1 | ## Light-weight Closures for Cforall ## |
---|
2 | |
---|
3 | A core capability of the Cforall type system is the ability to use |
---|
4 | monomorphic specializations of polymorphic functions seamlessly and |
---|
5 | invisibly to the user programmer, primarily in type assertions: |
---|
6 | |
---|
7 | forall(otype T | { T ?+?(T, T); }) |
---|
8 | T double( T x ) { return x + x; } |
---|
9 | |
---|
10 | forall(otype R | { R double(R); }) |
---|
11 | R quadruple( R y ) { return double( double( y ) ); } |
---|
12 | |
---|
13 | void fred() { |
---|
14 | float magic = quadruple( 10.5f ); |
---|
15 | } |
---|
16 | |
---|
17 | In the example above, `R` and `T` are both bound to `float`, and the |
---|
18 | `double` type assertion on `quadruple` is satisfied by monomorphizing the |
---|
19 | polymorphic `double` function to `float` (using the builtin `float` addition |
---|
20 | operator). The existing implementation uses GCC nested functions to |
---|
21 | implement this monomorphization, as in the following (much simplified) |
---|
22 | generated code: |
---|
23 | |
---|
24 | void double(size_t _sizeof_T, |
---|
25 | void (*_assign_T)(void*, void*), |
---|
26 | void (*_add_T)(void*, void*, void*), |
---|
27 | void *_rtn, |
---|
28 | void *x ) { |
---|
29 | _add_T( _rtn, x, x ); |
---|
30 | } |
---|
31 | |
---|
32 | void quadruple(size_t _sizeof_R, |
---|
33 | void (*_assign_R)(void*, void*), |
---|
34 | void (*_double_R)(void*, void*), |
---|
35 | void *_rtn, |
---|
36 | void *y ) { |
---|
37 | void *_tmp0 = alloca(_sizeof_R); |
---|
38 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) ); |
---|
39 | } |
---|
40 | |
---|
41 | void fred() { |
---|
42 | // nested thunk to adapt double() to _double_R() |
---|
43 | void _thunk0( void *_rtn, void *x ) { |
---|
44 | double( sizeof(float), _builtin_assign_float, |
---|
45 | _builtin_add_float, |
---|
46 | _rtn, x ); |
---|
47 | } |
---|
48 | |
---|
49 | float magic; |
---|
50 | float _tmp1 = 10.5f; |
---|
51 | quadruple( sizeof(float), _builtin_assign_float, _thunk0, |
---|
52 | &magic, &_tmp1 ); |
---|
53 | } |
---|
54 | |
---|
55 | Now, in the example above, `_thunk0` could be hoisted to static scope, as |
---|
56 | `sizeof(float)`, `_builtin_assign_float`, and `builtin_add_float` all exist |
---|
57 | in static scope. In general, however, these parameters which are used to |
---|
58 | monomorphize polymorphic functions could be local to the calling scope (e.g. |
---|
59 | if `fred()` was a polymorphic function itself, or had a local overload of |
---|
60 | `float` addition). |
---|
61 | |
---|
62 | The crux of the issue is that these monomorphization thunks need a lexical |
---|
63 | link to their creation context, but C's standard calling convention provides |
---|
64 | no way to include such a lexical link. GCC fixes this for nested functions |
---|
65 | by placing an executable trampoline on the stack to modify the calling |
---|
66 | convention; this trampoline has the standard calling convention, and calls |
---|
67 | the nested function after setting up the lexical link. This prevents the |
---|
68 | stack from being marked as non-executable, opening a variety of potential |
---|
69 | security vulnerabilities. More to the point of this proposal, it also means |
---|
70 | that the thunk exists on the stack, and may go out of scope before it is |
---|
71 | used if it is copied somewhere else (for instance, to the root of a new |
---|
72 | stack in a coroutine). |
---|
73 | |
---|
74 | The standard solution to this sort of problem is a *closure*; this proposal |
---|
75 | describes how to integrate a restricted sort of closure into Cforall that |
---|
76 | would be sufficiently powerful to monomorphize polymorphic functions. |
---|
77 | |
---|
78 | Monomorphization parameters in the current implementation fall into four |
---|
79 | categories: |
---|
80 | 1. Size/alignment of types; a single unsigned integer |
---|
81 | 2. Field offsets for generic types; a fixed length array of unsigned |
---|
82 | 3. Functions used to satisfy type assertions: a single function pointer |
---|
83 | 4. Variables used to satisfy type assertions: a single void pointer |
---|
84 | |
---|
85 | The gist of this proposal is to develop a copyable closure object (similar |
---|
86 | in concept to `std::function` in C++) that can encapsulate a function |
---|
87 | pointer and an arbitrary list of these monomorphization parameters and |
---|
88 | provide a function call operator that passes the appropriate parameters to |
---|
89 | the underlying function. In (very-)pseudo-Cforall, it might look something |
---|
90 | like the following: |
---|
91 | |
---|
92 | forall(ttype Rtns, ttype Args) struct Fn { |
---|
93 | [assertion...] closed; |
---|
94 | forall(closed) Rtns (*f)(Args...); |
---|
95 | }; |
---|
96 | |
---|
97 | forall(ttype Rtns, ttype Args, [assertion...] Closed) |
---|
98 | void ?{}( Fn(Rtns, Args) *this, |
---|
99 | forall(Closed) Rtns (*f)(Args), Closed closed ) { |
---|
100 | this->closed = closed; |
---|
101 | this->f = f; |
---|
102 | } |
---|
103 | // ^ function pointers convert implicitly to Fn, as they have an empty |
---|
104 | // assertion list here |
---|
105 | |
---|
106 | forall(ttype Rtns, ttype Args) |
---|
107 | Rtns ?() ( Fn(Rtns, Args) fn, Args args ) { |
---|
108 | return fn.f( fn.closed, args ); |
---|
109 | } |
---|
110 | |
---|
111 | Using this `Fn` closure internally (even if it was never exposed to user |
---|
112 | programmers), the top example would codegen something like this, with `Fn` |
---|
113 | substituted for the implicit function pointers: |
---|
114 | |
---|
115 | void double(size_t _sizeof_T, |
---|
116 | Fn(void, [void*, void*]) _assign_T, |
---|
117 | Fn(void, [void*, void*, void*]) _add_T, |
---|
118 | void *_rtn, |
---|
119 | void *x ) { |
---|
120 | _add_T( _rtn, x, x ); |
---|
121 | } |
---|
122 | |
---|
123 | void quadruple(size_t _sizeof_R, |
---|
124 | Fn(void, [void*, void*]) _assign_R, |
---|
125 | Fn(void, [void*, void*]) _double_R, |
---|
126 | void *_rtn, |
---|
127 | void *y ) { |
---|
128 | void *_tmp0 = alloca(_sizeof_R); |
---|
129 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) ); |
---|
130 | } |
---|
131 | |
---|
132 | void fred() { |
---|
133 | // closure wrapper for static function |
---|
134 | Fn(void, [void*, void*]) _thunk0 = { _builtin_assign_float }; |
---|
135 | // nested closure to adapt double() to _double_R() |
---|
136 | Fn(void, [void*, void*]) _thunk1 = { double, |
---|
137 | [sizeof(float), _builtin_assign_float, _builtin_add_float] }; |
---|
138 | |
---|
139 | float magic; |
---|
140 | float _tmp1 = 10.5f; |
---|
141 | quadruple( sizeof(float), _thunk0, _thunk1, |
---|
142 | &magic, &_tmp1 ); |
---|
143 | } |
---|
144 | |
---|
145 | The main challenge with this approach is that the `Fn` closure is |
---|
146 | (necessarily) variable in size, as it can close over an arbitrary (but fixed |
---|
147 | at construction time) number of parameters. This will make memory management |
---|
148 | for it somewhat challenging, and writing the code in the translator to |
---|
149 | implement the function call operator passing a variable number of type |
---|
150 | assertions should also be non-trivial, but tractable. |
---|