| 1 | #!/usr/bin/python3
|
|---|
| 2 | """
|
|---|
| 3 | Python Script to plot values obtained by the rmit.py script
|
|---|
| 4 | Runs a R.I.P.L.
|
|---|
| 5 |
|
|---|
| 6 | ./plot.py
|
|---|
| 7 | -t trials
|
|---|
| 8 | -o option:values
|
|---|
| 9 | """
|
|---|
| 10 |
|
|---|
| 11 | import argparse
|
|---|
| 12 | import itertools
|
|---|
| 13 | import json
|
|---|
| 14 | import math
|
|---|
| 15 | import numpy
|
|---|
| 16 | import re
|
|---|
| 17 | import statistics
|
|---|
| 18 | import sys
|
|---|
| 19 |
|
|---|
| 20 | import matplotlib.pyplot as plt
|
|---|
| 21 | from matplotlib.ticker import EngFormatter
|
|---|
| 22 |
|
|---|
| 23 | class Field:
|
|---|
| 24 | def __init__(self, unit, _min, _log):
|
|---|
| 25 | self.unit = unit
|
|---|
| 26 | self.min = _min
|
|---|
| 27 | self.log = _log
|
|---|
| 28 |
|
|---|
| 29 | field_names = {
|
|---|
| 30 | "ns per ops" : Field('ns' , 0, False),
|
|---|
| 31 | "Number of processors" : Field('' , 1, False),
|
|---|
| 32 | "Ops per procs" : Field('Ops' , 0, False),
|
|---|
| 33 | "Ops per threads" : Field('Ops' , 0, False),
|
|---|
| 34 | "ns per ops/procs" : Field('ns' , 0, False),
|
|---|
| 35 | "Number of threads" : Field('thrd' , 1, False),
|
|---|
| 36 | "Total Operations(ops)" : Field('Ops' , 0, False),
|
|---|
| 37 | "Ops/sec/procs" : Field('Ops' , 0, False),
|
|---|
| 38 | "Total blocks" : Field('Blocks', 0, False),
|
|---|
| 39 | "Ops per second" : Field('Ops' , 0, False),
|
|---|
| 40 | "Cycle size (# thrds)" : Field('thrd' , 1, False),
|
|---|
| 41 | "Duration (ms)" : Field('ms' , 0, False),
|
|---|
| 42 | "Target QPS" : Field('QPS' , 0, False),
|
|---|
| 43 | "Actual QPS" : Field('QPS' , 0, False),
|
|---|
| 44 | "Median Read Latency" : Field('us' , 0, True),
|
|---|
| 45 | "Tail Read Latency" : Field('us' , 0, True),
|
|---|
| 46 | "Median Update Latency" : Field('us' , 0, True),
|
|---|
| 47 | "Tail Update Latency" : Field('us' , 0, True),
|
|---|
| 48 | }
|
|---|
| 49 |
|
|---|
| 50 | def plot(in_data, x, y, out):
|
|---|
| 51 | fig, ax = plt.subplots()
|
|---|
| 52 | colors = itertools.cycle(['#0095e3','#006cb4','#69df00','#0aa000','#fb0300','#e30002','#fd8f00','#ff7f00','#8f00d6','#4b009a','#ffff00','#b13f00'])
|
|---|
| 53 | series = {} # scatter data for each individual data point
|
|---|
| 54 | groups = {} # data points for x value
|
|---|
| 55 |
|
|---|
| 56 | print("Preparing Data")
|
|---|
| 57 |
|
|---|
| 58 | for entry in in_data:
|
|---|
| 59 | name = entry[0]
|
|---|
| 60 | if not name in series:
|
|---|
| 61 | series[name] = {'x':[], 'y':[]}
|
|---|
| 62 |
|
|---|
| 63 | if not name in groups:
|
|---|
| 64 | groups[name] = {}
|
|---|
| 65 |
|
|---|
| 66 | if x in entry[2] and y in entry[2]:
|
|---|
| 67 | xval = entry[2][x]
|
|---|
| 68 | yval = entry[2][y]
|
|---|
| 69 | series[name]['x'].append(xval)
|
|---|
| 70 | series[name]['y'].append(yval)
|
|---|
| 71 |
|
|---|
| 72 | if not xval in groups[name]:
|
|---|
| 73 | groups[name][xval] = []
|
|---|
| 74 |
|
|---|
| 75 | groups[name][xval].append(yval)
|
|---|
| 76 |
|
|---|
| 77 | print("Preparing Lines")
|
|---|
| 78 |
|
|---|
| 79 | lines = {} # lines from groups with min, max, median, etc.
|
|---|
| 80 | for name, data in groups.items():
|
|---|
| 81 | if not name in lines:
|
|---|
| 82 | lines[name] = { 'x': [], 'min':[], 'max':[], 'med':[], 'avg':[] }
|
|---|
| 83 |
|
|---|
| 84 | for xkey in sorted(data):
|
|---|
| 85 | ys = data[xkey]
|
|---|
| 86 | lines[name]['x'] .append(xkey)
|
|---|
| 87 | lines[name]['min'].append(min(ys))
|
|---|
| 88 | lines[name]['max'].append(max(ys))
|
|---|
| 89 | lines[name]['med'].append(statistics.median(ys))
|
|---|
| 90 | lines[name]['avg'].append(statistics.mean(ys))
|
|---|
| 91 |
|
|---|
| 92 | print("Making Plots")
|
|---|
| 93 |
|
|---|
| 94 | for name, data in series.items():
|
|---|
| 95 | _col = next(colors)
|
|---|
| 96 | plt.scatter(data['x'], data['y'], color=_col, label=name, marker='x')
|
|---|
| 97 | plt.plot(lines[name]['x'], lines[name]['min'], '--', color=_col)
|
|---|
| 98 | plt.plot(lines[name]['x'], lines[name]['max'], '--', color=_col)
|
|---|
| 99 | plt.plot(lines[name]['x'], lines[name]['med'], '-', color=_col)
|
|---|
| 100 |
|
|---|
| 101 | print("Calculating Extremums")
|
|---|
| 102 |
|
|---|
| 103 | mx = max([max(s['x']) for s in series.values()])
|
|---|
| 104 | my = max([max(s['y']) for s in series.values()])
|
|---|
| 105 |
|
|---|
| 106 | print("Finishing Plots")
|
|---|
| 107 |
|
|---|
| 108 | plt.ylabel(y)
|
|---|
| 109 | # plt.xticks(range(1, math.ceil(mx) + 1))
|
|---|
| 110 | plt.xlabel(x)
|
|---|
| 111 | plt.grid(b = True)
|
|---|
| 112 | ax.xaxis.set_major_formatter( EngFormatter(unit=field_names[x].unit) )
|
|---|
| 113 | if field_names[x].log:
|
|---|
| 114 | ax.set_xscale('log')
|
|---|
| 115 | else:
|
|---|
| 116 | plt.xlim(field_names[x].min, mx + 0.25)
|
|---|
| 117 |
|
|---|
| 118 | ax.yaxis.set_major_formatter( EngFormatter(unit=field_names[y].unit) )
|
|---|
| 119 | if field_names[y].log:
|
|---|
| 120 | ax.set_yscale('log')
|
|---|
| 121 | else:
|
|---|
| 122 | plt.ylim(field_names[y].min, my*1.2)
|
|---|
| 123 |
|
|---|
| 124 | plt.legend(loc='upper left')
|
|---|
| 125 |
|
|---|
| 126 | print("Results Ready")
|
|---|
| 127 | if out:
|
|---|
| 128 | plt.savefig(out)
|
|---|
| 129 | else:
|
|---|
| 130 | plt.show()
|
|---|
| 131 |
|
|---|
| 132 |
|
|---|
| 133 | if __name__ == "__main__":
|
|---|
| 134 | # ================================================================================
|
|---|
| 135 | # parse command line arguments
|
|---|
| 136 | parser = argparse.ArgumentParser(description='Python Script to draw R.M.I.T. results')
|
|---|
| 137 | parser.add_argument('-f', '--file', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Input file")
|
|---|
| 138 | parser.add_argument('-o', '--out', nargs='?', type=str, default=None, help="Output file")
|
|---|
| 139 | parser.add_argument('-y', nargs='?', type=str, default="", help="Which field to use as the Y axis")
|
|---|
| 140 | parser.add_argument('-x', nargs='?', type=str, default="", help="Which field to use as the X axis")
|
|---|
| 141 |
|
|---|
| 142 | options = parser.parse_args()
|
|---|
| 143 |
|
|---|
| 144 | # ================================================================================
|
|---|
| 145 | # load data
|
|---|
| 146 | try :
|
|---|
| 147 | data = json.load(options.file)
|
|---|
| 148 | except :
|
|---|
| 149 | print('ERROR: could not read input', file=sys.stderr)
|
|---|
| 150 | parser.print_help(sys.stderr)
|
|---|
| 151 | sys.exit(1)
|
|---|
| 152 |
|
|---|
| 153 | # ================================================================================
|
|---|
| 154 | # identify the keys
|
|---|
| 155 |
|
|---|
| 156 | series = set()
|
|---|
| 157 | fields = set()
|
|---|
| 158 |
|
|---|
| 159 | for entry in data:
|
|---|
| 160 | series.add(entry[0])
|
|---|
| 161 | for label in entry[2].keys():
|
|---|
| 162 | fields.add(label)
|
|---|
| 163 |
|
|---|
| 164 | if not options.out :
|
|---|
| 165 | print(series)
|
|---|
| 166 | print("fields: ", ' '.join(fields))
|
|---|
| 167 |
|
|---|
| 168 | wantx = "Number of processors"
|
|---|
| 169 | wanty = "ns per ops"
|
|---|
| 170 |
|
|---|
| 171 | if options.x:
|
|---|
| 172 | if options.x in field_names.keys():
|
|---|
| 173 | wantx = options.x
|
|---|
| 174 | else:
|
|---|
| 175 | print("Could not find X key '{}', defaulting to '{}'".format(options.x, wantx))
|
|---|
| 176 |
|
|---|
| 177 | if options.y:
|
|---|
| 178 | if options.y in field_names.keys():
|
|---|
| 179 | wanty = options.y
|
|---|
| 180 | else:
|
|---|
| 181 | print("Could not find Y key '{}', defaulting to '{}'".format(options.y, wanty))
|
|---|
| 182 |
|
|---|
| 183 |
|
|---|
| 184 | plot(data, wantx, wanty, options.out)
|
|---|