
Options for safer void* handling

C allows implicit conversions between void* and other pointer types, as per section 6.3.2.3.1 of the
standard. Making these implicit conversions explicit in Cforall would provide significant type-safety
benefits, and is precedented in C++. A weaker version of this proposal would be to allow implicit
conversions to void* (as a sort of "top type" for all pointer types), but to make the unsafe
conversion from void* back to a concrete pointer type an explicit conversion. However, int *p =
malloc(sizeof(int)); and friends are hugely common in C code, and rely on the unsafe implicit
conversion from the void* return type of malloc to the int* type of the variable - obviously it
would be too much of a source-compatibility break to disallow this for C code. We do already need
to wrap C code in an extern "C" block, though, so it is technically feasible to make the void*
conversions implicit in C but explicit in Cforall.

As a possible mitigation for calling C code with void*-based APIs, pointers-to-dtype are
calling-convention compatible with void*; we could read void* in function signatures as essentially
a fresh dtype type variable, e.g:

void* malloc(size_t)
 => forall(dtype T0) T0* malloc(size_t)
void qsort(void*, size_t, size_t, int (*)(const void*, const void*))
 => forall(dtype T0, dtype T1, dtype T2)
 void qsort(T0*, size_t, size_t, int (*)(const T1*, const T2*))

In this case, there would be no conversion needed to call malloc, just the polymorphic type binding.
This should handle many of the uses of void* in C.

This feature would even allow us to leverage some of Cforall's type safety to write better
declarations for legacy C API functions, like the following wrapper for qsort:

extern "C" { // turns off name-mangling so that this calls the C library
 // call-compatible type-safe qsort signature
 forall(dtype T)
 void qsort(T*, size_t, size_t, int (*)(const T*, const T*));

 // forbid type-unsafe C signature from resolving
 void qsort(void*, size_t, size_t, int (*)(const void*, const void*))
 = delete;
}

