1 | #include "rq_bench.hpp" |
---|
2 | #pragma GCC diagnostic push |
---|
3 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
---|
4 | #include <libfibre/fibre.h> |
---|
5 | #pragma GCC diagnostic pop |
---|
6 | |
---|
7 | struct Result { |
---|
8 | uint64_t count = 0; |
---|
9 | uint64_t dmigs = 0; |
---|
10 | uint64_t gmigs = 0; |
---|
11 | }; |
---|
12 | |
---|
13 | class __attribute__((aligned(128))) bench_sem { |
---|
14 | Fibre * volatile ptr = nullptr; |
---|
15 | public: |
---|
16 | inline bool wait() { |
---|
17 | static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull); |
---|
18 | for(;;) { |
---|
19 | Fibre * expected = this->ptr; |
---|
20 | if(expected == ready) { |
---|
21 | if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
22 | return false; |
---|
23 | } |
---|
24 | } |
---|
25 | else { |
---|
26 | /* paranoid */ assert( expected == nullptr ); |
---|
27 | if(__atomic_compare_exchange_n(&this->ptr, &expected, fibre_self(), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
28 | fibre_park(); |
---|
29 | return true; |
---|
30 | } |
---|
31 | } |
---|
32 | |
---|
33 | } |
---|
34 | } |
---|
35 | |
---|
36 | inline bool post() { |
---|
37 | static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull); |
---|
38 | for(;;) { |
---|
39 | Fibre * expected = this->ptr; |
---|
40 | if(expected == ready) return false; |
---|
41 | if(expected == nullptr) { |
---|
42 | if(__atomic_compare_exchange_n(&this->ptr, &expected, ready, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
43 | return false; |
---|
44 | } |
---|
45 | } |
---|
46 | else { |
---|
47 | if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
48 | fibre_unpark( expected ); |
---|
49 | return true; |
---|
50 | } |
---|
51 | } |
---|
52 | } |
---|
53 | } |
---|
54 | }; |
---|
55 | |
---|
56 | // ================================================== |
---|
57 | struct __attribute__((aligned(128))) MyData { |
---|
58 | uint64_t _p1[16]; // padding |
---|
59 | uint64_t * data; |
---|
60 | size_t len; |
---|
61 | BaseProcessor * ttid; |
---|
62 | size_t id; |
---|
63 | uint64_t _p2[16]; // padding |
---|
64 | |
---|
65 | MyData(size_t id, size_t size) |
---|
66 | : data( (uintptr_t *)aligned_alloc(128, size * sizeof(uint64_t)) ) |
---|
67 | , len( size ) |
---|
68 | , ttid( &Context::CurrProcessor() ) |
---|
69 | , id( id ) |
---|
70 | { |
---|
71 | for(size_t i = 0; i < this->len; i++) { |
---|
72 | this->data[i] = 0; |
---|
73 | } |
---|
74 | } |
---|
75 | |
---|
76 | uint64_t moved(BaseProcessor * ttid) { |
---|
77 | if(this->ttid == ttid) { |
---|
78 | return 0; |
---|
79 | } |
---|
80 | this->ttid = ttid; |
---|
81 | return 1; |
---|
82 | } |
---|
83 | |
---|
84 | __attribute__((noinline)) void access(size_t idx) { |
---|
85 | size_t l = this->len; |
---|
86 | this->data[idx % l] += 1; |
---|
87 | } |
---|
88 | }; |
---|
89 | |
---|
90 | // ================================================== |
---|
91 | struct __attribute__((aligned(128))) MyCtx { |
---|
92 | struct MyData * volatile data; |
---|
93 | |
---|
94 | struct { |
---|
95 | struct MySpot ** ptr; |
---|
96 | size_t len; |
---|
97 | } spots; |
---|
98 | |
---|
99 | bench_sem sem; |
---|
100 | |
---|
101 | Result result; |
---|
102 | |
---|
103 | bool share; |
---|
104 | size_t cnt; |
---|
105 | BaseProcessor * ttid; |
---|
106 | size_t id; |
---|
107 | |
---|
108 | MyCtx(MyData * d, MySpot ** spots, size_t len, size_t cnt, bool share, size_t id) |
---|
109 | : data( d ) |
---|
110 | , spots{ .ptr = spots, .len = len } |
---|
111 | , share( share ) |
---|
112 | , cnt( cnt ) |
---|
113 | , ttid( &Context::CurrProcessor() ) |
---|
114 | , id( id ) |
---|
115 | {} |
---|
116 | |
---|
117 | uint64_t moved(BaseProcessor * ttid) { |
---|
118 | if(this->ttid == ttid) { |
---|
119 | return 0; |
---|
120 | } |
---|
121 | this->ttid = ttid; |
---|
122 | return 1; |
---|
123 | } |
---|
124 | }; |
---|
125 | |
---|
126 | // ================================================== |
---|
127 | // Atomic object where a single thread can wait |
---|
128 | // May exchanges data |
---|
129 | struct __attribute__((aligned(128))) MySpot { |
---|
130 | MyCtx * volatile ptr; |
---|
131 | size_t id; |
---|
132 | uint64_t _p1[16]; // padding |
---|
133 | |
---|
134 | MySpot(size_t id) : ptr( nullptr ), id( id ) {} |
---|
135 | |
---|
136 | |
---|
137 | static inline MyCtx * one() { |
---|
138 | return reinterpret_cast<MyCtx *>(1); |
---|
139 | } |
---|
140 | |
---|
141 | // Main handshake of the code |
---|
142 | // Single seat, first thread arriving waits |
---|
143 | // Next threads unblocks current one and blocks in its place |
---|
144 | // if share == true, exchange data in the process |
---|
145 | bool put( MyCtx & ctx, MyData * data, bool share) { |
---|
146 | // Attempt to CAS our context into the seat |
---|
147 | for(;;) { |
---|
148 | MyCtx * expected = this->ptr; |
---|
149 | if (expected == one()) { // Seat is closed, return |
---|
150 | return true; |
---|
151 | } |
---|
152 | |
---|
153 | if (__atomic_compare_exchange_n(&this->ptr, &expected, &ctx, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
154 | if(expected) { |
---|
155 | if(share) { |
---|
156 | expected->data = data; |
---|
157 | } |
---|
158 | expected->sem.post(); |
---|
159 | } |
---|
160 | break; // We got the seat |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | // Block once on the seat |
---|
165 | ctx.sem.wait(); |
---|
166 | |
---|
167 | // Someone woke us up, get the new data |
---|
168 | return false; |
---|
169 | } |
---|
170 | |
---|
171 | // Shutdown the spot |
---|
172 | // Wake current thread and mark seat as closed |
---|
173 | void release() { |
---|
174 | struct MyCtx * val = __atomic_exchange_n(&this->ptr, one(), __ATOMIC_SEQ_CST); |
---|
175 | if (!val) { |
---|
176 | return; |
---|
177 | } |
---|
178 | |
---|
179 | // Someone was there, release them |
---|
180 | val->sem.post(); |
---|
181 | } |
---|
182 | }; |
---|
183 | |
---|
184 | // ================================================== |
---|
185 | // Random number generator, Go's native one is to slow and global |
---|
186 | uint64_t __xorshift64( uint64_t & state ) { |
---|
187 | uint64_t x = state; |
---|
188 | x ^= x << 13; |
---|
189 | x ^= x >> 7; |
---|
190 | x ^= x << 17; |
---|
191 | return state = x; |
---|
192 | } |
---|
193 | |
---|
194 | // ================================================== |
---|
195 | // Do some work by accessing 'cnt' cells in the array |
---|
196 | __attribute__((noinline)) void work(MyData & data, size_t cnt, uint64_t & state) { |
---|
197 | for (size_t i = 0; i < cnt; i++) { |
---|
198 | data.access(__xorshift64(state)); |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | void thread_main( MyCtx & ctx ) { |
---|
203 | uint64_t state = ctx.id; |
---|
204 | |
---|
205 | // Wait for start |
---|
206 | ctx.sem.wait(); |
---|
207 | |
---|
208 | // Main loop |
---|
209 | for(;;) { |
---|
210 | // Touch our current data, write to invalidate remote cache lines |
---|
211 | work( *ctx.data, ctx.cnt, state ); |
---|
212 | |
---|
213 | // Wait on a random spot |
---|
214 | uint64_t idx = __xorshift64(state) % ctx.spots.len; |
---|
215 | bool closed = ctx.spots.ptr[idx]->put(ctx, ctx.data, ctx.share); |
---|
216 | |
---|
217 | // Check if the experiment is over |
---|
218 | if (closed) break; |
---|
219 | if ( clock_mode && stop) break; |
---|
220 | if (!clock_mode && ctx.result.count >= stop_count) break; |
---|
221 | |
---|
222 | // Check everything is consistent |
---|
223 | assert( ctx.data ); |
---|
224 | |
---|
225 | // write down progress and check migrations |
---|
226 | BaseProcessor * ttid = &Context::CurrProcessor(); |
---|
227 | ctx.result.count += 1; |
---|
228 | ctx.result.gmigs += ctx.moved(ttid); |
---|
229 | ctx.result.dmigs += ctx.data->moved(ttid); |
---|
230 | } |
---|
231 | |
---|
232 | __atomic_fetch_add(&threads_left, -1, __ATOMIC_SEQ_CST); |
---|
233 | } |
---|
234 | |
---|
235 | // ================================================== |
---|
236 | int main(int argc, char * argv[]) { |
---|
237 | unsigned wsize = 2; |
---|
238 | unsigned wcnt = 2; |
---|
239 | unsigned nspots = 0; |
---|
240 | bool share = false; |
---|
241 | option_t opt[] = { |
---|
242 | BENCH_OPT, |
---|
243 | { 'n', "nspots", "Number of spots where threads sleep (nthreads - nspots are active at the same time)", nspots}, |
---|
244 | { 'w', "worksize", "Size of the array for each threads, in words (64bit)", wsize}, |
---|
245 | { 'c', "workcnt" , "Number of words to touch when working (random pick, cells can be picked more than once)", wcnt }, |
---|
246 | { 's', "share" , "Pass the work data to the next thread when blocking", share, parse_truefalse } |
---|
247 | }; |
---|
248 | BENCH_OPT_PARSE("libfibre cycle benchmark"); |
---|
249 | |
---|
250 | std::cout.imbue(std::locale("")); |
---|
251 | setlocale(LC_ALL, ""); |
---|
252 | |
---|
253 | unsigned long long global_count = 0; |
---|
254 | unsigned long long global_gmigs = 0; |
---|
255 | unsigned long long global_dmigs = 0; |
---|
256 | |
---|
257 | if( nspots == 0 ) { nspots = nthreads - nprocs; } |
---|
258 | |
---|
259 | uint64_t start, end; |
---|
260 | { |
---|
261 | FibreInit(1, nprocs); |
---|
262 | MyData * data_arrays[nthreads]; |
---|
263 | for(size_t i = 0; i < nthreads; i++) { |
---|
264 | data_arrays[i] = new MyData( i, wsize ); |
---|
265 | } |
---|
266 | |
---|
267 | MySpot * spots[nspots]; |
---|
268 | for(unsigned i = 0; i < nspots; i++) { |
---|
269 | spots[i] = new MySpot{ i }; |
---|
270 | } |
---|
271 | |
---|
272 | threads_left = nthreads - nspots; |
---|
273 | Fibre * threads[nthreads]; |
---|
274 | MyCtx * thddata[nthreads]; |
---|
275 | { |
---|
276 | for(size_t i = 0; i < nthreads; i++) { |
---|
277 | thddata[i] = new MyCtx( |
---|
278 | data_arrays[i], |
---|
279 | spots, |
---|
280 | nspots, |
---|
281 | wcnt, |
---|
282 | share, |
---|
283 | i |
---|
284 | ); |
---|
285 | threads[i] = new Fibre( reinterpret_cast<void (*)(void *)>(thread_main), thddata[i] ); |
---|
286 | } |
---|
287 | |
---|
288 | bool is_tty = isatty(STDOUT_FILENO); |
---|
289 | start = getTimeNsec(); |
---|
290 | |
---|
291 | for(size_t i = 0; i < nthreads; i++) { |
---|
292 | thddata[i]->sem.post(); |
---|
293 | } |
---|
294 | wait<Fibre>(start, is_tty); |
---|
295 | |
---|
296 | stop = true; |
---|
297 | end = getTimeNsec(); |
---|
298 | printf("\nDone\n"); |
---|
299 | |
---|
300 | for(size_t i = 0; i < nthreads; i++) { |
---|
301 | thddata[i]->sem.post(); |
---|
302 | fibre_join( threads[i], nullptr ); |
---|
303 | global_count += thddata[i]->result.count; |
---|
304 | global_gmigs += thddata[i]->result.gmigs; |
---|
305 | global_dmigs += thddata[i]->result.dmigs; |
---|
306 | } |
---|
307 | } |
---|
308 | |
---|
309 | for(size_t i = 0; i < nthreads; i++) { |
---|
310 | delete( data_arrays[i] ); |
---|
311 | } |
---|
312 | |
---|
313 | for(size_t i = 0; i < nspots; i++) { |
---|
314 | delete( spots[i] ); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | printf("Duration (ms) : %'ld\n", to_miliseconds(end - start)); |
---|
319 | printf("Number of processors : %'d\n", nprocs); |
---|
320 | printf("Number of threads : %'d\n", nthreads); |
---|
321 | printf("Number of spots : %'d\n", nspots); |
---|
322 | printf("Work size (64bit words): %'15u\n", wsize); |
---|
323 | printf("Total Operations(ops) : %'15llu\n", global_count); |
---|
324 | printf("Total G Migrations : %'15llu\n", global_gmigs); |
---|
325 | printf("Total D Migrations : %'15llu\n", global_dmigs); |
---|
326 | printf("Ops per second : %'18.2lf\n", ((double)global_count) / to_fseconds(end - start)); |
---|
327 | printf("ns per ops : %'18.2lf\n", ((double)(end - start)) / global_count); |
---|
328 | printf("Ops per threads : %'15llu\n", global_count / nthreads); |
---|
329 | printf("Ops per procs : %'15llu\n", global_count / nprocs); |
---|
330 | printf("Ops/sec/procs : %'18.2lf\n", (((double)global_count) / nprocs) / to_fseconds(end - start)); |
---|
331 | printf("ns per ops/procs : %'18.2lf\n", ((double)(end - start)) / (global_count / nprocs)); |
---|
332 | fflush(stdout); |
---|
333 | } |
---|