1 | #include "rq_bench.hpp"
|
---|
2 | #pragma GCC diagnostic push
|
---|
3 | #pragma GCC diagnostic ignored "-Wunused-parameter"
|
---|
4 | #include <libfibre/fibre.h>
|
---|
5 | #pragma GCC diagnostic pop
|
---|
6 |
|
---|
7 | struct Result {
|
---|
8 | uint64_t count = 0;
|
---|
9 | uint64_t dmigs = 0;
|
---|
10 | uint64_t gmigs = 0;
|
---|
11 | };
|
---|
12 |
|
---|
13 | class __attribute__((aligned(128))) bench_sem {
|
---|
14 | Fibre * volatile ptr = nullptr;
|
---|
15 | public:
|
---|
16 | inline bool wait() {
|
---|
17 | static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);
|
---|
18 | for(;;) {
|
---|
19 | Fibre * expected = this->ptr;
|
---|
20 | if(expected == ready) {
|
---|
21 | if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
22 | return false;
|
---|
23 | }
|
---|
24 | }
|
---|
25 | else {
|
---|
26 | /* paranoid */ assert( expected == nullptr );
|
---|
27 | if(__atomic_compare_exchange_n(&this->ptr, &expected, fibre_self(), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
28 | fibre_park();
|
---|
29 | return true;
|
---|
30 | }
|
---|
31 | }
|
---|
32 |
|
---|
33 | }
|
---|
34 | }
|
---|
35 |
|
---|
36 | inline bool post() {
|
---|
37 | static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);
|
---|
38 | for(;;) {
|
---|
39 | Fibre * expected = this->ptr;
|
---|
40 | if(expected == ready) return false;
|
---|
41 | if(expected == nullptr) {
|
---|
42 | if(__atomic_compare_exchange_n(&this->ptr, &expected, ready, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
43 | return false;
|
---|
44 | }
|
---|
45 | }
|
---|
46 | else {
|
---|
47 | if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
48 | fibre_unpark( expected );
|
---|
49 | return true;
|
---|
50 | }
|
---|
51 | }
|
---|
52 | }
|
---|
53 | }
|
---|
54 | };
|
---|
55 |
|
---|
56 | // ==================================================
|
---|
57 | struct __attribute__((aligned(128))) MyData {
|
---|
58 | uint64_t _p1[16]; // padding
|
---|
59 | uint64_t * data;
|
---|
60 | size_t len;
|
---|
61 | BaseProcessor * ttid;
|
---|
62 | size_t id;
|
---|
63 | uint64_t _p2[16]; // padding
|
---|
64 |
|
---|
65 | MyData(size_t id, size_t size)
|
---|
66 | : data( (uintptr_t *)aligned_alloc(128, size * sizeof(uint64_t)) )
|
---|
67 | , len( size )
|
---|
68 | , ttid( &Context::CurrProcessor() )
|
---|
69 | , id( id )
|
---|
70 | {
|
---|
71 | for(size_t i = 0; i < this->len; i++) {
|
---|
72 | this->data[i] = 0;
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | uint64_t moved(BaseProcessor * ttid) {
|
---|
77 | if(this->ttid == ttid) {
|
---|
78 | return 0;
|
---|
79 | }
|
---|
80 | this->ttid = ttid;
|
---|
81 | return 1;
|
---|
82 | }
|
---|
83 |
|
---|
84 | __attribute__((noinline)) void access(size_t idx) {
|
---|
85 | size_t l = this->len;
|
---|
86 | this->data[idx % l] += 1;
|
---|
87 | }
|
---|
88 | };
|
---|
89 |
|
---|
90 | // ==================================================
|
---|
91 | struct __attribute__((aligned(128))) MyCtx {
|
---|
92 | struct MyData * volatile data;
|
---|
93 |
|
---|
94 | struct {
|
---|
95 | struct MySpot ** ptr;
|
---|
96 | size_t len;
|
---|
97 | } spots;
|
---|
98 |
|
---|
99 | bench_sem sem;
|
---|
100 |
|
---|
101 | Result result;
|
---|
102 |
|
---|
103 | bool share;
|
---|
104 | size_t cnt;
|
---|
105 | BaseProcessor * ttid;
|
---|
106 | size_t id;
|
---|
107 |
|
---|
108 | MyCtx(MyData * d, MySpot ** spots, size_t len, size_t cnt, bool share, size_t id)
|
---|
109 | : data( d )
|
---|
110 | , spots{ .ptr = spots, .len = len }
|
---|
111 | , share( share )
|
---|
112 | , cnt( cnt )
|
---|
113 | , ttid( &Context::CurrProcessor() )
|
---|
114 | , id( id )
|
---|
115 | {}
|
---|
116 |
|
---|
117 | uint64_t moved(BaseProcessor * ttid) {
|
---|
118 | if(this->ttid == ttid) {
|
---|
119 | return 0;
|
---|
120 | }
|
---|
121 | this->ttid = ttid;
|
---|
122 | return 1;
|
---|
123 | }
|
---|
124 | };
|
---|
125 |
|
---|
126 | // ==================================================
|
---|
127 | // Atomic object where a single thread can wait
|
---|
128 | // May exchanges data
|
---|
129 | struct __attribute__((aligned(128))) MySpot {
|
---|
130 | MyCtx * volatile ptr;
|
---|
131 | size_t id;
|
---|
132 | uint64_t _p1[16]; // padding
|
---|
133 |
|
---|
134 | MySpot(size_t id) : ptr( nullptr ), id( id ) {}
|
---|
135 |
|
---|
136 |
|
---|
137 | static inline MyCtx * one() {
|
---|
138 | return reinterpret_cast<MyCtx *>(1);
|
---|
139 | }
|
---|
140 |
|
---|
141 | // Main handshake of the code
|
---|
142 | // Single seat, first thread arriving waits
|
---|
143 | // Next threads unblocks current one and blocks in its place
|
---|
144 | // if share == true, exchange data in the process
|
---|
145 | bool put( MyCtx & ctx, MyData * data, bool share) {
|
---|
146 | // Attempt to CAS our context into the seat
|
---|
147 | for(;;) {
|
---|
148 | MyCtx * expected = this->ptr;
|
---|
149 | if (expected == one()) { // Seat is closed, return
|
---|
150 | return true;
|
---|
151 | }
|
---|
152 |
|
---|
153 | if (__atomic_compare_exchange_n(&this->ptr, &expected, &ctx, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
154 | if(expected) {
|
---|
155 | if(share) {
|
---|
156 | expected->data = data;
|
---|
157 | }
|
---|
158 | expected->sem.post();
|
---|
159 | }
|
---|
160 | break; // We got the seat
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | // Block once on the seat
|
---|
165 | ctx.sem.wait();
|
---|
166 |
|
---|
167 | // Someone woke us up, get the new data
|
---|
168 | return false;
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Shutdown the spot
|
---|
172 | // Wake current thread and mark seat as closed
|
---|
173 | void release() {
|
---|
174 | struct MyCtx * val = __atomic_exchange_n(&this->ptr, one(), __ATOMIC_SEQ_CST);
|
---|
175 | if (!val) {
|
---|
176 | return;
|
---|
177 | }
|
---|
178 |
|
---|
179 | // Someone was there, release them
|
---|
180 | val->sem.post();
|
---|
181 | }
|
---|
182 | };
|
---|
183 |
|
---|
184 | // ==================================================
|
---|
185 | // Random number generator, Go's native one is to slow and global
|
---|
186 | uint64_t __xorshift64( uint64_t & state ) {
|
---|
187 | uint64_t x = state;
|
---|
188 | x ^= x << 13;
|
---|
189 | x ^= x >> 7;
|
---|
190 | x ^= x << 17;
|
---|
191 | return state = x;
|
---|
192 | }
|
---|
193 |
|
---|
194 | // ==================================================
|
---|
195 | // Do some work by accessing 'cnt' cells in the array
|
---|
196 | __attribute__((noinline)) void work(MyData & data, size_t cnt, uint64_t & state) {
|
---|
197 | for (size_t i = 0; i < cnt; i++) {
|
---|
198 | data.access(__xorshift64(state));
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | void thread_main( MyCtx & ctx ) {
|
---|
203 | uint64_t state = ctx.id;
|
---|
204 |
|
---|
205 | // Wait for start
|
---|
206 | ctx.sem.wait();
|
---|
207 |
|
---|
208 | // Main loop
|
---|
209 | for(;;) {
|
---|
210 | // Touch our current data, write to invalidate remote cache lines
|
---|
211 | work( *ctx.data, ctx.cnt, state );
|
---|
212 |
|
---|
213 | // Wait on a random spot
|
---|
214 | uint64_t idx = __xorshift64(state) % ctx.spots.len;
|
---|
215 | bool closed = ctx.spots.ptr[idx]->put(ctx, ctx.data, ctx.share);
|
---|
216 |
|
---|
217 | // Check if the experiment is over
|
---|
218 | if (closed) break;
|
---|
219 | if ( clock_mode && stop) break;
|
---|
220 | if (!clock_mode && ctx.result.count >= stop_count) break;
|
---|
221 |
|
---|
222 | // Check everything is consistent
|
---|
223 | assert( ctx.data );
|
---|
224 |
|
---|
225 | // write down progress and check migrations
|
---|
226 | BaseProcessor * ttid = &Context::CurrProcessor();
|
---|
227 | ctx.result.count += 1;
|
---|
228 | ctx.result.gmigs += ctx.moved(ttid);
|
---|
229 | ctx.result.dmigs += ctx.data->moved(ttid);
|
---|
230 | }
|
---|
231 |
|
---|
232 | __atomic_fetch_add(&threads_left, -1, __ATOMIC_SEQ_CST);
|
---|
233 | }
|
---|
234 |
|
---|
235 | // ==================================================
|
---|
236 | int main(int argc, char * argv[]) {
|
---|
237 | unsigned wsize = 2;
|
---|
238 | unsigned wcnt = 2;
|
---|
239 | unsigned nspots = 0;
|
---|
240 | bool share = false;
|
---|
241 | option_t opt[] = {
|
---|
242 | BENCH_OPT,
|
---|
243 | { 'n', "nspots", "Number of spots where threads sleep (nthreads - nspots are active at the same time)", nspots},
|
---|
244 | { 'w', "worksize", "Size of the array for each threads, in words (64bit)", wsize},
|
---|
245 | { 'c', "workcnt" , "Number of words to touch when working (random pick, cells can be picked more than once)", wcnt },
|
---|
246 | { 's', "share" , "Pass the work data to the next thread when blocking", share, parse_truefalse }
|
---|
247 | };
|
---|
248 | BENCH_OPT_PARSE("libfibre cycle benchmark");
|
---|
249 |
|
---|
250 | std::cout.imbue(std::locale(""));
|
---|
251 | setlocale(LC_ALL, "");
|
---|
252 |
|
---|
253 | unsigned long long global_count = 0;
|
---|
254 | unsigned long long global_gmigs = 0;
|
---|
255 | unsigned long long global_dmigs = 0;
|
---|
256 |
|
---|
257 | if( nspots == 0 ) { nspots = nthreads - nprocs; }
|
---|
258 |
|
---|
259 | uint64_t start, end;
|
---|
260 | {
|
---|
261 | FibreInit(1, nprocs);
|
---|
262 | MyData * data_arrays[nthreads];
|
---|
263 | for(size_t i = 0; i < nthreads; i++) {
|
---|
264 | data_arrays[i] = new MyData( i, wsize );
|
---|
265 | }
|
---|
266 |
|
---|
267 | MySpot * spots[nspots];
|
---|
268 | for(unsigned i = 0; i < nspots; i++) {
|
---|
269 | spots[i] = new MySpot{ i };
|
---|
270 | }
|
---|
271 |
|
---|
272 | threads_left = nthreads - nspots;
|
---|
273 | Fibre * threads[nthreads];
|
---|
274 | MyCtx * thddata[nthreads];
|
---|
275 | {
|
---|
276 | for(size_t i = 0; i < nthreads; i++) {
|
---|
277 | thddata[i] = new MyCtx(
|
---|
278 | data_arrays[i],
|
---|
279 | spots,
|
---|
280 | nspots,
|
---|
281 | wcnt,
|
---|
282 | share,
|
---|
283 | i
|
---|
284 | );
|
---|
285 | threads[i] = new Fibre( reinterpret_cast<void (*)(void *)>(thread_main), thddata[i] );
|
---|
286 | }
|
---|
287 |
|
---|
288 | bool is_tty = isatty(STDOUT_FILENO);
|
---|
289 | start = getTimeNsec();
|
---|
290 |
|
---|
291 | for(size_t i = 0; i < nthreads; i++) {
|
---|
292 | thddata[i]->sem.post();
|
---|
293 | }
|
---|
294 | wait<Fibre>(start, is_tty);
|
---|
295 |
|
---|
296 | stop = true;
|
---|
297 | end = getTimeNsec();
|
---|
298 | printf("\nDone\n");
|
---|
299 |
|
---|
300 | for(size_t i = 0; i < nthreads; i++) {
|
---|
301 | thddata[i]->sem.post();
|
---|
302 | fibre_join( threads[i], nullptr );
|
---|
303 | global_count += thddata[i]->result.count;
|
---|
304 | global_gmigs += thddata[i]->result.gmigs;
|
---|
305 | global_dmigs += thddata[i]->result.dmigs;
|
---|
306 | }
|
---|
307 | }
|
---|
308 |
|
---|
309 | for(size_t i = 0; i < nthreads; i++) {
|
---|
310 | delete( data_arrays[i] );
|
---|
311 | }
|
---|
312 |
|
---|
313 | for(size_t i = 0; i < nspots; i++) {
|
---|
314 | delete( spots[i] );
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | printf("Duration (ms) : %'ld\n", to_miliseconds(end - start));
|
---|
319 | printf("Number of processors : %'d\n", nprocs);
|
---|
320 | printf("Number of threads : %'d\n", nthreads);
|
---|
321 | printf("Number of spots : %'d\n", nspots);
|
---|
322 | printf("Work size (64bit words): %'15u\n", wsize);
|
---|
323 | printf("Total Operations(ops) : %'15llu\n", global_count);
|
---|
324 | printf("Total G Migrations : %'15llu\n", global_gmigs);
|
---|
325 | printf("Total D Migrations : %'15llu\n", global_dmigs);
|
---|
326 | printf("Ops per second : %'18.2lf\n", ((double)global_count) / to_fseconds(end - start));
|
---|
327 | printf("ns per ops : %'18.2lf\n", ((double)(end - start)) / global_count);
|
---|
328 | printf("Ops per threads : %'15llu\n", global_count / nthreads);
|
---|
329 | printf("Ops per procs : %'15llu\n", global_count / nprocs);
|
---|
330 | printf("Ops/sec/procs : %'18.2lf\n", (((double)global_count) / nprocs) / to_fseconds(end - start));
|
---|
331 | printf("ns per ops/procs : %'18.2lf\n", ((double)(end - start)) / (global_count / nprocs));
|
---|
332 | fflush(stdout);
|
---|
333 | }
|
---|