1 | % ====================================================================== |
---|
2 | % ====================================================================== |
---|
3 | \chapter{Putting it all together} |
---|
4 | % ====================================================================== |
---|
5 | % ====================================================================== |
---|
6 | |
---|
7 | |
---|
8 | \section{Threads as monitors} |
---|
9 | As it was subtely alluded in section \ref{threads}, \code{threads} in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine : |
---|
10 | \begin{cfacode} |
---|
11 | // Visualization declaration |
---|
12 | thread Renderer {} renderer; |
---|
13 | Frame * simulate( Simulator & this ); |
---|
14 | |
---|
15 | // Simulation declaration |
---|
16 | thread Simulator{} simulator; |
---|
17 | void render( Renderer & this ); |
---|
18 | |
---|
19 | // Blocking call used as communication |
---|
20 | void draw( Renderer & mutex this, Frame * frame ); |
---|
21 | |
---|
22 | // Simualation loop |
---|
23 | void main( Simulator & this ) { |
---|
24 | while( true ) { |
---|
25 | Frame * frame = simulate( this ); |
---|
26 | draw( renderer, frame ); |
---|
27 | } |
---|
28 | } |
---|
29 | |
---|
30 | // Rendering loop |
---|
31 | void main( Renderer & this ) { |
---|
32 | while( true ) { |
---|
33 | waitfor( draw, this ); |
---|
34 | render( this ); |
---|
35 | } |
---|
36 | } |
---|
37 | \end{cfacode} |
---|
38 | One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner : |
---|
39 | \begin{cfacode} |
---|
40 | // Visualization declaration |
---|
41 | thread Renderer {} renderer; |
---|
42 | Frame * simulate( Simulator & this ); |
---|
43 | |
---|
44 | // Simulation declaration |
---|
45 | thread Simulator{} simulator; |
---|
46 | void render( Renderer & this ); |
---|
47 | |
---|
48 | // Blocking call used as communication |
---|
49 | void draw( Renderer & mutex this, Frame * frame ); |
---|
50 | |
---|
51 | // Simualation loop |
---|
52 | void main( Simulator & this ) { |
---|
53 | while( true ) { |
---|
54 | Frame * frame = simulate( this ); |
---|
55 | draw( renderer, frame ); |
---|
56 | |
---|
57 | // Exit main loop after the last frame |
---|
58 | if( frame->is_last ) break; |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | // Rendering loop |
---|
63 | void main( Renderer & this ) { |
---|
64 | while( true ) { |
---|
65 | waitfor( draw, this ); |
---|
66 | or waitfor( ^?{}, this ) { |
---|
67 | // Add an exit condition |
---|
68 | break; |
---|
69 | } |
---|
70 | |
---|
71 | render( this ); |
---|
72 | } |
---|
73 | } |
---|
74 | |
---|
75 | // Call destructor for simulator once simulator finishes |
---|
76 | // Call destructor for renderer to signify shutdown |
---|
77 | \end{cfacode} |
---|
78 | |
---|
79 | \section{Fibers \& Threads} |
---|
80 | As mentionned in section \ref{preemption}, \CFA uses preemptive threads by default but can use fibers on demand. Currently, using fibers is done by adding the following line of code to the program~: |
---|
81 | \begin{cfacode} |
---|
82 | unsigned int default_preemption() { |
---|
83 | return 0; |
---|
84 | } |
---|
85 | \end{cfacode} |
---|
86 | This function is called by the kernel to fetch the default preemption rate, where 0 signifies an infinite time-slice i.e. no preemption. However, once clusters are fully implemented, it will be possible to create fibers and uthreads in on the same system : |
---|
87 | \begin{figure} |
---|
88 | \begin{cfacode} |
---|
89 | //Cluster forward declaration |
---|
90 | struct cluster; |
---|
91 | |
---|
92 | //Processor forward declaration |
---|
93 | struct processor; |
---|
94 | |
---|
95 | //Construct clusters with a preemption rate |
---|
96 | void ?{}(cluster& this, unsigned int rate); |
---|
97 | //Construct processor and add it to cluster |
---|
98 | void ?{}(processor& this, cluster& cluster); |
---|
99 | //Construct thread and schedule it on cluster |
---|
100 | void ?{}(thread& this, cluster& cluster); |
---|
101 | |
---|
102 | //Declare two clusters |
---|
103 | cluster thread_cluster = { 10`ms }; //Preempt every 10 ms |
---|
104 | cluster fibers_cluster = { 0 }; //Never preempt |
---|
105 | |
---|
106 | //Construct 4 processors |
---|
107 | processor processors[4] = { |
---|
108 | //2 for the thread cluster |
---|
109 | thread_cluster; |
---|
110 | thread_cluster; |
---|
111 | //2 for the fibers cluster |
---|
112 | fibers_cluster; |
---|
113 | fibers_cluster; |
---|
114 | }; |
---|
115 | |
---|
116 | //Declares thread |
---|
117 | thread UThread {}; |
---|
118 | void ?{}(UThread& this) { |
---|
119 | //Construct underlying thread to automatically |
---|
120 | //be scheduled on the thread cluster |
---|
121 | (this){ thread_cluster } |
---|
122 | } |
---|
123 | |
---|
124 | void main(UThread & this); |
---|
125 | |
---|
126 | //Declares fibers |
---|
127 | thread Fiber {}; |
---|
128 | void ?{}(Fiber& this) { |
---|
129 | //Construct underlying thread to automatically |
---|
130 | //be scheduled on the fiber cluster |
---|
131 | (this.__thread){ fibers_cluster } |
---|
132 | } |
---|
133 | |
---|
134 | void main(Fiber & this); |
---|
135 | \end{cfacode} |
---|
136 | \end{figure} |
---|