1 | ## Light-weight Closures for Cforall ##
|
---|
2 |
|
---|
3 | A core capability of the Cforall type system is the ability to use
|
---|
4 | monomorphic specializations of polymorphic functions seamlessly and
|
---|
5 | invisibly to the user programmer, primarily in type assertions:
|
---|
6 |
|
---|
7 | forall(otype T | { T ?+?(T, T); })
|
---|
8 | T double( T x ) { return x + x; }
|
---|
9 |
|
---|
10 | forall(otype R | { R double(R); })
|
---|
11 | R quadruple( R y ) { return double( double( y ) ); }
|
---|
12 |
|
---|
13 | void fred() {
|
---|
14 | float magic = quadruple( 10.5f );
|
---|
15 | }
|
---|
16 |
|
---|
17 | In the example above, `R` and `T` are both bound to `float`, and the
|
---|
18 | `double` type assertion on `quadruple` is satisfied by monomorphizing the
|
---|
19 | polymorphic `double` function to `float` (using the builtin `float` addition
|
---|
20 | operator). The existing implementation uses GCC nested functions to
|
---|
21 | implement this monomorphization, as in the following (much simplified)
|
---|
22 | generated code:
|
---|
23 |
|
---|
24 | void double(size_t _sizeof_T,
|
---|
25 | void (*_assign_T)(void*, void*),
|
---|
26 | void (*_add_T)(void*, void*, void*),
|
---|
27 | void *_rtn,
|
---|
28 | void *x ) {
|
---|
29 | _add_T( _rtn, x, x );
|
---|
30 | }
|
---|
31 |
|
---|
32 | void quadruple(size_t _sizeof_R,
|
---|
33 | void (*_assign_R)(void*, void*),
|
---|
34 | void (*_double_R)(void*, void*),
|
---|
35 | void *_rtn,
|
---|
36 | void *y ) {
|
---|
37 | void *_tmp0 = alloca(_sizeof_R);
|
---|
38 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) );
|
---|
39 | }
|
---|
40 |
|
---|
41 | void fred() {
|
---|
42 | // nested thunk to adapt double() to _double_R()
|
---|
43 | void _thunk0( void *_rtn, void *x ) {
|
---|
44 | double( sizeof(float), _builtin_assign_float,
|
---|
45 | _builtin_add_float,
|
---|
46 | _rtn, x );
|
---|
47 | }
|
---|
48 |
|
---|
49 | float magic;
|
---|
50 | float _tmp1 = 10.5f;
|
---|
51 | quadruple( sizeof(float), _builtin_assign_float, _thunk0,
|
---|
52 | &magic, &_tmp1 );
|
---|
53 | }
|
---|
54 |
|
---|
55 | Now, in the example above, `_thunk0` could be hoisted to static scope, as
|
---|
56 | `sizeof(float)`, `_builtin_assign_float`, and `builtin_add_float` all exist
|
---|
57 | in static scope. In general, however, these parameters which are used to
|
---|
58 | monomorphize polymorphic functions could be local to the calling scope (e.g.
|
---|
59 | if `fred()` was a polymorphic function itself, or had a local overload of
|
---|
60 | `float` addition).
|
---|
61 |
|
---|
62 | The crux of the issue is that these monomorphization thunks need a lexical
|
---|
63 | link to their creation context, but C's standard calling convention provides
|
---|
64 | no way to include such a lexical link. GCC fixes this for nested functions
|
---|
65 | by placing an executable trampoline on the stack to modify the calling
|
---|
66 | convention; this trampoline has the standard calling convention, and calls
|
---|
67 | the nested function after setting up the lexical link. This prevents the
|
---|
68 | stack from being marked as non-executable, opening a variety of potential
|
---|
69 | security vulnerabilities. More to the point of this proposal, it also means
|
---|
70 | that the thunk exists on the stack, and may go out of scope before it is
|
---|
71 | used if it is copied somewhere else (for instance, to the root of a new
|
---|
72 | stack in a coroutine).
|
---|
73 |
|
---|
74 | The standard solution to this sort of problem is a *closure*; this proposal
|
---|
75 | describes how to integrate a restricted sort of closure into Cforall that
|
---|
76 | would be sufficiently powerful to monomorphize polymorphic functions.
|
---|
77 |
|
---|
78 | Monomorphization parameters in the current implementation fall into four
|
---|
79 | categories:
|
---|
80 | 1. Size/alignment of types; a single unsigned integer
|
---|
81 | 2. Field offsets for generic types; a fixed length array of unsigned
|
---|
82 | 3. Functions used to satisfy type assertions: a single function pointer
|
---|
83 | 4. Variables used to satisfy type assertions: a single void pointer
|
---|
84 |
|
---|
85 | The gist of this proposal is to develop a copyable closure object (similar
|
---|
86 | in concept to `std::function` in C++) that can encapsulate a function
|
---|
87 | pointer and an arbitrary list of these monomorphization parameters and
|
---|
88 | provide a function call operator that passes the appropriate parameters to
|
---|
89 | the underlying function. In (very-)pseudo-Cforall, it might look something
|
---|
90 | like the following:
|
---|
91 |
|
---|
92 | forall(ttype Rtns, ttype Args) struct Fn {
|
---|
93 | [assertion...] closed;
|
---|
94 | forall(closed) Rtns (*f)(Args...);
|
---|
95 | };
|
---|
96 |
|
---|
97 | forall(ttype Rtns, ttype Args, [assertion...] Closed)
|
---|
98 | void ?{}( Fn(Rtns, Args) *this,
|
---|
99 | forall(Closed) Rtns (*f)(Args), Closed closed ) {
|
---|
100 | this->closed = closed;
|
---|
101 | this->f = f;
|
---|
102 | }
|
---|
103 | // ^ function pointers convert implicitly to Fn, as they have an empty
|
---|
104 | // assertion list here
|
---|
105 |
|
---|
106 | forall(ttype Rtns, ttype Args)
|
---|
107 | Rtns ?() ( Fn(Rtns, Args) fn, Args args ) {
|
---|
108 | return fn.f( fn.closed, args );
|
---|
109 | }
|
---|
110 |
|
---|
111 | Using this `Fn` closure internally (even if it was never exposed to user
|
---|
112 | programmers), the top example would codegen something like this, with `Fn`
|
---|
113 | substituted for the implicit function pointers:
|
---|
114 |
|
---|
115 | void double(size_t _sizeof_T,
|
---|
116 | Fn(void, [void*, void*]) _assign_T,
|
---|
117 | Fn(void, [void*, void*, void*]) _add_T,
|
---|
118 | void *_rtn,
|
---|
119 | void *x ) {
|
---|
120 | _add_T( _rtn, x, x );
|
---|
121 | }
|
---|
122 |
|
---|
123 | void quadruple(size_t _sizeof_R,
|
---|
124 | Fn(void, [void*, void*]) _assign_R,
|
---|
125 | Fn(void, [void*, void*]) _double_R,
|
---|
126 | void *_rtn,
|
---|
127 | void *y ) {
|
---|
128 | void *_tmp0 = alloca(_sizeof_R);
|
---|
129 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) );
|
---|
130 | }
|
---|
131 |
|
---|
132 | void fred() {
|
---|
133 | // closure wrapper for static function
|
---|
134 | Fn(void, [void*, void*]) _thunk0 = { _builtin_assign_float };
|
---|
135 | // nested closure to adapt double() to _double_R()
|
---|
136 | Fn(void, [void*, void*]) _thunk1 = { double,
|
---|
137 | [sizeof(float), _builtin_assign_float, _builtin_add_float] };
|
---|
138 |
|
---|
139 | float magic;
|
---|
140 | float _tmp1 = 10.5f;
|
---|
141 | quadruple( sizeof(float), _thunk0, _thunk1,
|
---|
142 | &magic, &_tmp1 );
|
---|
143 | }
|
---|
144 |
|
---|
145 | The main challenge with this approach is that the `Fn` closure is
|
---|
146 | (necessarily) variable in size, as it can close over an arbitrary (but fixed
|
---|
147 | at construction time) number of parameters. This will make memory management
|
---|
148 | for it somewhat challenging, and writing the code in the translator to
|
---|
149 | implement the function call operator passing a variable number of type
|
---|
150 | assertions should also be non-trivial, but tractable.
|
---|