration Workday is loaded only if there is at least one compilation that has call $value(Workday)$. Once the values are loaded, all compilations share these values array to reduce memory usage.
465
466<Investiage: how to implement this is huge>
467
468\subsection{(Rework) Companion Object and Companion Function}
469
470\begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_functions]
471forall( T )
472struct Companion {
473        const T * const values;
474        const char * label;
475        int length;
476};
477\end{lstlisting}
478\CFA generates companion objects, an instance of structure that encloses @necessary@ data to represent an enumeration. The size of the companion is unknown at the compilation time, and it "grows" in size to compensate for the @usage@.
479
480The companion object is singleton across the compilation (investigation). 
481
482\CFA generates the definition of companion functions.
483Because \CFA implicitly stores an enumeration instance as its position, the companion function @position@ does nothing but return the position it is passed.
484Companions function @value@ and @label@ return the array item at the given position of @values@ and @labels@, respectively.
485\begin{lstlisting}[label=lst:companion_definition]
486int position( Companion o, int pos ) { return pos; }
487T value( Companion o, int pos ) { return o.values[ pos ]; }
488char * label( Companion o, int pos ) { return o.labels[ pos ]; }
489\end{lstlisting}
490Notably, the @Companion@ structure definition, and all companion objects, are visible to users.
491A user can retrieve values and labels defined in an enumeration by accessing the values and labels directly, or indirectly by calling @Companion@ functions @values@ and @labels@
492\begin{lstlisting}[label=lst:companion_definition_values_labels]
493Colour.values; // read the Companion's values
494values( Colour ); // same as Colour.values
495\end{lstlisting}
496
497\subsection{Companion Traits (experimental)}
498Not sure its semantics yet, and it might replace a companion object.
499\begin{lstlisting}[label=lst:companion_trait]
500forall(T1) {
501    trait Companion(otype T2<otype T1>) {
502        T1 value((otype T2<otype T1> const &);
503        int position(otype T2<otype T1> const &);
504        char * label(otype T2<otype T1> const &);
505    }
506}
507\end{lstlisting}
508All enumerations implicitly implement the Companion trait, an interface to access attributes. The Companion can be a data type because it fulfills to requirements to have concrete instances, which are:
509
510\begin{enumerate}
511  \item The instance of enumeration has a single polymorphic type.
512  \item Each assertion should use the type once as a parameter.
513\end{enumerate}
514
515\begin{lstlisting}
516enum(int) Weekday {
517    Monday=10, Tuesday, ...
518};
519
520T value( enum Weekday<T> & this);
521int position( enum Weekday<T> & this )
522char * label( enum Weekday<T> & this )
523
524trait Companion obj = (enum(int)) Workday.Weekday;
525value(obj); // 10
526\end{lstlisting}
527The enumeration comes with default implementation to the Companion traits functions. The usage of Companion functions would make \CFA allocates and initializes the necessary companion arrays, and return the data at the position represented by the enumeration.
528(...)
529
530\subsection{User Define Enumeration Functions}
531
532Companion objects make extending features for \CFA enumeration easy.
533\begin{lstlisting}[label=lst:companion_user_definition]
534char * charastic_string( Companion o, int position ) { 
535        return sprintf( "Label: %s; Value: %s", label( o, position ), value( o, position) );
536}
537printf( charactic_string ( Color, 1 ) );
538>>> Label: Green; Value: G
539\end{lstlisting}
540Defining a function takes a Companion object effectively defines functions for all \CFA enumeration.
541
542The \CFA compiler turns a function call that takes an enumeration instance as a parameter into a function call with a companion object plus a position.
543Therefore, a user can use the syntax with a user-defined enumeration function call:
544\begin{lstlisting}[label=lst:companion_user_definition]
545charactic_string( Color.Green ); // equivalent to charactic_string( Color, 1 )
546>>> Label: Green; Value: G
547\end{lstlisting}
548Similarly, the user can work with the enumeration type itself: (see section ref...)
549\begin{lstlisting}[ label=lst:companion_user_definition]
550void print_enumerators ( Companion o ) { 
551        for ( c : Companion o ) {
552                sout | label (c) | value( c ) ;
553        } 
554}
555print_enumerators( Colour );
556\end{lstlisting}
557
558
559\subsection{Declaration}
560
561The qualified enumeration syntax is dedicated to \CFA enumeration.
562\begin{lstlisting}[label=lst:range_functions]
563enum (type_declaration) name { enumerator = const_expr, enumerator = const_expr, ... }
564\end{lstlisting}
565A compiler stores the name, the underlying type, and all enumerators in an @enumeration table@.
566During the $Validation$ pass, the compiler links the type declaration to the type's definition.
567It ensures that the name of an enumerator is unique within the enumeration body, and checks if all values of the enumerator have the declaration type.
568If the declared type is not @AutoInitializable@, \CFA rejects the enumeration definition.
569Otherwise, it attempts to initialize enumerators with the enumeration initialization pattern. (a reference to a future initialization pattern section)
570
571\begin{lstlisting}[label=lst:init]
572struct T { ... };
573void ?{}( T & t, zero_t ) { ... };
574void ?{}( T & t, one_t ) { ... };
575T ?+?( T & lhs, T & rhs ) { ... };
576
577enum (T) Sample { 
578        Zero: 0 /* zero_t */,
579        One: Zero + 1 /* ?+?( Zero, one_t ) */ , ...
580};
581\end{lstlisting}
582Challenge: \\
583The value of an enumerator, or the initializer, requires @const_expr@.
584While previously getting around the issue by pushing it to the C compiler, it might not work anymore because of the user-defined types, user-defined @zero_t@, @one_t@, and addition operation.
585Might not be able to implement a \emph{correct} static check.
586
587\CFA $autogens$ a Companion object for the declared enumeration.
588\begin{lstlisting}[label=lst:companion]
589Companion( T ) Sample {
590        .values: { 0, 0+1, 0+1+1, 0+1+1+1, ... }, /* 0: zero_t, 1: one_t, +: ?+?{} */
591        .labels: { "Zero", "One", "Two", "Three", ...},
592        .length: /* number of enumerators */
593};
594\end{lstlisting}
595\CFA stores values as intermediate expressions because the result of the function call to the function @?+?{}(T&, T&)@ is statically unknown to \CFA.
596But the result is computed at run time, and the compiler ensures the @values@ are not changed.
597
598\subsection{Qualified Expression}
599
600\CFA uses qualified expression to address the scoping of \CFA-enumeration.
601\begin{lstlisting}[label=lst:qualified_expression]
602aggregation_name.field;
603\end{lstlisting}
604The qualified expression is not dedicated to \CFA enumeration.
605It is a feature that is supported by other aggregation in \CFA as well, including a C enumeration.
606When C enumerations are unscoped, the qualified expression syntax still helps to disambiguate names in the context.
607\CFA recognizes if the expression references a \CFA aggregation by searching the presence of @aggregation_name@ in the \CFA enumeration table.
608If the @aggregation_name@ is identified as a \CFA enumeration, the compiler checks if @field@ presents in the declared \CFA enumeration.
609
610\subsection{\lstinline{with} Clause/Statement}
611Instead of qualifying an enumeration expression every time, the @with@ can be used to expose enumerators to the current scope, making them directly accessible.
612\begin{lstlisting}[label=lst:declaration]
613enum Color( char * ) { Red="R", Green="G", Blue="B" };
614enum Animal( int ) { Cat=10, Dog=20 };
615with ( Color, Animal ) {
616    char * red_string = Red; // value( Color.Red )
617    int cat = Cat; // value( Animal.Cat )
618}
619\end{lstlisting}
620The \lstinline{with} might introduce ambiguity to a scope. Consider the example:
621\begin{lstlisting}[label=lst:declaration]
622enum Color( char * ) { Red="R", Green="G", Blue="B" };
623enum RGB( int ) { Red=0, Green=1, Blue=2 };
624with ( Color, RGB ) {
625    // int red = Red;
626}
627\end{lstlisting}
628\CFA will not try to resolve the expression with ambiguity. It would report an error. In this case, it is necessary to qualify @Red@ even inside of the \lstinline{with} clause.
629
630\subsection{Instance Declaration}
631
632
633\begin{lstlisting}[label=lst:var_declaration]
634enum Sample s1;
635\end{lstlisting}
636
637The declaration \CFA-enumeration variable has the same syntax as the C-enumeration. Internally, such a variable will be represented as an EnumInstType.
638\begin{lstlisting}[label=lst:declaration_code]
639int s1;
640\end{lstlisting}
641The generated code for an enumeration instance is simply an int. It is to hold the position of an enumeration. And usage of variable @s1@ will be converted to return one of its attributes: label, value, or position, with respect to the @Unification@ rule
642
643\subsection{Unification and Resolution }
644
645
646\begin{lstlisting}
647enum Colour( char * ) { Red = "R", Green = "G", Blue = "B"  };
648\end{lstlisting}
649The @EnumInstType@ is convertible to other types.
650A \CFA enumeration expression is implicitly \emph{overloaded} with its three different attributes: value, position, and label.
651The \CFA compilers need to resolve an @EnumInstType@ as one of its attributes based on the current context.
652
653\begin{lstlisting}[caption={Null Context}, label=lst:null_context]
654{
655        Colour.Green;
656}
657\end{lstlisting}
658In example~\ref{lst:null_context}, the environment gives no information to help with the resolution of @Colour.Green@.
659In this case, any of the attributes is resolvable.
660According to the \textit{precedence rule}, the expression with @EnumInstType@ resolves as @value( Colour.Green )@.
661The @EnumInstType@ is converted to the type of the value, which is statically known to the compiler as @char *@.
662When the compilation reaches the code generation, the compiler outputs code for type @char *@ with the value @"G"@.
663\begin{lstlisting}[caption={Null Context Generated Code}, label=lst:null_context]
664{
665        "G";
666}
667\end{lstlisting}
668\begin{lstlisting}[caption={int Context}, label=lst:int_context]
669{
670        int g = Colour.Green;
671}
672\end{lstlisting}
673The assignment expression gives a context for the EnumInstType resolution.
674The EnumInstType is used as an @int@, and \CFA needs to determine which of the attributes can be resolved as an @int@ type.
675The functions $Unify( T1, T2 ): bool$ take two types as parameters and determine if one type can be used as another.
676In example~\ref{lst:int_context}, the compiler is trying to unify @int@ and @EnumInstType@ of @Colour@.
677$$Unification( int, EnumInstType<Colour> )$$ which turns into three Unification call
678\begin{lstlisting}[label=lst:attr_resolution_1]
679{
680        Unify( int, char * ); // unify with the type of value
681        Unify( int, int ); // unify with the type of position
682        Unify( int, char * ); // unify with the type of label
683}
684\end{lstlisting}
685\begin{lstlisting}[label=lst:attr_resolution_precedence]
686{
687        Unification( T1, EnumInstType<T2> ) {
688                if ( Unify( T1, T2 ) ) return T2;
689                if ( Unify( T1, int ) ) return int;
690                if ( Unify( T1, char * ) ) return char *;
691                Error: Cannot Unify T1 with EnumInstType<T2>;
692        }
693}
694\end{lstlisting}
695After the unification, @EnumInstType@ is replaced by its attributes.
696
697\begin{lstlisting}[caption={Unification Functions}, label=lst:unification_func_call]
698{
699        T2 foo ( T1 ); // function take variable with T1 as a parameter
700        foo( EnumInstType<T3> ); // Call foo with a variable has type EnumInstType<T3>
701        >>>> Unification( T1, EnumInstType<T3> )
702}
703\end{lstlisting}
704% The conversion can work backward: in restrictive cases, attributes of can be implicitly converted back to the EnumInstType.
705Backward conversion:
706\begin{lstlisting}[caption={Unification Functions}, label=lst:unification_func_call]
707{
708        enum Colour colour = 1;
709}
710\end{lstlisting}
711
712\begin{lstlisting}[caption={Unification Functions}, label=lst:unification_func_call]
713{
714   Unification( EnumInstType<Colour>, int ) >>> label
715}
716\end{lstlisting}
717@int@ can be unified with the label of Colour.
718@5@ is a constant expression $\Rightarrow$ Compiler knows the value during the compilation $\Rightarrow$ turns it into
719\begin{lstlisting}
720{
721   enum Colour colour = Colour.Green;
722}
723\end{lstlisting}
724Steps:
725\begin{enumerate}
726\item
727identify @1@ as a constant expression with type @int@, and the value is statically known as @1@
728\item
729@unification( EnumInstType<Colour>, int )@: @position( EnumInstType< Colour > )@
730\item
731return the enumeration constant at position 1
732\end{enumerate}
733\begin{lstlisting}
734{
735        enum T (int) { ... } // Declaration
736        enum T t = 1;
737}
738\end{lstlisting}
739Steps:
740\begin{enumerate}
741\item
742identify @1@ as a constant expression with type @int@, and the value is statically known as @1@
743\item
744@unification( EnumInstType<Colour>, int )@: @value( EnumInstType< Colour > )@
745\item
746return the FIRST enumeration constant that has the value 1, by searching through the values array
747\end{enumerate}
748The downside of the precedence rule: @EnumInstType@ $\Rightarrow$ @int ( value )@ $\Rightarrow$ @EnumInstType@ may return a different @EnumInstType@ because the value can be repeated and there is no way to know which one is expected $\Rightarrow$ want uniqueness
749
750\subsection{Casting}
751Casting an EnumInstType to some other type T works similarly to unify the EnumInstType with T. For example:
752\begin{lstlisting}
753enum( int ) Foo { A = 10, B = 100, C = 1000 };
754(int) Foo.A;
755\end{lstlisting}
756The \CFA-compiler unifies @EnumInstType<int>@ with int, with returns @value( Foo.A )@, which has statically known value 10. In other words, \CFA-compiler is aware of a cast expression, and it forms the context for EnumInstType resolution. The expression with type @EnumInstType<int>@ can be replaced by the compile with a constant expression 10, and optionally discard the cast expression.
757
758\subsection{Value Conversion}
759As discussed in section~\ref{lst:var_declaration}, \CFA only saves @position@ as the necessary information. It is necessary for \CFA to generate intermediate code to retrieve other attributes.
760
761\begin{lstlisting}
762Foo a; // int a;
763int j = a;
764char * s = a;
765\end{lstlisting}
766Assume stores a value x, which cannot be statically determined. When assigning a to j in line 2, the compiler @Unify@ j with a, and returns @value( a )@. The generated code for the second line will be
767\begin{lstlisting}
768int j = value( Foo, a )
769\end{lstlisting}
770Similarly, the generated code for the third line is
771\begin{lstlisting}
772char * j = label( Foo, a )
773\end{lstlisting}
774
775
776\end{document}
777
778% Local Variables: %
779% tab-width: 4 %
780% compile-command: "pdflatex enum.tex" %
781% End: %
Note: See TracBrowser for help on using the repository browser.