| 1 | ## Light-weight Closures for Cforall ## | 
|---|
| 2 |  | 
|---|
| 3 | A core capability of the Cforall type system is the ability to use | 
|---|
| 4 | monomorphic specializations of polymorphic functions seamlessly and | 
|---|
| 5 | invisibly to the user programmer, primarily in type assertions: | 
|---|
| 6 |  | 
|---|
| 7 | forall(otype T | { T ?+?(T, T); }) | 
|---|
| 8 | T double( T x ) { return x + x; } | 
|---|
| 9 |  | 
|---|
| 10 | forall(otype R | { R double(R); }) | 
|---|
| 11 | R quadruple( R y ) { return double( double( y ) ); } | 
|---|
| 12 |  | 
|---|
| 13 | void fred() { | 
|---|
| 14 | float magic = quadruple( 10.5f ); | 
|---|
| 15 | } | 
|---|
| 16 |  | 
|---|
| 17 | In the example above, `R` and `T` are both bound to `float`, and the | 
|---|
| 18 | `double` type assertion on `quadruple` is satisfied by monomorphizing the | 
|---|
| 19 | polymorphic `double` function to `float` (using the builtin `float` addition | 
|---|
| 20 | operator). The existing implementation uses GCC nested functions to | 
|---|
| 21 | implement this monomorphization, as in the following (much simplified) | 
|---|
| 22 | generated code: | 
|---|
| 23 |  | 
|---|
| 24 | void double(size_t _sizeof_T, | 
|---|
| 25 | void (*_assign_T)(void*, void*), | 
|---|
| 26 | void (*_add_T)(void*, void*, void*), | 
|---|
| 27 | void *_rtn, | 
|---|
| 28 | void *x ) { | 
|---|
| 29 | _add_T( _rtn, x, x ); | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | void quadruple(size_t _sizeof_R, | 
|---|
| 33 | void (*_assign_R)(void*, void*), | 
|---|
| 34 | void (*_double_R)(void*, void*), | 
|---|
| 35 | void *_rtn, | 
|---|
| 36 | void *y ) { | 
|---|
| 37 | void *_tmp0 = alloca(_sizeof_R); | 
|---|
| 38 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) ); | 
|---|
| 39 | } | 
|---|
| 40 |  | 
|---|
| 41 | void fred() { | 
|---|
| 42 | // nested thunk to adapt double() to _double_R() | 
|---|
| 43 | void _thunk0( void *_rtn, void *x ) { | 
|---|
| 44 | double( sizeof(float), _builtin_assign_float, | 
|---|
| 45 | _builtin_add_float, | 
|---|
| 46 | _rtn, x ); | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | float magic; | 
|---|
| 50 | float _tmp1 = 10.5f; | 
|---|
| 51 | quadruple( sizeof(float), _builtin_assign_float, _thunk0, | 
|---|
| 52 | &magic, &_tmp1 ); | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | Now, in the example above, `_thunk0` could be hoisted to static scope, as | 
|---|
| 56 | `sizeof(float)`, `_builtin_assign_float`, and `builtin_add_float` all exist | 
|---|
| 57 | in static scope. In general, however, these parameters which are used to | 
|---|
| 58 | monomorphize polymorphic functions could be local to the calling scope (e.g. | 
|---|
| 59 | if `fred()` was a polymorphic function itself, or had a local overload of | 
|---|
| 60 | `float` addition). | 
|---|
| 61 |  | 
|---|
| 62 | The crux of the issue is that these monomorphization thunks need a lexical | 
|---|
| 63 | link to their creation context, but C's standard calling convention provides | 
|---|
| 64 | no way to include such a lexical link. GCC fixes this for nested functions | 
|---|
| 65 | by placing an executable trampoline on the stack to modify the calling | 
|---|
| 66 | convention; this trampoline has the standard calling convention, and calls | 
|---|
| 67 | the nested function after setting up the lexical link. This prevents the | 
|---|
| 68 | stack from being marked as non-executable, opening a variety of potential | 
|---|
| 69 | security vulnerabilities. More to the point of this proposal, it also means | 
|---|
| 70 | that the thunk exists on the stack, and may go out of scope before it is | 
|---|
| 71 | used if it is copied somewhere else (for instance, to the root of a new | 
|---|
| 72 | stack in a coroutine). | 
|---|
| 73 |  | 
|---|
| 74 | The standard solution to this sort of problem is a *closure*; this proposal | 
|---|
| 75 | describes how to integrate a restricted sort of closure into Cforall that | 
|---|
| 76 | would be sufficiently powerful to monomorphize polymorphic functions. | 
|---|
| 77 |  | 
|---|
| 78 | Monomorphization parameters in the current implementation fall into four | 
|---|
| 79 | categories: | 
|---|
| 80 | 1. Size/alignment of types; a single unsigned integer | 
|---|
| 81 | 2. Field offsets for generic types; a fixed length array of unsigned | 
|---|
| 82 | 3. Functions used to satisfy type assertions: a single function pointer | 
|---|
| 83 | 4. Variables used to satisfy type assertions: a single void pointer | 
|---|
| 84 |  | 
|---|
| 85 | The gist of this proposal is to develop a copyable closure object (similar | 
|---|
| 86 | in concept to `std::function` in C++) that can encapsulate a function | 
|---|
| 87 | pointer and an arbitrary list of these monomorphization parameters and | 
|---|
| 88 | provide a function call operator that passes the appropriate parameters to | 
|---|
| 89 | the underlying function. In (very-)pseudo-Cforall, it might look something | 
|---|
| 90 | like the following: | 
|---|
| 91 |  | 
|---|
| 92 | forall(ttype Rtns, ttype Args) struct Fn { | 
|---|
| 93 | [assertion...] closed; | 
|---|
| 94 | forall(closed) Rtns (*f)(Args...); | 
|---|
| 95 | }; | 
|---|
| 96 |  | 
|---|
| 97 | forall(ttype Rtns, ttype Args, [assertion...] Closed) | 
|---|
| 98 | void ?{}( Fn(Rtns, Args) *this, | 
|---|
| 99 | forall(Closed) Rtns (*f)(Args), Closed closed ) { | 
|---|
| 100 | this->closed = closed; | 
|---|
| 101 | this->f = f; | 
|---|
| 102 | } | 
|---|
| 103 | // ^ function pointers convert implicitly to Fn, as they have an empty | 
|---|
| 104 | // assertion list here | 
|---|
| 105 |  | 
|---|
| 106 | forall(ttype Rtns, ttype Args) | 
|---|
| 107 | Rtns ?() ( Fn(Rtns, Args) fn, Args args ) { | 
|---|
| 108 | return fn.f( fn.closed, args ); | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | Using this `Fn` closure internally (even if it was never exposed to user | 
|---|
| 112 | programmers), the top example would codegen something like this, with `Fn` | 
|---|
| 113 | substituted for the implicit function pointers: | 
|---|
| 114 |  | 
|---|
| 115 | void double(size_t _sizeof_T, | 
|---|
| 116 | Fn(void, [void*, void*]) _assign_T, | 
|---|
| 117 | Fn(void, [void*, void*, void*]) _add_T, | 
|---|
| 118 | void *_rtn, | 
|---|
| 119 | void *x ) { | 
|---|
| 120 | _add_T( _rtn, x, x ); | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | void quadruple(size_t _sizeof_R, | 
|---|
| 124 | Fn(void, [void*, void*]) _assign_R, | 
|---|
| 125 | Fn(void, [void*, void*]) _double_R, | 
|---|
| 126 | void *_rtn, | 
|---|
| 127 | void *y ) { | 
|---|
| 128 | void *_tmp0 = alloca(_sizeof_R); | 
|---|
| 129 | _double_R( _rtn, (_double_R( _tmp0, y ), _tmp0) ); | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | void fred() { | 
|---|
| 133 | // closure wrapper for static function | 
|---|
| 134 | Fn(void, [void*, void*]) _thunk0 = { _builtin_assign_float }; | 
|---|
| 135 | // nested closure to adapt double() to _double_R() | 
|---|
| 136 | Fn(void, [void*, void*]) _thunk1 = { double, | 
|---|
| 137 | [sizeof(float), _builtin_assign_float, _builtin_add_float] }; | 
|---|
| 138 |  | 
|---|
| 139 | float magic; | 
|---|
| 140 | float _tmp1 = 10.5f; | 
|---|
| 141 | quadruple( sizeof(float), _thunk0, _thunk1, | 
|---|
| 142 | &magic, &_tmp1 ); | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | The main challenge with this approach is that the `Fn` closure is | 
|---|
| 146 | (necessarily) variable in size, as it can close over an arbitrary (but fixed | 
|---|
| 147 | at construction time) number of parameters. This will make memory management | 
|---|
| 148 | for it somewhat challenging, and writing the code in the translator to | 
|---|
| 149 | implement the function call operator passing a variable number of type | 
|---|
| 150 | assertions should also be non-trivial, but tractable. | 
|---|