1 | % ======================================================================
|
---|
2 | % ======================================================================
|
---|
3 | \chapter{Putting it all together}
|
---|
4 | % ======================================================================
|
---|
5 | % ======================================================================
|
---|
6 |
|
---|
7 |
|
---|
8 | \section{Threads as monitors}
|
---|
9 | As it was subtely alluded in section \ref{threads}, \code{threads} in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine :
|
---|
10 | \begin{cfacode}
|
---|
11 | // Visualization declaration
|
---|
12 | thread Renderer {} renderer;
|
---|
13 | Frame * simulate( Simulator & this );
|
---|
14 |
|
---|
15 | // Simulation declaration
|
---|
16 | thread Simulator{} simulator;
|
---|
17 | void render( Renderer & this );
|
---|
18 |
|
---|
19 | // Blocking call used as communication
|
---|
20 | void draw( Renderer & mutex this, Frame * frame );
|
---|
21 |
|
---|
22 | // Simualation loop
|
---|
23 | void main( Simulator & this ) {
|
---|
24 | while( true ) {
|
---|
25 | Frame * frame = simulate( this );
|
---|
26 | draw( renderer, frame );
|
---|
27 | }
|
---|
28 | }
|
---|
29 |
|
---|
30 | // Rendering loop
|
---|
31 | void main( Renderer & this ) {
|
---|
32 | while( true ) {
|
---|
33 | waitfor( draw, this );
|
---|
34 | render( this );
|
---|
35 | }
|
---|
36 | }
|
---|
37 | \end{cfacode}
|
---|
38 | One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner :
|
---|
39 | \begin{cfacode}
|
---|
40 | // Visualization declaration
|
---|
41 | thread Renderer {} renderer;
|
---|
42 | Frame * simulate( Simulator & this );
|
---|
43 |
|
---|
44 | // Simulation declaration
|
---|
45 | thread Simulator{} simulator;
|
---|
46 | void render( Renderer & this );
|
---|
47 |
|
---|
48 | // Blocking call used as communication
|
---|
49 | void draw( Renderer & mutex this, Frame * frame );
|
---|
50 |
|
---|
51 | // Simualation loop
|
---|
52 | void main( Simulator & this ) {
|
---|
53 | while( true ) {
|
---|
54 | Frame * frame = simulate( this );
|
---|
55 | draw( renderer, frame );
|
---|
56 |
|
---|
57 | // Exit main loop after the last frame
|
---|
58 | if( frame->is_last ) break;
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | // Rendering loop
|
---|
63 | void main( Renderer & this ) {
|
---|
64 | while( true ) {
|
---|
65 | waitfor( draw, this );
|
---|
66 | or waitfor( ^?{}, this ) {
|
---|
67 | // Add an exit condition
|
---|
68 | break;
|
---|
69 | }
|
---|
70 |
|
---|
71 | render( this );
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 | // Call destructor for simulator once simulator finishes
|
---|
76 | // Call destructor for renderer to signify shutdown
|
---|
77 | \end{cfacode}
|
---|
78 |
|
---|
79 | \section{Fibers \& Threads}
|
---|
80 | As mentionned in section \ref{preemption}, \CFA uses preemptive threads by default but can use fibers on demand. Currently, using fibers is done by adding the following line of code to the program~:
|
---|
81 | \begin{cfacode}
|
---|
82 | unsigned int default_preemption() {
|
---|
83 | return 0;
|
---|
84 | }
|
---|
85 | \end{cfacode}
|
---|
86 | This function is called by the kernel to fetch the default preemption rate, where 0 signifies an infinite time-slice i.e. no preemption. However, once clusters are fully implemented, it will be possible to create fibers and uthreads in on the same system :
|
---|
87 | \begin{figure}
|
---|
88 | \begin{cfacode}
|
---|
89 | //Cluster forward declaration
|
---|
90 | struct cluster;
|
---|
91 |
|
---|
92 | //Processor forward declaration
|
---|
93 | struct processor;
|
---|
94 |
|
---|
95 | //Construct clusters with a preemption rate
|
---|
96 | void ?{}(cluster& this, unsigned int rate);
|
---|
97 | //Construct processor and add it to cluster
|
---|
98 | void ?{}(processor& this, cluster& cluster);
|
---|
99 | //Construct thread and schedule it on cluster
|
---|
100 | void ?{}(thread& this, cluster& cluster);
|
---|
101 |
|
---|
102 | //Declare two clusters
|
---|
103 | cluster thread_cluster = { 10`ms }; //Preempt every 10 ms
|
---|
104 | cluster fibers_cluster = { 0 }; //Never preempt
|
---|
105 |
|
---|
106 | //Construct 4 processors
|
---|
107 | processor processors[4] = {
|
---|
108 | //2 for the thread cluster
|
---|
109 | thread_cluster;
|
---|
110 | thread_cluster;
|
---|
111 | //2 for the fibers cluster
|
---|
112 | fibers_cluster;
|
---|
113 | fibers_cluster;
|
---|
114 | };
|
---|
115 |
|
---|
116 | //Declares thread
|
---|
117 | thread UThread {};
|
---|
118 | void ?{}(UThread& this) {
|
---|
119 | //Construct underlying thread to automatically
|
---|
120 | //be scheduled on the thread cluster
|
---|
121 | (this){ thread_cluster }
|
---|
122 | }
|
---|
123 |
|
---|
124 | void main(UThread & this);
|
---|
125 |
|
---|
126 | //Declares fibers
|
---|
127 | thread Fiber {};
|
---|
128 | void ?{}(Fiber& this) {
|
---|
129 | //Construct underlying thread to automatically
|
---|
130 | //be scheduled on the fiber cluster
|
---|
131 | (this.__thread){ fibers_cluster }
|
---|
132 | }
|
---|
133 |
|
---|
134 | void main(Fiber & this);
|
---|
135 | \end{cfacode}
|
---|
136 | \end{figure}
|
---|