// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // concurrency/future.hfa -- // // Author : Thierry Delisle & Peiran Hong & Colby Parsons & Peter Buhr // Created On : Wed Jan 06 17:33:18 2021 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Nov 17 08:58:38 2025 // Update Count : 164 // #pragma once #include "bits/locks.hfa" #include "monitor.hfa" #include "select.hfa" #include "locks.hfa" //-------------------------------------------------------------------------------------------------------- // future does not use future_t as it needs a lock to support multiple consumers. future_t is lockfree // and uses atomics which are not needed. //-------------------------------------------------------------------------------------------------------- forall( T ) { enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; struct future { int state; T result; exception_t * except; dlist( select_node ) waiters; futex_mutex lock; }; __CFA_SELECT_GET_TYPE( future(T) ); struct future_node { inline select_node; T * my_result; }; static inline { void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) { ((select_node &)this){ blocked_thread }; this.my_result = my_result; } void ?{}( future(T) & this ) with( this ) { waiters{}; except = 0p; state = FUTURE_EMPTY; lock{}; } void ^?{}( future(T) & this ) with( this ) { free( except ); } // Reset future back to original state void reset( future(T) & this ) with(this) { lock( lock ); if ( ! isEmpty( waiters ) ) abort("Attempting to reset a future with blocked waiters"); state = FUTURE_EMPTY; free( except ); except = 0p; unlock( lock ); } // check if the future is available // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); } // memcpy wrapper to help copy values void copy_T$( T & from, T & to ) { memcpy((void *)&to, (void *)&from, sizeof(T)); } bool fulfil$( future(T) & this ) with(this) { // helper bool ret_val = ! isEmpty( waiters ); state = FUTURE_FULFILLED; while ( ! isEmpty( waiters ) ) { if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case break; // if handle_OR returns false then waiters is empty so break select_node &s = remove_first( waiters ); if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks copy_T$( result, *(((future_node(T) &)s).my_result) ); wake_one( waiters, s ); } unlock( lock ); return ret_val; } // Fulfil the future, returns whether or not someone was unblocked bool fulfil( future(T) & this, T val ) with(this) { lock( lock ); if ( state != FUTURE_EMPTY ) abort("Attempting to fulfil a future that has already been fulfilled"); copy_T$( val, result ); return fulfil$( this ); } bool ?()( future(T) & this, T val ) { // alternate interface return fulfil( this, val ); } // Load an exception to the future, returns whether or not someone was unblocked bool fulfil( future(T) & this, exception_t * ex ) with(this) { lock( lock ); if ( state != FUTURE_EMPTY ) abort("Attempting to fulfil a future that has already been fulfilled"); except = ( exception_t * ) malloc( ex->virtual_table->size ); ex->virtual_table->copy( except, ex ); return fulfil$( this ); } bool ?()( future(T) & this, exception_t * ex ) { // alternate interface return fulfil( this, ex ); } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] get( future(T) & this ) with( this ) { void exceptCheck() { // helper if ( except ) { exception_t * ex = ( exception_t * ) alloca( except->virtual_table->size ); except->virtual_table->copy( ex, except ); unlock( lock ); throwResume * ex; } } lock( lock ); T ret_val; if ( state == FUTURE_FULFILLED ) { exceptCheck(); copy_T$( result, ret_val ); unlock( lock ); return [ret_val, false]; } future_node(T) node = { active_thread(), &ret_val }; insert_last( waiters, ((select_node &)node) ); unlock( lock ); park( ); exceptCheck(); return [ret_val, true]; } // Wait for the future to be fulfilled T get( future(T) & this ) { [T, bool] tt; tt = get(this); return tt.0; } T ?()( future(T) & this ) { // alternate interface return get( this ); } // Gets value if it is available and returns [ val, true ] // otherwise returns [ default_val, false] // will not block [T, bool] try_get( future(T) & this ) with(this) { lock( lock ); T ret_val; if ( state == FUTURE_FULFILLED ) { copy_T$( result, ret_val ); unlock( lock ); return [ret_val, true]; } unlock( lock ); return [ret_val, false]; } bool register_select( future(T) & this, select_node & s ) with(this) { lock( lock ); // check if we can complete operation. If so race to establish winner in special OR case if ( !s.park_counter && state != FUTURE_EMPTY ) { if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering unlock( lock ); return false; } } // future not ready -> insert select node and return if ( state == FUTURE_EMPTY ) { insert_last( waiters, s ); unlock( lock ); return false; } __make_select_node_available( s ); unlock( lock ); return true; } bool unregister_select( future(T) & this, select_node & s ) with(this) { if ( ! isListed( s ) ) return false; lock( lock ); if ( isListed( s ) ) remove( s ); unlock( lock ); return false; } bool on_selected( future(T) &, select_node & ) { return true; } } } //-------------------------------------------------------------------------------------------------------- // future_rc uses reference counting to eliminate explicit storage-management and support the waituntil // statement. //-------------------------------------------------------------------------------------------------------- forall( T ) { struct future_rc_impl$ { futex_mutex lock; // concurrent protection size_t refCnt; // number of references to future future(T) fut; // underlying future }; // future_rc_impl$ static inline { void incRef$( future_rc_impl$( T ) & impl ) with( impl ) { __atomic_fetch_add( &refCnt, 1, __ATOMIC_RELAXED ); // lock( lock ); // refCnt += 1; // unlock( lock ); } // incRef$ bool decRef$( future_rc_impl$( T ) & impl ) with( impl ) { return __atomic_fetch_add( &refCnt, -1, __ATOMIC_RELAXED ) == 1; // lock( lock ); // refCnt -= 1; // bool ret = refCnt == 0; // unlock( lock ); // return ret; } // decRef$ void ?{}( future_rc_impl$( T ) & frc ) with( frc ) { lock{}; // intialization refCnt = 1; } // ?{} void ^?{}( future_rc_impl$( T ) & frc ) with( frc ) { decRef$( frc ); } // ^?{} } // static inline struct future_rc { future_rc_impl$(T) * impl; }; // future_rc __CFA_SELECT_GET_TYPE( future_rc(T) ); static inline { void ?{}( future_rc( T ) & frc ) with( frc ) { impl = new(); } // ?{} void ?{}( future_rc( T ) & to, future_rc( T ) & from ) with( to ) { impl = from.impl; // point at new impl incRef$( *impl ); } // ?{} void ^?{}( future_rc( T ) & frc ) with( frc ) { if ( decRef$( *impl ) ) { delete( impl ); impl = 0p; } } // ^?{} future_rc( T ) & ?=?( future_rc( T ) & lhs, future_rc( T ) & rhs ) with( lhs ) { if ( impl == rhs.impl ) return lhs; // self assignment ? if ( decRef$( *impl ) ) { delete( impl ); impl = 0p; } // no references => delete current impl impl = rhs.impl; // point at new impl incRef$( *impl ); // and increment reference count return lhs; } // ?+? bool register_select( future_rc(T) & this, select_node & s ) with( this ) { return register_select( this.impl->fut, s ); } bool unregister_select( future_rc(T) & this, select_node & s ) with( this ) { return unregister_select( this.impl->fut, s ); } bool on_selected( future_rc(T) &, select_node & ) { return true; } // USED BY CLIENT bool available( future_rc( T ) & frc ) { return available( frc.impl->fut ); } // future result available ? bool fulfil( future_rc(T) & frc, T val ) with( frc ) { return fulfil( impl->fut, val ); } bool ?()( future_rc(T) & frc, T val ) { return fulfil( frc, val ); } // alternate interface int ?==?( future_rc( T ) & lhs, future_rc( T ) & rhs ) { return lhs.impl == rhs.impl; } // referential equality // USED BY SERVER T get( future_rc(T) & frc ) with( frc ) { return get( impl->fut ); } T ?()( future_rc(T) & frc ) with( frc ) { return get( frc ); } // alternate interface bool fulfil( future_rc(T) & frc, exception_t * ex ) with( frc ) { return fulfil( impl->fut, ex ); } bool ?()( future_rc(T) & frc, exception_t * ex ) { return fulfil( frc, ex ); } // alternate interface void reset( future_rc(T) & frc ) with( frc ) { reset( impl->fut ); } // mark future as empty (for reuse) } // static inline } // forall( T ) //-------------------------------------------------------------------------------------------------------- // These futures below do not support waituntil statements so they may not have as many features as 'future' // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future' // since it uses raw atomics and no locks // // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future' // since it is monitor based and also is not compatible with waituntil statement. //-------------------------------------------------------------------------------------------------------- forall( T ) { struct single_future { inline future_t; T result; }; static inline { // Reset future back to original state void reset(single_future(T) & this) { reset( (future_t&)this ); } // check if the future is available bool available( single_future(T) & this ) { return available( (future_t&)this ); } // Mark the future as abandoned, meaning it will be deleted by the server // This doesn't work beause of the potential need for a destructor // void abandon( single_future(T) & this ); // Fulfil the future, returns whether or not someone was unblocked thread$ * fulfil( single_future(T) & this, T result ) { this.result = result; return fulfil( (future_t&)this ); } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] wait( single_future(T) & this ) { bool r = wait( (future_t&)this ); return [this.result, r]; } // Wait for the future to be fulfilled T wait( single_future(T) & this ) { [T, bool] tt; tt = wait(this); return tt.0; } } } forall( T ) { monitor multi_future { inline future_t; condition blocked; bool has_first; T result; }; static inline { void ?{}(multi_future(T) & this) { this.has_first = false; } bool $first( multi_future(T) & mutex this ) { if ( this.has_first ) { wait( this.blocked ); return false; } this.has_first = true; return true; } void $first_done( multi_future(T) & mutex this ) { this.has_first = false; signal_all( this.blocked ); } // Reset future back to original state void reset(multi_future(T) & mutex this) { if ( this.has_first != false ) abort("Attempting to reset a multi_future with at least one blocked threads"); if ( ! empty( this.blocked ) ) abort("Attempting to reset a multi_future with multiple blocked threads"); reset( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) ); } // Fulfil the future, returns whether or not someone was unblocked bool fulfil( multi_future(T) & this, T result ) { this.result = result; return fulfil( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) ) != 0p; } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] wait( multi_future(T) & this ) { bool sw = $first( this ); bool w = !sw; if ( sw ) { w = wait( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) ); $first_done( this ); } return [this.result, w]; } // Wait for the future to be fulfilled T wait( multi_future(T) & this ) { return wait(this).0; } } }