source: doc/proposals/concurrency/text/future.tex @ bbeb908

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumresolv-newwith_gc
Last change on this file since bbeb908 was 64b272a, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

Prereview commit

  • Property mode set to 100644
File size: 3.3 KB
Line 
1% ======================================================================
2% ======================================================================
3\chapter{Future Work}
4% ======================================================================
5% ======================================================================
6
7\section{Flexible Scheduling} \label{futur:sched}
8
9
10\section{Non-Blocking IO} \label{futur:nbio}
11While most of the parallelism tools
12However, many modern workloads are not bound on computation but on IO operations, an common case being webservers and XaaS (anything as a service). These type of workloads often require significant engineering around amortising costs of blocking IO operations. While improving throughtput of these operations is outside what \CFA can do as a language, it can help users to make better use of the CPU time otherwise spent waiting on IO operations. The current trend is to use asynchronous programming using tools like callbacks and/or futurs and promises\cit. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear
13
14
15
16\section{Other concurrency tools} \label{futur:tools}
17
18
19\section{Implicit threading} \label{futur:implcit}
20Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The cannonical example of implcit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithm\cit. Listing \ref{lst:parfor} shows three different code examples that accomplish pointwise sums of large arrays. Note that none of these example explicitly declare any concurrency or parallelism objects.
21
22\begin{figure}
23\begin{center}
24\begin{tabular}[t]{|c|c|c|}
25Sequential & Library Parallel & Language Parallel \\
26\begin{cfacode}[tabsize=3]
27void big_sum(
28        int* a, int* b,
29        int* o,
30        size_t len)
31{
32        for(
33                int i = 0;
34                i < len;
35                ++i )
36        {
37                o[i]=a[i]+b[i];
38        }
39}
40
41
42
43
44
45int* a[10000];
46int* b[10000];
47int* c[10000];
48//... fill in a & b
49big_sum(a,b,c,10000);
50\end{cfacode} &\begin{cfacode}[tabsize=3]
51void big_sum(
52        int* a, int* b,
53        int* o,
54        size_t len)
55{
56        range ar(a, a+len);
57        range br(b, b+len);
58        range or(o, o+len);
59        parfor( ai, bi, oi,
60        [](     int* ai,
61                int* bi,
62                int* oi)
63        {
64                oi=ai+bi;
65        });
66}
67
68
69int* a[10000];
70int* b[10000];
71int* c[10000];
72//... fill in a & b
73big_sum(a,b,c,10000);
74\end{cfacode}&\begin{cfacode}[tabsize=3]
75void big_sum(
76        int* a, int* b,
77        int* o,
78        size_t len)
79{
80        parfor (ai,bi,oi)
81            in (a, b, o )
82        {
83                oi = ai + bi;
84        }
85}
86
87
88
89
90
91
92
93int* a[10000];
94int* b[10000];
95int* c[10000];
96//... fill in a & b
97big_sum(a,b,c,10000);
98\end{cfacode}
99\end{tabular}
100\end{center}
101\caption{For loop to sum numbers: Sequential, using library parallelism and language parallelism.}
102\label{lst:parfor}
103\end{figure}
104
105Implicit parallelism is a general solution and therefore is
106
107\section{Multiple Paradigms} \label{futur:paradigms}
108
109
110\section{Transactions} \label{futur:transaction}
111Concurrency and parallelism is still a very active field that strongly benefits from hardware advances. As such certain features that aren't necessarily mature enough in their current state could become relevant in the lifetime of \CFA.
Note: See TracBrowser for help on using the repository browser.