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Chapter 1

Introdution

In \C" programs, new funtions are de�ned in terms of spei� types and the

funtions that are already de�ned for those types. Often programmers want to

provide the same funtion for several di�erent types (e.g, funtions to manipulate

matries of int and funtions to manipulate matries of double). \C" programmers

have no hoie but to write separate opies of eah funtion for eah type.

\C" funtions an be made more general by parameterizing them by type and by

operation. Unfortunately, in systems where these funtions are used extensively|

partiularly as operation parameters to other suh funtions|it beomes ompli-

ated and tedious to supply the type and operation parameters expliitly. In this pa-

per we propose a variant of \C"|alled \Sea"|that has funtions that are expli-

itly parameterized by type and operation. It then uses the type-inferene/overload-

resolution algorithm desribed in [Cormak 90℄ to automatially infer bindings for

these type and operation parameters at the appliation site.

For example in \C" we an de�ne a square funtion that takes a double ar-

gument, uses the double multiply operator and returns a double result. Using

\Overloading Polymorphism" we an de�ne a square funtion that operates on

any type that has a multiply operator:

forall a : a square(a x, exists a op*(a,a))

{

return x*x;

}

square(5) -> 5.0

square(5.0) -> 25.0

1



CHAPTER 1. INTRODUCTION 2

The goals of this projet are to integrate the \overloading polymorphism" type

system with \C", explore implementation issues by building a ompiler, and then

to experiment with the resulting language.



Chapter 2

Language De�nition

As the integration of the type system with \C" progressed, it beame apparent that,

while it would be easy to design a new language that was mostly ompatible with

\C", it would take a major design e�ort to get every feature of the new language

exatly ompatible with \C"'s already omplex language de�nition. Beause we

wanted to explore implementation issues, and beause there is a separate, parallel

projet where the integration of a similar type system with \C" is a major fous

[Dith�eld 92℄, we have eleted to use a mostly ompatible language de�nition. The

struture of this doument reets this hoie, with little attention paid to designing

an exatly ompatible language de�nition and onsiderable spae devoted to the

implementation and use of this style of language.

2.1 Overloading

All delarations of objets with \Sea" funtion type are overloaded. Delarations of

any other type of objet (inluding pointers to \Sea" funtions) use \C"'s normal

delaration system. There are only two ontexts in whih the \Sea" funtion type

ours 1) external \Sea" funtion delarations and 2) operation parameters. By

restriting the language so that only \Sea" funtions an be overloaded, we make

it possible to transform \Sea" programs so that no run-time losures are required.

(see hapter 3)

Two overloaded delarations with the exat same name and type interat in the

same way as normal \C" delarations with the same name. Thus overloaded de-

larations an be supplied with prototypes, and an be re-delared at inner sopes.

3



CHAPTER 2. LANGUAGE DEFINITION 4

Note that in \Sea", unlike in \C++", we an delare overloaded funtions that

di�er only in their return type.

The delaration of a normal (non-overloaded) name at an inner sope hides all

overloaded de�nitions for that name. This is neessary to prevent the addition of a

new external overloaded name from breaking the internal operation of an already

de�ned funtion. An overloaded delaration for a name that already has a normal

delaration (either at the urrent or an outer sope) is an error.

Overload resolution is done by the type inferener; the algorithm used will be

disussed in another setion of this paper.

2.2 Overloaded Polymorphi Funtions

We all the set of operations de�ned for a type its \algebra" (from the language

Russell [DD 85℄).

Using overloaded funtion de�nitions we an build algebras for di�erent types

that have a ommon set of operations in a ommon form.

The algebra for int is:

[int op*(int,int), int op+(int,int) ...℄

The algebra for double is:

[double op*(double, double), double op+(double,double)...℄

Both int and double have a multipliation operator of the form \t op*(t,t)"

where t is either int or double.

\Sea" polymorphi funtions are parameterized by a set of type variables and

a list of operation parameters. The type variables an be bound to any type as

long as the algebras for these types ontain the operations required to satisfy the

operation parameters. Thus the algebra desribed by the operation parameters for

eah type variable must be a subset of the algebra for the type we are binding to the

type variable. (We onsider operation parameters involving multiple type variables

as desribing an operation that is required for eah of the type variables.)

The following square funtion an be applied to a parameter of any type a,

provided that a's algebra ontains \[a op*(a,a)℄".

forall a : a square(a x, exists a op*(a,a))
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{

return x*x;

}

The square funtion an be applied to both ints and doubles, so the square funtion

extends the algebras for both ints and doubles.

The algebra for int is now:

[int op*(int,int), int op+(int,int), int square(int) ...℄

The algebra for double is now:

[double op*(double, double), double op+(double,double),

double square(double)...℄

The speialized square funtion is now available to satisfy the requirements of

another polymorphi funtion. Note that we stored a speialized version of square

in the int and double algebras; in order to generate this speialized square we need

some sort of losure mehanism (see hapter 3.)

The ompiler never atually has a list of all the operations in an algebra. Suh

a list would often not be �nite in length. Instead, the type inferener reursively

onstruts algebras on demand in order to satisfy the requirements of polymorphi

funtion speializations. (Either due to an appliation to atual arguments, or in

an attempt to reate an algebra to satisfy a speialization already under way.)

2.2.1 Syntax

The syntax for a polymorphi funtion delaration is as follows: (Simpli�ed version-

the syntax beomes onsiderably more omplex after integration with all of \C"'s

artifats.)

"forall" typevarlist : return_type funtion_name(parm_or_exist_del, ...)

parm or exist del is either a normal parameter delaration or:

"exists" funtion_delaration

The type parameter delaration list was put at the beginning of the funtion de-

laration so that the type parameters will be available for delaring the funtion

return value.
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2.3 Type Generators

Every type other than void has a base set of operations. (If a type has no operations

then it is equivalent to void.) The built-in types are de�ned with arithmeti and

logial operations. For user-de�ned types, eah type onstrutor has an assoiated

set of \aess" operations. In \C" these aess operations are not normal funtions,

and as suh are not part of the algebra of a type.

We would like to be able to write polymorphi funtions that ould operate over

all onstruted types with a similar struture (i.e. all vetors). One way to do this

would be to make these aess funtions available as normal funtions.

Using this tehnique we ould write a binary searh routine that would operate

on any type of vetor:

forall elem,elem_ptr : int binary_searh(elem_ptr x, int len,

exists elem op*(elem_ptr),

exists int ompare(elem,elem));

Or a print list routine that operated on any type that had a next and a data �eld:

forall list_ptr, elem : print(list_ptr list_head,

exists list_ptr get_next(list_ptr),

exists elem get_data(list_ptr),

exists void print(elem));

This is not a very onvenient way to write polymorphi data struture manipulation

routines.

Instead, in \Sea", parameter types an be delared in terms of type onstrutors

applied to type parameters. The type inferener will make sure the struture of

the argument type mathes the struture of the parameter type. Beause type

onstrutors are used to build the parameter type, appropriate polymorphi aess

funtions are automatially available. The above funtions an now be rewritten

as follows:

forall elem: int binary_searh(elem *x, int len,

exists int ompare(elem,elem));

forall elem : print( strut l { l *next; elem data; } *list_head,

exists void print(elem));
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Print is not a valid \Sea" funtion beause \C"/\Sea" do not reognise struturally

equivalent reords as being the same type. We ould alter \Sea" to reognise

strutural equivalene. A better solution, whih also saves us from having to repeat

the entire type delaration whenever it is used, is parameterized types. We all these

\type generators"; two generated types are equivalent if the parameters to the type

generator are equivalent.

type list(type elem)

{

return strut {

list(elem) next;

elem data; } *;

}

forall elem : print(list(elem) list_head, exists void print(elem));

Type generators use �eld layout onventions that are optimized for aess by poly-

morphi funtions. (See hapter 3.)

Extensible typegens, allowing for single inheritane, would be a useful addition.

2.4 Overloaded Operators

\C" has a large number of heavily overloaded built-in operators. It is desirable to

treat these operators as if they were funtions so that 1) overloaded polymorphi

funtions an be de�ned in terms of these operations, 2) the funtionality repre-

sented by the operator symbols an be applied to new types and 3) the inferener

an be simpli�ed by not having to inorporate speial rules for eah of the built-in

operators.

It is not possible to diretly translate all \C" in�x operators into a funtion all

form beause many operators have de�nitions that annot be aommodated using

normal funtion all semantis.

The following operators an be translated diretly:

a+b -> op+(a,b)

a-b -> op-(a,b)

a*b -> op*(a,b)
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a/b -> op/(a,b)

a%b -> op%(a,b)

a>>b -> op>>(a,b)

a<<b -> op<<(a,b)

a>b -> op>(a,b)

a<b -> op<(a,b)

a>=b -> op>=(a,b)

a<=b -> op<=(a,b)

a==b -> op==(a,b)

a!=b -> op!=(a,b)

a&b -> op&(a,b)

a|b -> op|(a,b)

a^b -> op^(a,b)

-a -> op-(a)

+a -> op+(a)

~a -> op~(a)

!a -> op!(a)

The logial && and || operators an be translated diretly, but user versions will

not provide short-iruit evaluation.

&& -> op&&(a,b)

|| -> op||(a,b)

The array indexing operator returns an lvalue whih is not possible for a normal

\C" funtion. We translate op[℄ so that the de�ner is expeted to return a pointer

to the assignable value, and then we add a dereferene operator to translate this

into an lvalue.

a[b℄ -> *op[℄(a,b)

Two transformations are done to the assignment operators 1) They are given the

address of the parameter that they are expeted to modify and 2) Rather than

having the assignment funtion return the assigned value (as de�ned in \C") we

have the ompiler arrange for aess to this value. This is an optimization to avoid

the ost of returning a value that is usually ignored.
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x=y -> (op=(&x,y),val(x))

x*=y -> (op*=(&x,y),val(x))

x/=y -> (op/=(&x,y),val(x))

x%=y -> (op%=(&x,y),val(x))

x+=y -> (op+=(&x,y),val(x))

x-=y -> (op-=(&x,y),val(x))

x<<=y -> (op<<=(&x,y),val(x))

x>>=y -> (op>>=(&x,y),val(x))

x&=y -> (op&=(&x,y),val(x))

x^=y -> (op^=(&x,y),val(x))

x|=y -> (op|=(&x,y),val(x))

It should be noted that the system header �les ontain a fully polymorphi version

of the op= operator, and that unless the user expliitly makes op= an operation

parameter to a polymorphi funtion, the default fully polymorphi assignment

operator will be used.

Inrement and derement operators require treatment similar to that given to

assignment operators:

++x -> (op++(&x),val(x))

x++ -> (oldx=x,op++(&val(x)),oldx)

--x -> (op++(&x),val(x))

x-- -> (oldx=x,op++(&val(x)),oldx)

There is no funtional form for the following operators:

&a -> speial

*a -> speial

sizeof(a) -> speial

sizeof(typename) -> speial

(typename)a -> speial

a.fieldname -> speial

a->fieldname -> speial

a?b: -> speial

a,b -> speial

\C" built-in operators are heavily overloaded. All the possible versions of all the

overloadable built-in operators are desribed in a header �le/library ontaining 1584
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funtion de�nitions. Thus any variant of any of the built-in operators is available

for binding to an operation parameter.

The following exerpt from the \sea.h" header �le desribes part of the be-

haviour of the \C" binary + operator.

extern int op+ (int, int) __builtin("op+");

extern double op+ (int, double) __builtin("op+");

extern double op+ (double, int) __builtin("op+");

extern double op+ (double, double) __builtin("op+");

forall a : extern a *op+ (short, a *) __builtin("op+");

forall a : extern a *op+ (a *, short) __builtin("op+");

forall a : extern a *op+ (int, a *) __builtin("op+");

forall a : extern a *op+ (a *, int) __builtin("op+");

The __builtin attribute tells the ompiler that this funtion is equivalent to one

of \C"'s standard operators, and that it should use its inline version if possible.

2.5 Type Inferene/OverloadResolution Algorithm

The following algorithm has been adapted from the \ForeTwo" inferene algorithm

presented in [Cormak 90℄.

As input the inferener takes a \Sea" expression tree in whih leaf nodes are

overloaded identi�ers and interior nodes are funtion appliations. Eah step in

the inferene proess involves the appliation of one parameter, so we represent the

expression tree in urried form.

Eah leaf node is translated into a set of possible types for that identi�er. We

then �nd the set of possible types for eah appliation by unifying the set of pos-

sible types for the funtion parameter with the set of possible types for the atual

parameter. During this pass exist parameters are not resolved, but instead they

are promoted to the result type.

Eah potential solution now has a list of the exist parameters that it requires.

To resolve eah exist parameter we 1) onvert it into a normal parameter, 2) apply

the variable that has the same name as the exist parameter to this parameter and

then 3) reursively use the type-inferene/overload-resolution algorithm to �nd a

solution. Note that new exist parameters an be introdued by this proess.

It is possible to onstrut expressions where we an never resolve all the exist

parameters. For example:
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forall a: void f(exists f(a*));

To prevent the inferener from not terminating, the language has a built-in limit

on the maximum size of an expression it will generate. While this is a major philo-

sophial blak mark on the inferener algorithm, it is not expeted to be signi�ant

limitation when ompiling real programs.

For many expressions the inferener will �nd several sets of bindings for type

variables and overloaded identi�ers that eah result in a valid expression. In some

irumstanes it is possible to hoose a best expression in a way that is both use-

ful and preditable. If no suh \best" solution an be found, the expression is

onsidered ambiguous and the inferener will fail.

Currently we only have one disambiguating rule: If both a monomorphi and a

polymorphi funtion are appliable, then the monomorphi funtion will always be

hosen. If an expression has multiple suh appliations, but no solution an be found

that inorporates all of them, then the expression will be onsidered ambiguous.

If there are multiple polymorphi funtions that an supply the same funtion-

ality then the algorithm will fail. This situation ours often when we are designing

\abstrat" polymorphi data strutures. (Polymorphi data strutures for whih

all operations are provided through overloaded funtions.) Often a single onrete

data struture will have the basi operations neessary to be manipulated as one of

several \abstrat" data strutures. If two of these abstrat data strutures have the

same operation de�ned then ambiguity will result. For example a sorted vetor

has a find operation that does a binary searh. Sorted vetor also has interfae

routines de�ned so that it an be used wherever a sorted sequene is required.

If we subsequently de�ne a find operation for sorted sequene, in terms of the

basi sorted sequene operations, then we will have two polymorphi find oper-

ations that an be applied to sorted vetors. Situations like these an usually

be avoided by areful design of sub-algebra relationships.

Size of Inferene Tree

At eah step in the inferene proess, eah of the (partial) possible solutions for

the expression is represented as a separate node. For some expressions the number

of possible solutions an be very large. For example, given the following funtion

de�nitions:

har * f();
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har ** f();

har *** f();

har **** f();

har ***** f();

har ****** f();

har ******* f();

har ******** f();

har ********* f();

har ********** f();

void q(har *, har *, har *, har *, har *,

har *, har *, har *, har *, har *);

forall t1,t2,t3,t4,t5,t6,t7,t8,t9,t10 :

void g(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

exists void q(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10));

The expression:

g(f(), f(), f(), f(), f(), f(), f(), f(), f(), f());

has 10^10 possible solutions before we apply the exist parameter q.

This is learly a manufatured example. In real programs large numbers of

intermediate solutions are generated when we use funtions that have many poly-

morphi de�nitions eah of whih is onstrained only by its operation parameters.

The inferener does not bind operation parameters until after it is �nished with

the basi expression; up until this point all these polymorphi funtions will be

onsidered as possible solutions. For these situations, the size of the inferene tree

ould be redued onsiderably if we altered the inferene algorithm to �nd (partial)

bindings for exist parameters as they are introdued into the solutions.

Rather than expanding our inferene tree until we are out of memory|whih an

result in very poor performane on mahines with virtual memory|the ompiler

has a pre-set (mahine-dependent) limit on the number of nodes it will alloate.

On the mahine whih was used to develop the \Sea" ompiler, we had aess to at

least 50Mb of real memory. Eah inferene node (inluding one type binding) uses

about 200 bytes, so the inferene tree was allowed to grow to 250000 nodes. It is not

known whether this limit will be enountered often when ompiling real programs.

If a large number of nodes are atually required to ompile real programs, then
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this mahine-dependent limit will be a major portability problem: A program that

ompiles on a 25Mb omputer may not ompile on a 15Mb omputer.

The inferener ould be re-designed to use a data struture where eah possible

solution does not have to be expliitly represented as a separate node.

If we restrit the language so that we ignore funtion return types when doing

type-inferene/overload-resolution then the inferene tree will never grow very large.

(This is what the designers of \C++" have eleted to do.) While there are many

examples of expressions that will not ompile with this restrition in plae, we do not

have enough experiene with \Sea" programming to know whether the restrited

version would represent a useful and understandable language.
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The \Lake" Intermediate

Language

\Sea" funtion delarations are overloaded and have expliit type and operation

parameters. When these funtions are used the \Sea" type inferener will automat-

ially selet one of several overloaded versions and provide appropriate bindings for

the type and operation parameters.

\Lake" is a language very similar to \Sea" but without overloading and with

type and operation parameters expliit at both the delaration and the all site.

The \Sea" type inferener emits \Lake" ode as its output.

Beause \Lake" doesn't have overloading, the \Sea" ompiler assigns unique

names to overloaded funtions and the \Sea" overload resolver an then resolve uses

of an overloaded name to a spei� unique name. The atual renaming proess is

fairly ompliated in order to support traditional \C" style separate ompilation;

for this setion unique names will be generated by adding a undersore followed by

a unique number to the end of the overloaded name.

A \Sea" polymorphi funtion supplies a new operation to every type that has

the required prerequisite operations. Before a polymorphi operation an be applied

to a spei� set of atual parameters, the type inferener speializes it by binding

its type and operation parameters. If this only happened just before a polymorphi

funtion was applied, type and operation parameters ould be passed along with

the normal parameters. But in \Sea" we also speialize polymorphi funtions in

order to generate the operations needed to satisfy the \exist" requirements of other

polymorphi funtions. In order to allow type and operation parameters to be

applied prior to the appliation of other parameters we borrow an idea from fun-

tional programming languages and desribe all \Sea" funtions as funtions that

14
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take a tuple|ontaining type and operation parameters|as their only argument,

and return a funtion that takes a tuple (the normal \C" argument list) to the �nal

return type.

We use \Sea" delaration syntax to delare \Lake" funtions both beause the

\Sea" syntax has been arefully designed to be ompatible with normal \C" de-

laration syntax and beause it makes it possible to translate a \Sea" program to a

\Lake" program without strutural hanges to the soure program. However using

\Sea" syntax for \Lake" does introdue one ambiguity; the type for monomorphi

funtions that don't take any type or operation parameters, but still require an

empty type and operation tuple, is indistinguishable from the type of a \Lake"

funtion that has already had its type and operation tuple applied. To avoid this

onfusion, funtion types that still require a type and operation tuple will always

be written using a \forall", even if the forall list is empty.

The �rst argument to a \Lake" funtion|the type and operation tuple|an

be applied anytime before the regular arguments tuple is applied. To visually

distinguish these two tuples we use \<" and \>" to braket the type and operation

tuple, and normal brakets to surround the regular arguments tuple. For example:

Given the following implementation of square :

forall t : t square(t x, exists t op*(t,t))

{

return x*x;

}

The \Sea" expression :

square(7)

Will get translated by the inferener to the \Lake" expression :

square_1<int, op*_1<>>(7)

A more general version of this mehanism would allow for some type and opera-

tion parameters to be bound while others were left unbound. This is diÆult and

expensive (in terms of performane) to implement and no appliations that ould

justify this ost were found.
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3.1 Non-onstant Closures

The \Sea" inferener takes as input a expression tree onsisting entirely of on-

stants, non-overloaded identi�ers and overloaded identi�ers. \Sea" is statially

soped so the set of bindings for the overloaded and non-overloaded identi�ers is a

ompile time onstant and, beause \Sea" is statially typed, the type of eah of

these identi�ers is also a ompile time onstant. This is all the information needed

by the type inferener in order for inferene to be done entirely at ompile time.

While all the types and the set of operations are ompile time onstants, for

forall and exist parameters the atual value is not onstant. For example, within

square, x has the type a, and op* has the type \a (a,a)". However, the attributes

of type a, and the value of the op* parameter are not available at ompile time.

Non-onstant losures are reated when these type and operation parameters are

used to onstrut a losure. For example in the following fourth funtion a non-

onstant op* and type a are used to build a losure for square.

forall a : a square(a x, exists a op*(a, a))

{

return x*x;

}

forall a : a fourth(a x, exists a op*(a, a))

{

return square (square (x));

}

int f()

{

return fourth(7);

}

is translated by the inferener to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}
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forall a : a fourth_1(a x, exists a op*_p1(a, a))

{

return square_1<a, op*_p1> (square_1<a, op*_p1> (x));

}

forall : int f_1()

{

return fourth_1<int, op*_1>(7);

}

The losure <a, op*_p1> in fourth 1 is not a onstant.

The same phenomenon results when we write reursive polymorphi routines.

For example the \Sea" routine:

forall a : void print (list(a) l, exists void print(a))

{

if (l != NULL)

{

print (l->data);

print (l->next);

}

}

Is translated into the \Lake" routine:

forall a : void print_1 (list(a) l, exists void print_p1(a))

{

if (l != NULL)

{

print_p1 (l->data);

print_1<a, print_p1> (l->next);

}

}

<a, print_p1> is not onstant.

While the fourth example ould have been rewritten by adding exists square

to fourth's parameter list, there is no suh onversion for reursive funtions. We



CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 18

ould de�ne print as requiring a print(list) exist parameter, but the print(list)

exist parameter would also require a print(list) operation parameter et.

For simple reursive alls, like this one, where the losure required for the re-

ursive all to print is the same as the losure of the instane of print making

the reursive all, we an arrange things so that a funtion always reeives its own

losure as one of its parameters and use this to make the reursive all, thereby not

needing to onstrut a variable losure for the reursive all. However, this will not

work for all instanes. For example, in the following reursive funtion the losure

for the reursive all to q is not the same as the losure for the instane of q making

the reursive all.

forall a, b : int q(a x, b y, exists int term(a), exists int term(b))

{

if (term(a))

return 0;

else

return q(y, x);

}

Is translated by the inferener to :

forall a, b : int q_1(a x, b y, exists int term_p1(a), exists int term_p2(b))

{

if (term_p1(a))

return 0;

else

return q_1<b, a, term_p2, term_p1>(y, x);

}

Mutually reursive funtions present a similar problem.

In the following setion we look at the impat of having to support these variable

losures on the range of implementation strategies available for \Sea". We then

present an algorithm that transforms a \Lake" program with non-onstant losures

into one where all losures are onstant.
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3.1.1 Creating Closures at Runtime

Creating a non-onstant losure at runtime is not very diÆult, and takes about

the same amount of time as it takes to onstrut a normal parameter list. Often,

in order to omplete one losure, other losures will need to be reated, and a large

tree of losures will get reated in order to generate one all. As long as all the

requested losures are used, despite the fat that they are all reated at one, this

ost is amortized aross many funtion alls, and the runtime ost as a perentage of

exeution time remains aeptable. However, if a style of programming is adopted

whereby large omplex losures are onstruted, but never ompletely used, or

where losures are reated prior to a majority of alls, losure onstrution ould

be a major runtime ost.

3.1.2 Non-Constant Operation Parameters

Non-onstant operation parameters (ie. operation parameters from a non-onstant

losure) are not very diÆult to implement, and are not inordinately expensive at

runtime. The problem with non-onstant operation parameters is that they annot

be inlined. Inlining is to an important optimization if we hope to get \C"-like

performane out of polymorphi programs. (see hapter 5)

If we want to add \C++"-style onstrutors, destrutors and overloaded assign-

ments to \Sea" then inlining beomes vital. The inline expansion of a onstrutor

that is bound to the default no-operation onstrutor is no-ode and no-overhead,

whereas a onstrutor that is reeived as a parameter must always be alled. This is

a problem beause there are so many plaes in a \Sea" program where onstrutors

must be alled.

For example when the following funtion was proessed by the AT&T \C++"

ompiler (bignum was de�ned with a onstrutor, a destrutor, and an overloaded

assignment operator) 16 alls were generated to one of these funtions. Every \Sea"

funtion that has polymorphi arguments would su�er a similar explosion, even if,

as would usually be the ase, it was alled with null onstrutors and destrutors.

// ``bignum'' is defined as a lass with a onstrutor, a destrutor

// and an assignment operator.

bignum pythag(bignum x, bignum y)

{
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bignum r;

r=bignum_sqrt(x*x+y*y);

return r;

}

3.1.3 Non-Constant Type Parameters

\Sea" type parameters an be bound to any type. Di�erent types have di�erent

sizes and possibly di�erent alignment requirements. In order to support variable

losures we have to generate objet ode that is parameterized at runtime by the

size of its forall types. Supporting variables and parameters whose size is not known

at ompile time is diÆult, not very eÆient, and fores us to use a less eÆient

alling onvention for all \Sea" funtions (not just polymorphi funtions).

When type parameters in a \Lake" program are ompile time onstants then we

an use this to either 1) generate speialized monomorphi versions of polymorphi

funtions or 2) ontinue generating one objet ode funtion per soure funtion, but

generate muh more elaborate losures that ontain information suh as parameter

o�sets and stak layout for loal variables.

One \Sea" variant will only bind type parameters to pointer types. For this

variant no type attributes are required at runtime and it is possible to build an

eÆient ompiler even in the presene of runtime losures.

More detail on the advantages and pitfalls of these various implementation teh-

niques an be found in hapter 4.

3.1.4 Other Appliations

Transforming a \Lake" program so that all type and operation parameters are

onstant is also very helpful if we are going to onstrut the \Sea" variant (desribed

at the end of this doument) where type and operation parameters do not have to

be spei�ed at the funtion delaration site. With none of the parameter types

spei�ed, and none of the intermediate values onstrained, almost every funtion

all made in the body of a polymorphi funtion must be a separate operation

parameter. The style of programming enouraged by this \Sea" variant will involve

the onstrution of large numbers of large non-onstant losures, and onstruting

these large losures at runtime will be prohibitively expensive.
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3.1.5 Eliminating non-onstant losures

Within polymorphi funtion f that has been speialized by losure , a new losure

z an be onstruted using onstant types, onstant operations, type parameters

from , type onstrutors applied to type parameters from , and operation param-

eters from . If z is onstruted using any parts of  then z will be a non-onstant

losure. Notie that any losure reated in f will onsist entirely of �elds from 

and onstants, thus all the values needed to onstrut z are also available when 

is reated.

If z is a non-onstant losure it an be eliminated by onverting it into an

additional �eld in , then modifying the plaes where  is reated to onstrut the

extra �eld z out of onstants and other members of .

So, for example, the fourth funtion de�ned earlier ould be onverted to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}

forall a : a fourth_1(a x, exists a op*_p1(a, a), exists a square_p1(a))

{

return square_p1 (square_p1 (x));

}

forall : int t_1()

{

return fourth_1<int, op*_1, square_1<int, op*_1>>(7);

}

The algorithm as desribed so far has two problems 1) it will not terminate if it

enounters a reursive polymorphi funtion and 2) we haven't de�ned the order in

whih expansions will be done when there are more than one non-onstant losure

in a program. What follows is a more detailed version of this algorithm whih

addresses these issues.

Convert all the non-onstant losures in the \Lake" program into operation

parameters. These are normal operation parameters that will be reeived through

the normal losure mehanism, but we introdue a new syntax both to highlight

their di�erent role, and to provide information to the aller detailing how this
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parameter is to be �lled in. Before the body of the funtion, in square brakets,

we add a list of expressions of the form \name=losure body". \losure body"

desribes how the losure is to be reated (in terms of onstants, type parameters,

operation parameters and type onstrutors applied to type parameters). \name"

is then used in the body of the funtion to refer to this losure.

fourth would be translated to :

forall a : a fourth_1(a x, exists a op*_p1(a, a)) [ 1=square_1<a, op*_p1> ℄

{

return 1 (1 (x));

}

Starting with the set of onstant losures, expand eah losure by adding the new

operation parameters required by the funtion to whih the losure refers. Reur-

sively expand any losures that are generated by this proess. Eah time a new

losure is reated, before that losure is expanded, hek whether an idential lo-

sure has already been expanded, and if so use the previous expansion rather than

generating a new one.

Cheking for dupliate losures not only redues the number of losures that

are reated, but also allows most polymorphi reursive funtions to be proessed.

(see later for details)

The fourth program would be proessed as follows :

The losure template expansion algorithm doesn't need funtion bodies of types,

only the set of onstant losures and the set of templates.

Constant Closures

fourth_1<int, op*_1>

Closure Templates

fourth_1 : [ 1=square_1<a, op*_p1> ℄

Index Input Closure Expanded Closure

------------------------------------------------------------

#0 : {fourth_1, int, op*_1} -> {fourth_1, int, op*_1, #1}

#1 : {square_1, int, op*_1} -> {square_1, int, op*_1}

The following sample program will be used to demonstrate the algorithm. This is

a triky example : f and g are mutually reursive funtions, and the order of the

parameters is swithed with eah iteration.
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int q(int x) { ... };

int q(double x) { ... };

forall a, b : extern int g(a x, b y, exists int q(a), exists int q(b));

forall a, b : int f(a x, b y, exists int q(a), exists int q(b))

{

g(y, x);

}

forall a, b : int g(a x, b y, exists int q(a), exists int q(b))

{

f(x, y);

}

int main()

{

print(f(5, 5.0));

}

Is translated by the inferener to :

forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

g_1<b, a, q_p2, q_p1>(y, x);

}

forall a, b : int g_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

f_1<a, b, q_p1, q_p2>(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

After non-onstant losures have been turned into operation parameters :
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forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p1(b))

[ 1=g_1<b, a, q_p2, q_p1> ℄

{

1(y, x);

}

forall a, b : int g_1(a x, exists int q_p1(a), exists int q_p1(b))

[ 1=f_1<a, b, q_p1, q_p2> ℄

{

1(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

Constant Closures :

f_1<int, double, q_1, q_2>

Closure Templates :

f_1 : [ 1=g_1<b, a, q_p2, q_p1> ℄

g_1 : [ 1=f_1<a, b, q_p1, q_p2> ℄

The output of the algorithm is shown in the following table.

Index Input Closure Expanded Closure

------------------------------------------------------------------------

#0 : {f_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #1}

#1 : {g_1, double, int, q_2, q_1} -> {g_1, double, int, q_2, q_1, #2}

#2 : {f_1, double, int, q_2, q_1} -> {f_1, double, int, q_2, q_1, #3}

#3 : {g_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #0}

If no type generators are used, eah template an only rearrange its input type

and operation parameters, possibly introduing some onstants. There is a �nite

number of arrangements of the initial losure and the onstants that are introdued

in subsequent levels. So for reursive polymorphi funtions in whih type genera-

tors are not involved in the reursion, our algorithm will generate all the possible
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variants, then introdue a loop in the losure graph. We an then ompile this lass

of polymorphi reursive funtions.

It is possible for there to be a large number of versions generated before a yle

is generated, but is felt that this will our very seldom is real programs. The

following example funtion will ause 40320 onstant losures to be generated.

/* 8*7*6*5*4*3*2*1 = 40320 versions */

strut s1 { int i; };

strut s8 { int i; };

int o(strut s1 x) { ... };

int o(strut s8 x) { ... };

forall t1, t2, t3, t4, t5, t6, t7, t8 :

int q(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6, t7 x7, t8 x8,

exists int o(t1), exists int o(t2), exists int o(t3), exists int o(t4),

exists int o(t5), exists int o(t6), exists int o(t7), exists int o(t8))

{

q(x1, x2, x3, x4, x5, x6, x7, x8);

q(x2, x1, x3, x4, x5, x6, x7, x8);

q(x2, x3, x1, x4, x5, x6, x7, x8);

q(x2, x3, x4, x1, x5, x6, x7, x8);

q(x2, x3, x4, x5, x1, x6, x7, x8);

q(x2, x3, x4, x5, x6, x1, x7, x8);

q(x2, x3, x4, x5, x6, x7, x1, x8);

q(x2, x3, x4, x5, x6, x7, x8, x1);

if (o(x1))

return 0;

}

main()

{

strut s1 v1;

strut s8 v8;

q(v1, v2, v3, v4, v5, v6, v7, v8);

}
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For reursive funtions where a type onstrutor is involved in the reursion, there

is an in�nite number of types and therefore losures, and our algorithm will fail.

This is not felt to be a severe restrition. The following is an example of a funtion

we annot ompile.

// pow2 : alulates 2^n

int f(har *x)

{

return 1;

}

forall a : int f(a *xp, exists int f(a))

{

return f(*xp) + f(*xp);

}

forall a : g(int n, a x, exists int f(a))

{

if (n>0)

return g(n-1, &x);

else

return f(x);

}

int pow2(int n)

{

return g(n, "dummy parameter");

}

The above program is interesting beause it makes use of the limited urried fun-

tion parameter support|whih we introdued to support inferred type and opera-

tion parameters|to onstrut, at runtime, a funtion that alulates 2^n.

3.1.6 Separate Compilation Issues

To eliminate onstant losures the ompilermust have aess to the templates for all

polymorphi funtions in the program, and normal \C" prototypes do not provide
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this information. All the implementations we propose eliminate onstant losures

in a global pass just before linking. (see hapter 4)



Chapter 4

Implementation of \Lake"

In the following setion we present several ways of implementing \Lake". Eah of

the implementations has di�erent advantages, and plaes di�erent onstraints on

the design of the language. \Lake" has been designed so as not to prelude any of

the major implementation strategies.

4.1 Implementation 1 : Polymorphi objet ode,

runtime variable losures

Eah soure-level polymorphi funtion is translated into a single polymorphi

objet-ode funtion. This objet-ode funtion takes, as its �rst parameter, a

losure ontaining bindings for its type and operation parameters, and uses this

losure at runtime, to speialize its own behaviour.

This is the tehnique that was used for our prototype \Sea" ompiler.

4.1.1 Overloading

The \Sea" language allows us to overload a single identi�er with multiple fun-

tion de�nitions, eah with a di�erent type. Whenever this identi�er is used, the

inferener selets the funtion de�nition with the most appropriate type.

As overloaded funtions are ompiled we must assign eah a unique name: the

overload resolver an then translate a referene to an overloaded name into the

28
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unique name that refers to the most appropriate funtion. In \Sea" funtion def-

initions an be ompiled separately from alls to those funtions, thus we have

no diret way of ommuniating the unique name generated when an overloaded

funtion is ompiled to the overload resolution algorithm proessing a funtion all

made from a separate �le.

For example, in �le 1 we have de�nitions for two print funtions:

void print(int x)

{

...

}

void print(double x)

{

...

}

And in �le 2 we attempt to use these :

extern void print(int);

extern void print(double);

main()

{

print(7);

}

In \Sea", every overloaded de�nition for a name must have a unique type, and

this type is available both when the funtion is ompiled and, through funtion

prototypes, when the funtion is alled. By generating a name from the overloaded

name as well as an enoding of the type of the funtion, then this name will uniquely

refer to the appropriate funtion, and will be available everywhere the funtion

name and type are available (ie., at both the de�nition and the all site). We all

these \mangled" names. This tehnique originated with Bjarn Stroustrups \C++"

ompiler.

The atual algorithm we use to generate mangled names is derived from the

name mangler in the GNU C++ ompiler.

Some sample mangled names:
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int op*(int x, int y);

Would be enoded as (note that op* has been translated into something more

palatable to the assembler and linker) :

__multiply__FLiie_iZ

__multiply Original funtion name

__ Puntuation to separate name from type enoding

F Begin funtion type onstrutor

L Begin argument list

i First argument is integer

i Seond argument is integer

e End argument list

_ Puntuation to separate argument types from return type

i Return type is integer

Z End funtion type onstrutor

and

forall a : a square(a x, exist a op*(a,a));

would be enoded as:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

Refer to the ompiler doumentation for a omplete disussion of the algorithm.

In \Sea", \exist" parameters are part of the type of a funtion, and therefor

must be inluded in the mangled funtion name. This an ause very large mangled

names to be generated, whih means the \Sea" ompiler will not be portable to

environments where the assembler or linker plae do not support long names. All

of the mahines that we tested allowed names to be at least 512 haraters long,

whih should be enough for most programs.



CHAPTER 4. IMPLEMENTATION OF \LAKE" 31

4.1.2 Closures

For eah \Lake" soure funtion, we generate a single objet ode funtion. A

\Lake" funtion that has not yet been speialized by having its type and operation

parameters bound is represented by a pointer to objet ode. When a \Lake"

funtion is speialized with type and operation parameters, we represent this by

building a losure ontaining a pointer to the funtion objet ode as well as the

supplied bindings for the type and operation parameters. When this losure is

then applied to list of regular arguments, we all the objet ode referened by

the losure, and arrange that it will reeive a pointer to the losure as its �rst

parameter. The polymorphi objet ode an then referene the ontents of the

losure to speialize its own behaviour.

The struture of this losure is as follows :

{Pointer to funtion objet ode,

Attributes of first type arg, ..., Attributes of nth type arg,

First operation parameter, ..., nth operation parameter}

For the urrent implementation the only attribute that is needed to desribe eah

type parameter is the size of the type.

As was disussed in hapter 3, operation parameters are either pointers to an-

other losure, or a pointer to funtion objet ode, depending on whether or not

the operation parameter has been speialized yet.

When the square funtion :

forall a : a square(a x, exist a op*(a,a)) { return x*x; }

is applied to an integer argument, it will be speialized into the following losure :

; Closure for polymorphi square applied to an integer argument

LC1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ ; pointer to square funtion

.long 4 ; sizeof(int)

.long LC0 ; pointer to losure for integer multiply

; Closure for integer multiply (there are no type or operation parameters)

LC0:

.long _multiply__FLiie_iZ ; pointer to integer multiply funtion
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4.1.3 Operation Parameters

Operation parameters that have not yet been speialized an be speialized by

building a losure. Most operation parameters, however, have already been spe-

ialized, and are reeived as pointers to losures.

Calling a losure is not a diÆult or expensive operation. Details of the \Sea"

alling onvention an be found in the next setion.

The only problem with reeiving operations as parameters is that these oper-

ations annot be inlined. This leads to signi�antly worse performane for things

that are traditionally inlined like the basi integer and oating point operations.

4.1.4 Type Parameters

A \Sea" funtion an be delared with type parameters. These type parameters an

then be used as parameters to type onstrutors, resulting in a family of variable-

sized types and pointers to variable-sized types. These types an then be used to

delare parameters and automati variables.

The operations that the ompiler must provide for these variables and parame-

ters are 1) assignment, 2) member aess for omplex types, and 3) funtion alls.

In this setion we look at the ompile-time and run-time mehanisms that this

requires.

Representation of Type Parameters in the Closure

For the urrent implementation the only information that is ontained in a type

parameter is the size of the type it has been bound to.

Often, within our polymorphi routines, we need to alulate the size of a type

rounded up to the next alignment boundary. Beause our ode uses losures muh

more frequently than it reates them, it would have been better to do this al-

ulation at losure reation time and add the results to the losure as an extra

�eld.

4.1.5 Polymorphi Data Strutures

For ompatibility with system libraries, monomorphi struts are laid out using the

host \C"'s struture layout onventions. On many arhitetures, it is too ompli-

ated to emulate these struture layout rules at run-time for polymorphi types.
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So \Sea" strutures built using type parameters are not de�ned as having the same

layout as an equivalent monomorphi struture de�nition; instead every �eld that

ould be instantiated with types with varying alignment requirements is given the

most onservative alignment. This is not inompatible with the \C" language def-

inition whih does not guarantee that struturally idential type delarations have

idential layout. As in standard \C", the total size of a struture is padded so that

if an array of strutures is started on the most onservative alignment boundary,

then every �eld in every strut in the array will have orret alignment.

If an appliation requires that both a polymorphi and a monomorphi routine

an work on the same \strut", then parameterized types|whih were expliitly

designed for this purpose|must be used.

Parameterized Types

Type parameters are de�ned suh that the most onservative alignment require-

ments are applied to every �eld whose alignment requirements may vary with dif-

ferent instantiations of the type generator. This makes it possible for monomorphi

and polymorphi funtions to aess the same data struture without foring the

polymorphi routine to do ompliated and time-onsuming alignment alulations.

For example :

strut {

har x;

har y; };

Would be laid out as :

Byte : 00 01

Contents : x y

strut {

t x;

t y; };

In a polymorphi routine where \t" was bound to \har" would be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------



CHAPTER 4. IMPLEMENTATION OF \LAKE" 34

Whereas the generated type :

type pair(type t)

{

return strut {

t x;

t y; };

}

Whether instantiated as pair(har) or pair(t) (where t is bound to har) would

be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------

Arrays

Beause all \Sea" types are de�ned suh that as long as the �rst element of the

array has orret alignment, all elements of the array have orret alignment, no

alignment onsiderations need to be taken into aount to loate array members.

Thus polymorphi arrays require little runtime support and are ompatible with

monomorphi arrays.

Pointers

No additional runtime support is needed to allow pointers to point at polymorphi

objets.

4.1.6 Calling Conventions

Beause there are few built-in operations for objets with polymorphi type, almost

every operation must be done through alls to monomorphi funtions. Thus it is

important that we have eÆient polymorphi alling onventions.
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All Funtions Must Use The Same Calling Convention

Operation parameters to polymorphi funtions an be bound to either monomor-

phi funtions (speialized by an empty losure) or polymorphi funtions. If dif-

ferent alling onventions were used for monomorphi and polymorphi funtions,

every time an operation parameter was alled we would have to selet one of two

di�erent alling onventions, and|as will be disussed below|building a monomor-

phi argument list from within a polymorphi funtion an be very ostly. Every

funtion in a \Sea" program ould potentially be seleted as an operation param-

eter, so every funtion must use the same alling onvention. This makes it even

more ruial that our polymorphi alling onventions be eÆient.

For example :

// put integer

void put(FILE *f, int x)

{

fwrite(&x, sizeof(int), 1, f);

}

int f(int x)

{

put(stdout, 4);

}

However, lurking somewhere else in the system we may have :

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)

{

put(s, l->data);

l = l->next;

}

}

void g(list(int) l)
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{

put(stdout, l);

}

put(integer) is passed as an operation parameter to put(list), so put(integer)

must be ompiled with standard alling onventions, whih means the all to

put(integer) in f has to use standard alling onventions.

Host \C" alling onventions

The \C" standard allows mahine designers and ompiler writers onsiderable free-

dom in the design of their alling onventions, and RISC mahines (almost every

urrent proessor design other than the i386) have highly tuned register-based all-

ing onventions.

It would be very good, for both performane and portability, if \Sea" ould use

these alling onventions. The following is a typial RISC alling onvention :

For Eah Arg :

If Arg is Integer Then

If more registers are available

Put in next available Register

else

Put on stak (aligned to 32 bits)

endif

endif

If Arg is Double or Float Then

If more floating point registers are available then

Put in next available Floating Point Register

else

Put on Stak (aligned to 64 bits)

endif

endif

If Arg is strut or union Then

Put as many words of strut as will fit in rest of register file

Put balane on stak

Endif
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et.

EndFor

While it is possible to implement suh an algorithm at runtime, the resulting ode

would require many onditional branhes per argument, and would have a diÆult

time even loading the registers. (There is no way to aess the register �le via an

index on most mahines, so the ode would have to build an image of the register

�le in memory, then load the image|thereby defeating the whole point of passing

arguments in registers.)

Many ompilers/libraries are apable of unpaking their parameter lists at run-

time in order to support alling vararg funtions like printf when no prototype

has been supplied. The ode to do this is not ompat, eÆient or pretty.

Return onventions are also omplex and parameterized by type, and thus pose

similar problems.

Beause \Sea" annot use the native alling onventions on all mahines, we

do not de�ne the \Sea" language as having ompatible alling onventions with

the host \C". Instead we have provided the \del" mehanism that allows \Sea"

and \C" programs to all eah other. This is not muh of a loss beause \Sea"

overloaded funtion de�nitions were in a di�erent linker name spae (by virtue or

their mangled names) than \C" funtions.

Stak-Based alling onventions

Using stak-based alling onventions would make \Sea" perform signi�antly (per-

haps a fator of 3) worse than \C" on RISC mahines.

Variable-sized argument lists are simple to onstrut. Eah parameter is either

pushed or opied onto the stak.

If the proessor has strit alignment requirements for any type, we an either 1)

add type alignment information to our losures and alulate appropriate alignment

for eah polymorphi parameter as they are pushed (or retrieved) at the ost of

onsiderable runtime overhead for eah parameter, or 2) push all parameters with

the stritest alignment (remember we gave up on being ompatible with host alling

onventions) whih redues overhead when pushing polymorphi parameters, but

fores us to push an extra word of padding every time a monomorphi routine wants

to pass an \int" or a pointer.
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\GCC" has some built in support for stak-based variable-sized arguments,

however this ode is not operational in the distributed ompiler. We �xed this ode

to the point where we ould experiment with it and got the following results :

int g(int w, strut { har [w℄; int m; } kk,

strut { har [w℄; int m; } kkk, int q)

{

printf("w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\n", w, &w, &kk, &kkk, &q);

return 0;

}

Compiled to about 100 lines of assembly. However, most of this was repeated

alulations, so when we re-ompiled with optimization we got the following output

:

LC1:

.asii "w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\12\0"

.align 1

.globl _g

_g:

.word 0x0

movl 4(ap),r0

addl3 r0,$3,r1

movl $2,r3

movl $30,r4

extzv r3,r4,r1,r2

inl r2

moval 3[r2℄,r2

extzv r3,r4,r2,r2

moval 0[r2℄,r2

extzv r3,r4,r1,r1

inl r1

moval 3[r1℄,r1

extzv r3,r4,r1,r1

moval 8(r2)[r1℄,r1

addl3 ap,r1,-(sp)

pushab 8(ap)[r2℄

addl3 ap,$8,-(sp)
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addl3 ap,$4,-(sp)

pushl r0

pushab LC1

alls $6,_printf

lrl r0

ret

Most of this ode is needed to alulate the o�sets of the input parameters in the

stak frame, similar alulations are required when a polymorphi parameter list is

being passed. These alulations ould be simpli�ed onsiderably if we provided,

in the losure, the size for eah type rounded up to the next word boundary, rather

than having the generated ode do this alulation at runtime.

On mahines with strit alignment requirements, the alulations needed to

build and disassemble a variable-sized parameter list get even more ompliated.

On suh mahines \GCC" urrently gives up and alls abort().

We were going to use this alling onvention for the �rst version of \Sea" so

as to get a working ompiler more rapidly. However as work progressed it beame

apparent that \GCC"'s support for variable sized arguments had many subtle prob-

lems, and it was felt that it would be quiker to implement the more eÆient alling

onvention we wanted for the �nal version of our ompiler than to trak down and

repair all the problems with the existing system.

The problems with this alling onvention are :

1. Stak-based alling onventions are a big loss for RISC mahines.

2. When passing polymorphi arguments, the aller does omplex alulations

in order to plae all the parameters in the parameter list, and then the alled

funtion repeats the same alulations in order to aess the arguments.

3. There are few built-in operations for polymorphi types. Polymorphi fun-

tions do most of their atual work by alling monomorphi funtions. Most

of the time and ode in polymorphi funtions is spent doing variable-sized

opies of input parameters to subfuntion parameters. It would be useful if

there were some way to redue the number of suh opies done.

4. On mahines with strit alignment requirements there is even more runtime

overhead.
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\Sea" Calling Conventions

With the following goals in mind we set out to design a new alling onvention for

the \Sea" language. This should:

1. Use register-based alling onventions on RISC mahines.

2. Not be muh slower than the native alling onventions for monomorphi

funtions.

3. Be as fast as possible for polymorphi funtions. This is done primarily by

avoiding onditions that must heked at runtime and by reduing the number

of variable-sized opies needed.

For the following disussion we assume that \int"s and pointers are 32 bits

and that \longs" and \doubles" are 64 bits. The same disussion applies to other

mahines, however some of the partiulars will be slightly di�erent.

� The �rst parameter to a funtion is always a pointer to the losure that

ontains bindings for any type or operation parameters. If there are no �elds

in the losure (apart from the pointer to the funtions objet ode) then this

parameter does not have to be valid.

� The seond parameter is a pointer to the stash in whih to write the return

value. If no suh stash is required then this parameter an be indeterminate.

(More details on the use of this \return value pointer" will be given later).

Usually, the above two parameters will be passed in registers, thus if valid

values are not required there will be no ost apart from the loss of two register

parameters.

� For eah argument we do the following:

{ If an argument is the size of a word then we pass it diretly.

{ If an argument is not the size of a word then we store the argument

in memory (If it is not already stored there) and pass a pointer to the

argument. We all the plae where the argument resides in memory the

\stash".

So every parameter is a word, ontaining either the atual value or a

pointer to the atual value. We all this type of parameter a MA. (Mul-

tiplexed Argument)
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Having every parameter in the same format|regardless of type|allows

us to use RISC register-based alling onventions to pass these parame-

ters.

This alling onvention is as eÆient as the host alling onvention for

pointers and integers, the two most ommon types in \Sea" programs.

Unfortunately performane for \hars", \shorts", \longs", and \doubles"

is signi�antly degraded.

{ The aller must guarantee that the stash areas referened by the param-

eters it is passing be onstant until either 1) the funtion returns or 2)

all or part of the stash area is overwritten beause it is the return area

for the same all.

{ The allee must not modify any stash areas referened by its input pa-

rameters. If an input parameter is in danger of being modi�ed, the

ompiler must make a opy of the input parameter, and use this opy in

plae of the original.

These two rules allow many parameters to be passed without having to

opy their data to a stash. In partiular they allow parameters to be

used as parameters to subsequent funtion alls with very little overhead.

This is very important beause almost every operation a polymorphi

funtion wants to perform on its arguments must be done through a

funtion all.

With this sheme when opies are done they tend to be done either in

the monomorphi funtion that made the initial polymorphi all, or in

the monomorphi funtions that do the atual operations. It is muh

heaper to opy an objet in a monomorphi funtion|when its size

and layout are known|than in a polymorphi funtion.

� To return a value from a funtion:

{ The allee must assume that the area referred to by the return area

pointer may be an alias for any memory in the system, inluding the

stashes of its input parameters.

This rule allows expressions of the form \var=fun(...)" to be om-

piled so that the return value of \fun" an be written diretly into

\var". This is a useful optimization in polymorphi funtions, beause

alloating and opying variable-sized temporaries is so expensive.

{ Return values that are the size of a word are returned in the return value

register.
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{ Return values that are not the size of a word are written to the stash

referened by the \return value stash pointer" input parameter. The

\return value stash pointer" is then opied to the \return value register".

Having values returned in the same format that is required for subsequent

funtion alls (or storage in a loal variable), allows the return value of

one funtion all to be used as a parameter to a subsequent funtion all

with a minimum of overhead.

Also, returning small values diretly in registers is very important if we

want to have \C"-like performane for monomorphi pointer and integer

funtions.

� Polymorphi loal variables (and temporaries) are represented by a word that

ontains either 1) For types that are the size of a word: the variable's value

or 2) For other types: a pointer to a separately alloated stash that ontains

the variable's value.

This is the same format that is required for parameters (and return values) by

our new alling onventions. Keeping variables in this format saves us from

having to do an expensive run-time onversion prior to every all (or every

use as a return area).

The following examples are written in the assembly language of a �titious pro-

essor that ombines the instrution set of the VAXwith the register windows of the

SPARC. (This was done to demonstrate the algorithm's pro�ieny with register-

based alling onventions, while retaining a human-readable assembly language.)

Performane for monomorphi funtions

For parameters that are a word or smaller in size, apart from the loss of two registers,

our new alling onvention performs identially to the host alling onvention on

most mahines.

int add3(int x, int y, int z)

{

return x+y+z;

}

int g()

{
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int q;

q = add3(1,2,3);

return q;

}

_add3__FLiiie_iZ:

addl i2,i3 ; add up parameters reeived in regs and

addl i3,i4,i1 ; leave result in return reg (i1)

ret

_g__Fle_iZ:

movl 1,o2 ; pass arguments in output registers

movl 2,o3

movl 3,o4

all _add3__FLiiie_iZ

movl o1,l1 ; opy return from ``add3'' to ``q''

movl l1,i1 ; return ``q'' in return reg

ret

For double and long parameters (whih are typially larger than a word), we

have to pass and return values via pointers, resulting in signi�ant performane

degradation.

double add3(double x, double y, double z)

{

return x+y+z;

}

double g()

{

double q;

q = add3(1.0, 2.0, 3.0);

return q;

}

_add3__FLddde_dZ:

addf (i2),(i3),f0 ; aess parameter values indiretly

addf (i4),f0,(i1) ; write return value into area pointed by i1

ret
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_g__Fle_dZ:

subl 8,sp ; alloate spae for ``q'' (an't use regs)

movl sp,l1 ; store pointer to ``q'' in reg

subl sp,24 ; alloate spae for stash

movl sp,l2 ; we will use ``l2'' to fill stash

movd 1.0,(l2) ; put float value 1.0 in stash

movl l2,o2 ; pass pointer to stashed ``1.0'' as first arg

addl 8,l2 ; advane stash pointer

movd 2.0,(l2) ; stash and pass 2.0 as seond arg

movl l2,o3

addl 8,l2

movd 3.0,(l2) ; stash and pass 3.0 as third arg

movl l2,o4

addl 8,l2

movl o1,l1 ; pass pointer to plae to store return value

all _add3__FLddde_dZ ; all funtion

movd (l1),(i1) ; opy ``q'' to return area pointer by i1

ret

The same funtion ompiled using normal \C" alling onventions might read as

follows: (SPARC's use very ineÆient oating point alling onventions that would

probably perform even worse than our new alling onventions. This example is

ompiled using well tuned oating point alling onventions.)

_add3__FLddde_dZ:

addf f1,f2,f5 ; add up parameters reeived in regs and

addf f5,f3,f0 ; leave result in f0

ret

_g__Fle_dZ:
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movd 1.0,f1 ; pass arguments in output registers

movd 2.0,f2

movd 3.0,f3

all _add3__FLddde_dZ ; all funtion

movd f0,f16 ; opy return from ``add3'' to ``q''

movd f16,f0 ; return ``q'' in floating return reg

ret

The add3 program is 20 instrutions long when ompiled using our new alling

onventions and 10 instrutions long when ompiled using more onventional alling

onventions.

The above example represents the worst ase example for monomorphi oating-

point ode. There are a number of simple optimizations we an apply to ommon

ases: 1) Constant parameters (like the above) an be stashed at ompile time as

onstant data 2) we an often pass the address of oating point parameters and

variables without having to re-stash them and 3) if we set up a number of stash

loations we an often re-use them for several alls.

One solution to this problem of expensive oating point parameters would be to

alter our alling onvention to pass all values less than the size of a double diretly.

We have hosen not to do this beause it degrades performane substantially for

integer and pointer ode (by either wasting half the registers for a register-based

alling onvention, or by foring us to push garbage words for a stak-based alling

onvention as well as numerous other ompliations|see later for details).

For strut parameters, whih are seldom used in normal \C" programs, our

new alling onventions are at least as eÆient as the usual host alling onventions.

So for monomorphi funtions our alling onvention is as eÆient as the host

\C" alling onvention for all types exept doubles and longs. Programs that make

extensive use of double or long parameters may experiene signi�ant performane

degradation.

Examples of Polymorphi Funtions

First we show the assembly ode for the simple square funtion we have been using

as an example throughout this doument.

forall a : a square(a x, exists a op*(a,a))

{



CHAPTER 4. IMPLEMENTATION OF \LAKE" 46

return x*x;

}

void f()

{

print(square(5));

print(square(5.0));

}

Is ompiled to:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

movl i2,o2 ; pass MA for ``x'' as first arg to op*

movl i2,o3 ; pass MA for ``x'' as seond arg to op*

movl i1,o1 ; pass our return area pointer to ``op*''

all *12(i0) ; all ``op*'' operation parameter

movl o1,i1 ; return MA that was returned by ``op*''

ret

_losure_0:

.long _multiply__FLiie_iZ

_losure_1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long _losure_0

_losure_2:

.long _multiply__FLdde_dZ

_losure_3:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long _losure_1

LC0:

.double 5.0



CHAPTER 4. IMPLEMENTATION OF \LAKE" 47

_f__FLe_Z:

movl 5,o2 ; pass integer 5 in MA

movab _losure_1,o0 ; pass pointer to losure for square(int)

all *(o0) ; all ``square'' via pointer in losure

movl o1,o2 ; pass MA returned from square(int)

all _print__FLie_iZ ; all print(int)

movab LC0,o2 ; pass pointer to stashed ``5.0'' as first arg

subl sp,8 ; alloate spae to stash ``square'' return

movl sp,l2

movl l2,o1 ; and pass as return area

movab _losure_1,o0 ; pass pointer to losure for square(double)

all *(o0) ; all ``square'' via pointer in losure

movl l2,o2 ; pass stash ontaining ``square'' return

all _print__FLde_iZ ; all print(double)

ret

While these examples demonstrate good performane for small-sample polymorphi

routines, they get this performane through an array of optimizations that annot

be applied in all ases. One way to ompare alling onventions would be to ompile,

then benhmark a large program using eah of the proposed alling onventions.

This tehnique, however, does not provide muh insight into how to design a good

alling onvention.

Fortunately, it is possible to enumerate all the soures of polymorphi values,

and all the operations that an be performed on these values. This in a useful tool

when designing and evaluating alling onventions.

The following are all the soures of variable-sized values :

1. Input parameter

2. Automati variable

3. Funtion return value
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4. Dereferened value (Inludes pointer, array and �eld aess)

These are all the operations that an be applied to a variable sized value :

1. Pass as Parameter

2. Return from funtion

3. Assign to variable

4. Assign to parameter

5. Assign to Dereferened lvalue (Inludes pointer, array and �eld aess)

6. Take address of

In the following table we explore all the transations that a \Sea" ompiler is

required to support, and how a ompiler using our new alling onventions would

implement them:

1. Create polymorphi loal variable (or temporary polymorphi variable)

We reate polymorphi loal variables in the same format (using a stash for

objets that are not a word in size) that is used for parameters. This allows

polymorphi loal variables to be eÆiently 1) passed as parameters and 2)

used to store the results of funtion alls.

The following ode sample reates a loal variable with stash size spei�ed

by a �eld in the losure. The MA for the loal variable is stored in register

\l0", and the stash is alloated from the stak.

addl 8(i0),sp

movl sp,l0

We exeute the same ode for word-sized variables, but in this ase the stash

area will never be used. We do this beause it is onsiderably heaper to

alloate a bogus stash than it is to hek(at run-time) whether a stash is

really needed.
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2. Input parameter or automati variable passed as parameter

If the stash for a loal variable or parameter annot be guaranteed onstant

for the duration of the all (usually beause a pointer to the variable has been

passed outside the funtion), then the ompiler must make a safe opy of the

variable before passing it.

One we have a safe variable in MA form, our alling onvention allows us to

pass just the MA, without making a new opy of the stash (if there is one).

The ode that is required to pass the MA is the same as would be required

to pass a word-sized argument using the host \C"'s alling onvention. For

our assembly language this is:

movl i2,o2

3. Input parameter or Automati variable returned from funtion

if sizeof(t) == sizeof(int)

return variable's MA in return reg

else

opy variable's stash to area pointed by "return area pointer"

4. Input parameter or automati variable assigned to variable or parameter

if sizeof(t) == sizeof(int)

opy MA

else

opy stash

5. Input parameter or Automati variable assigned to dereferened lvalue

if sizeof(t) == sizeof(int)

opy MA to target

else

opy area referened by MA to target

6. Funtion return value passed as Parameter
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Alloate stash for return value (re-use same stash for multiple alls)

Pass pointer to stash as return value area

Call first funtion

Pass return register as parameter to seond funtion (It will either

ontain a value if the sizeof(t) == sizeof(int) or it will ontain a

pointer to the already alloated stash, and the value will have been

written in this stash.)

addl 8(10),sp

movl sp,i2

all _fun

movl i2,i3

all _fun2

7. Funtion return value returned from funtion

By passing the \return area pointer" on to a subfuntion, and then opying

the subfuntion's \return register" to the urrent funtion's \return register",

it an be arranged that the urrent funtion does not have to reopy and

stash-based portion of the return value.

movl i1,o1

all f

movl o1,i1

ret

8. Funtion return value assigned to variable or parameter

Pass the MA for the variable or pointer as the ``return area pointer''

Call the funtion

Store the return register from the funtion in the MA for the variable

(If sizeof(t) == sizeof(int) the return register will ontain a

value, otherwise it will ontain the original stash pointer)

movl l1,o1 ; l1 is the MA for the variable

all f

movl o1,l1 ; o1 will either ontain a value, or

; will still ontain l1

9. Funtion return value assigned to dereferened lvalue
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all funtion with pointer to lvalue as return area pointer

if (sizeof(t) == sizeof(int))

opy return value reg to lvalue

10. Dereferened value passed as parameter

If we an determine that there are no aliases to the objet then we an avoid

opying the objet's data:

if (sizeof(t) == sizeof(int))

load pointed at objet into MA

else

load address of objet into MA

If there may be aliases to the objet then we must opy the objet's data:

if (sizeof(t) == sizeof(int))

load pointed at objet into MA

else

alloate stash for pointed to objet

opy objet into stash

load address of stash into MA

11. Dereferened value returned from funtion

if (sizeof(t) == sizeof(int))

return value in return register

else

opy value to area pointer by "return value pointer"

12. Dereferened value assigned to variable or parameter

if (sizeof(t) == sizeof(int))

opy value to MA

else

opy value to stash

13. Dereferened value assigned to Dereferened lvalue
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opy value

14. Take address of parameter or variable

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return ontents of MA

Evaluation of our Calling Convention

Putting word sized values inside the MA has little e�et on the performane of

polymorphi funtions: it fores us to add many onditionals, but these probably

improve performane by allowing a very ommon ase (word size arguments) to

exeute without having to do do a all to \bopy" (the variable-sized opy funtion.

For monomorphi funtions, however, allowing word sized arguments to be passed

and returned diretly in registers an improve performane signi�antly.

Our elaborate rules to redue the need for opying arguments allow the following

ases to be implemented very heaply (No onditionals and no variable-sized opies):

2. Input parameter or automati variable passed as parameter (no alias ase)

6. Funtion return value passed as parameter

7. Funtion return value returned from funtion

8. Funtion return value assigned to variable or parameter

These ases an be implemented with one onditional:

10. Dereferened value passed as parameter (no alias ase)

9. Funtion return value assigned to dereferened lvalue

The following ases still need to do a variable sized opy:

3. Input parameter or automati variable returned from funtion

4. Input parameter or automati variable assigned to variable or parameter
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5. Input parameter or automati variable assigned to dereferened lvalue

11. Dereferened value returned from funtion

12. Dereferened value assigned to variable or parameter

13. Dereferened value assigned to Dereferened lvalue

No opies are required under either sheme for the following transations:

1. Create polymorphi loal variable (or temporary polymorphi variable)

14. Take address of parameter or variable

Note that all the ases that still need to do a variable-sized opy are either

assignment statements or return statements. Unless we depart from \C"'s model

of \a variable is a name for a region of storage" it is impossible to eliminate opies

for assignment or return statements (Although there are some triks we an play

with return statements: for example see \returning a return value".)

So we have eÆient alling onventions for monomorphi ode, we have redued

the number of variable sized opies to an absolute minimum, and we have very low

overhead for the various glue operations like loating input parameters.

Comparison Of Calling Conventions

Calling onventions an be ompared by omparing the run-time algorithms they

require to implement eah of the above 14 points.

In the following list we ompare our new alling onvention with the simpler

\always opy, no MA" alling onvention, whih is the same as our alling onven-

tion exept that arguments are always opied prior to a all and values are never

stored in the MA:

Muh Better (No onditionals and no variable-sized opies regardless of type)

2. Input parameter or automati variable passed as parameter

6. Funtion return value passed as parameter

7. Funtion return value returned from funtion

8. Funtion return value assigned to variable or parameter
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Similar (Chek for MA-sized argument allows this ommon ase to exeute

faster)

9. Funtion return value assigned to dereferened lvalue

3. Input parameter or automati variable returned from funtion

4. Input parameter or automati variable assigned to variable or parameter

5. Input parameter or automati variable assigned to dereferened lvalue

10. Dereferened value passed as parameter

11. Dereferened value returned from funtion

12. Dereferened value assigned to variable or parameter

Idential

1. Create polymorphi loal variable (or temporary polymorphi variable)

13. Dereferened value assigned to Dereferened lvalue

Slightly Worse

14. Take address of parameter or variable

Monomorphi ode uses the same alling onventions as polymorphi ode, but

an have quite di�erent harateristis beause all onditionals are evaluated at

ompile time. For monomorphi ode our new alling onventions provide the same

performane as the host \C" alling onventions for integer and pointer types, and

perform the same as the \always opy, no MA" alling onventions.

In summary our new alling onvention never performs muh worse than the

\always opy, no MA" alling onvention, and in many important ases it gives

muh better performane.
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Why we use the stash for less-then-word-sized arguments

It is possible to put less-than-word-sized arguments inside a word and pass them

inside the MA rather than using the stash.

If we only allow word-sized arguments to be stored in the MA, then whenever we

assign a polymorphi variable to a non stash-format objet we have to, at run-time,

exeute the following onditional ode.

if (sizeof(t) == sizeof(int))

opy MA word to target

else

opy stash to target

If we allow less-than-word-sized arguments to be stored in the MA, then this ondi-

tional beomes muh more omplex, signi�antly degrading both performane and

ode size.

if (sizeof(t) == sizeof(int))

opy MA word to target

else if (sizeof(t) == 1)

opy low order byte of MA to target

else if (sizeof(t) == 2)

opy low order 2 bytes of MA to target

else if (sizeof(t) == 3)

opy low order 3 bytes of MA to target

else

opy stash to target

When we pass less-than-word-sized integers in registers it is desirable to pass them

in the a format that the proessors integer instrutions an operate on. Usually

this means we want to pass small integers in the integer registers, as if they were

full width integers.

With proessors that store the most signi�ant byte of a word in the lowest

numbered address (big-endian mahines) the layout in storage of a small integer

stored in a full width integer and a native small integer are di�erent :

The integer \42" stored at memory loation 10
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Address : 10 11 12 13

Value : 00 00 00 42

The \short integer" 42 stored at memory loation 10

Address : 10 11 12 13

Value : 00 42 XX XX (XX = don't are)

The di�erent storage formats beome a problem when the address of a polymorphi

variable is taken. If we only allow word-sized arguments to be stored in the MA,

then the address of a polymorphi variable is either the address of the MA or the

ontents of the MA:

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return ontents of MA

If we allow less-than-word-sized arguments to be stored in the MA, then we must

add ode to alulate the o�set of the argument within the MA:

if (sizeof(t) == sizeof(int))

return address of MA + (4 - sizeof(t)) (may have to move MA first)

else

return ontents of MA

Whenever we want to use the result of a pointer dereferene (pointers, arrays,

or �eld aesses) another set of ompliations arises. The urrent version of the

ompiler has to do the following:

if (sizeof(t) == sizeof(int))

load pointed at objet into MA

else

alloate stash for pointed to objet

opy objet into stash

load address of stash into MA

While a version that allows less-than-word-sized objets to be stored in the MA

would have to do:
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if (sizeof(t) == sizeof(int))

load pointed at objet into MA

else if (sizeof(t) == 1)

load one byte into low order bytes of MA

else if (sizeof(t) == 2)

load two bytes into low order bytes of MA

else if (sizeof(t) == 3)

load three bytes into low order bytes of MA

else

alloate stash for pointed to objet

opy objet into stash

load address of stash into MA

Keep in mind that these algorithms must be evaluated|at run-time|whenever a

polymorphi memory objet is aessed.

If we allow small objets to be loaded in the MA we must load small strutures

into the MA in the same manner that we would load small integers. Otherwise

we would have to add extra onditions to the unpaking and address alulation

routines.

Less-than-word-sized arguments are rarely used in \C" programs; instead they

are onverted to integers before being passed. So having a less eÆient alling

onvention for smaller arguments is not expeted to have muh impat on the

performane \Sea" programs.

One way to get better performane for double parameters would be to expand

the MA to the size of a double. However if this were done, the above ompliations

would fore us to pass int's and pointers using the stash.

4.1.7 Atual Code Samples

When we were implementing the alling onvention for our \Sea" ompiler the

priority was on getting a working ompiler, and the eÆieny of the �rst version

was a lesser onern. Thus the urrent implementation of the polymorphi alling

onvention generates fairly ineÆient ode. The following is the VAX ode emitted

by our ompiler for a polymorphi square program.

/* square.d */
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forall a : a square(a x, exist a op*(a,a))

{

return x*x;

}

del int main()

{

print (square (5));

print (square (5.0));

return 1;

}

#NO_APP

g_ompiled.:

.text

.align 1

.globl _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

.word 0x0

movl *4(ap),r0 ; load the pointer to our return area into r0

movl *8(ap),r1 ; load the pointer to our losure into r1

subl2 $24,sp ; alloate spae for stashing arguments

movl 8(r1),r1 ; get pointer to ``op*'' losure through r1

movl 12(ap),12(sp) ; pass MA for ``x'' as first arg to ``op*''

movl 12(ap),8(sp) ; pass MA for ``x'' as seond arg to ``op*''

movl r1,20(sp) ; pass pointer to ``op*'' losure to ``op*''

movl r0,16(sp) ; pass our return area pointer to ``op*''

alls $10,*(r1) ; all ``op*'' using ``op*'' losure

ret ; return value that was returned by ``op*''

.align 2

LC0: ; losure for int op*(int,int)

.long _multiply__FLiie_iZ

.align 2

LC1: ; losure for square speialized to int square(int)

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long LC0
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.align 2

LC2:

.long _print__FLie_iZ

.align 2

LC3:

.long _multiply__FLdde_dZ

.align 2

LC4:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long LC3

.align 2

LC5:

.long _print__FLde_iZ

.align 1

.globl _main

_main:

.word 0x30

subl2 $20,sp

subl3 $4,fp,r8

movl sp,r7

subl2 $24,sp

movl sp,r9

subl2 $24,sp

movl $5,20(sp)

addl3 sp,$20,8(sp)

movab LC1,16(sp)

addl3 sp,$16,4(sp)

subl3 $8,fp,12(sp)

addl3 sp,$12,(sp)

movab _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ,r6

alls $9,(r6)

movl r9,sp

movl -8(fp),20(sp)
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addl3 sp,$20,8(sp)

movab LC2,16(sp)

addl3 sp,$16,4(sp)

movl r8,12(sp)

addl3 sp,$12,(sp)

alls $9,_print__FLie_iZ

movl r7,sp

subl3 $12,fp,r7

subl2 $28,sp

movl sp,r8

subl2 $28,sp

movd $0d5.00000000000000000000e+00,20(sp)

addl3 sp,$20,8(sp)

movab LC4,16(sp)

addl3 sp,$16,4(sp)

subl3 $20,fp,12(sp)

addl3 sp,$12,(sp)

alls $10,(r6)

movl r8,sp

movd -20(fp),20(sp)

addl3 sp,$20,8(sp)

movab LC5,16(sp)

addl3 sp,$16,4(sp)

movl r7,12(sp)

addl3 sp,$12,(sp)

alls $10,_print__FLde_iZ

movl $1,r0

ret

Longer examples are given in the appendies.

For omparison purposes, the following is a monomorphi version of the same

funtions. If we had written square int and square double using the inline *

operator the resulting ode would have been even better.

/* square. */

int square_int(int x)

{

return multiply_int(x, x);
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}

double square_double(double x)

{

return multiply_double(x, x);

}

int main()

{

print_int (square_int (5));

print_double (square_double (5.0));

return 1;

}

#NO_APP

g_ompiled.:

.text

.globl _square_int

_square_int:

.word 0x0

movl 4(ap),r0

pushl r0

pushl r0

alls $2,_multiply_int

ret

.align 1

.globl _square_double

_square_double:

.word 0x0

movd 4(ap),r0

movd r0,-(sp)

movd r0,-(sp)

alls $4,_multiply_double

ret

.align 1

.globl _main

_main:
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.word 0x0

pushl $5

alls $1,_square_int

pushl r0

alls $1,_print_int

movd $0d5.00000000000000000000e+00,-(sp)

alls $2,_square_double

movd r0,-(sp)

alls $2,_print_double

movl $1,r0

ret

A ompiler that utilizes the above implementation strategy an use normal \C"

style separate ompilation :

.+.h .+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| |

| |

| .o | .o

| |

| |

V V

------------------------

| |

| Standard Linker |

| |

------------------------

|

|

|

|
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V

a.out

4.2 Implementation 2 : Polymorphi objet ode,

all losures onstant

For this implementation we use the algorithm proposed in hapter 3 to transform

the \Lake" program so that all losures are onstant.

A losure ontains a pointer to a funtion as well as a set of type and opera-

tion parameters bindings for a spei� invoation of that funtion. If losures are

known at ompile time then we an apply, at ompile time, the losure to the poly-

morphi funtion and thereby generate a speialized version of the polymorphi

funtion. While it is possible to ompletely speialize the polymorphi funtion to

be a monomorphi funtion (and this is explored in the next setion), this is not the

only form of speialization that is possible. We propose retaining one objet-ode

funtion that is referened by all losures, but speializing bits of this funtion by

moving onstant alulations and bits of ode to the losure.

When reading ode generated by our \Sea" ompiler, it was observed that many

omplex expressions, onsisting entirely of onstants and losure �elds, were being

evaluated at runtime. These expressions are used to aess parameters, lay out

loal variables, loate �elds in parameterized types, and during the onstrution of

parameter lists.

For example : (a and b are type parameters)

(((sizeof(a)+3)/4)*4)*2 + ((sizeof(b)+3)/4)*4 + 8

Instead of generating runtime ode for suh expressions, we propose replaing these

expressing with referenes to new losure members. We then add notes to the fun-

tion de�nition detailing the (ompile-time) alulations we want done. As onstant

losures are generated we an look up these notes, do the requested alulations,

and store the results as new losure �elds.

Pointers to hunks of ode, like opy operations, an be similarly moved in the

losure.

An additional bene�t of having all losures onstant is that we don't have to

reate losures at runtime. This an result in signi�ant runtime savings for some

styles of programming that involve the onstrution of many non-onstant losures.
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A ompiler that utilizes this tehnique needs a global \Closure Proessing" pass

before linking. This pass uses a simple, fast algorithm, and does not have to proess

muh data, so it is not expeted to add signi�antly to ompile time.

As eah \." �le is ompiled to a \.o" �le the ompiler also outputs a \.lo" �le

that ontains : 1) onstant losures that have been reated during the ompilation

of that �le 2) \losure expansion templates" for all polymorphi funtions delared

in that �le and 3) for eah polymorphi funtion, a list of expressions that an be

expanded at ompile time.

.+.h .+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| | | |

|.o |.lo .lo| .o|

| | | |

| V V |

| --------------- |

| | Closure | |

| | Proessor | |

| | | |

| --------------- |

| | |

| |.o |

| | |

V V V

---------------------------------

| |

| Standard Linker |

| |

---------------------------------

|

|

|
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|

V

a.out

\.lo" �les ontain onstant losures, losure expansion templates, and whatever

information is needed about polymorphi funtions to allow us to alulate stak

o�sets for polymorphi automati variables, et.

4.3 Implementation 3 : Translation to monomor-

phi objet ode

One we have transformed a \Lake" program so that all losures are onstant, we

apply these onstant losures to the original polymorphi funtions and generate

speialized monomorphi versions.

A ompiler using this tehnique would read eah \Sea" program �le, do all

type-heking and type inferene, output a �le ontaining losure information, and

output a �le ontaining \Lake" parse trees for every funtion. The \losure proes-

sor" global pass would then alulate the onstant losures for the program. These

onstant losures an then be ombined with the polymorphi funtion represented

as a \Lake" parse tree to generate a speialized \Lake" funtion. This funtion an

then be ompiled to objet ode.

Speialized \Lake" funtions would be standard \C" funtions, and ould be

ompiled using standard \C" ompilation tehniques, or, in fat, we ould output

these \Lake" funtions as \C" ode and feed this through the stok \C" ompiler.

This would result in a portable, high performane (in exeution time) ompiler.

Beause a large body of \Sea" ode has not been written, it is unknown how

many speialized versions of polymorphi funtions would be generated by typial

programs. Beause we repliate all the ode for eah version this algorithm ould

potentially generate very large exeutable �les.

If we generated objet ode for speialized versions of polymorphi funtions

anew with every ompile (inluding for libraries) we ould not use this ompiler on

large systems. The solution is to ahe objet ode for already expanded versions of

funtions. Every expansion is added to this ahe after it is generated, and all the

expansions generated from a spei� �le are ushed when the parse-tree generated

from that �le hanges.
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A ompiler with parse trees for all the funtions in a system would also be able

to inline any funtion.

As was disussed earlier, this is the only ompilation sheme that an eÆiently

support \C++"-style onstrutors and destrutors.

Another advantage of this ompilation sheme is that it would fore library

distributors to distribute their libraries in something lose to soure form.

The struture of a ompiler employing this tehnique would be as follows :
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.+.h .+.h

| |

V V

-------------- --------------

| Compiler | | Compiler |

-------------- --------------

|.t |.lo .lo| .t|

| | | |

| V V |

| ----------------- |

| | Closure | |

| | Proessor | |

| ----------------- |

| | |

V V V

---------------------------------

| Funtion Expander |

---------------------------------

^ |.

|expansion |

|queries V

| ------------------

| | `C' ompiler |

| ------------------

| |.o

V V

---------------------------------

| Expansion Cahe |

---------------------------------

|.o+.a

V

---------------------------------

| Standard Linker |

---------------------------------

|

V

a.out

\.t" �les ontain \Lake" parse trees. \.lo" �les ontain losure information.
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4.4 Implementation 4 : Only pointer types an

be bound to type parameters

Almost all the omplexity in our polymorphi objet ode ompiler is there in order

to support parameters, return values, and aggregate type members whose size is

not a ompile-time onstant. For a variant of \Sea" where only (data) pointer types

an be bound to type variables (and typegen parameters), all polymorphi objets

have the same representation, and the resulting language system is muh simpler,

more reliable, more portable, and more eÆient.

In the next hapter we will demonstrate that, due to the way \C" variables are

de�ned, we derive surprisingly little advantage out of allowing types other than

pointer to be bound to type parameters. We will then argue that the advantages

of a \pointers only" de�nition outweigh the bene�ts of the more omplete system.

What follows is a disussion of how a \pointers only" \Sea" ompiler ould be

implemented :

The �rst step in ompiling \pointers only" \Sea" is to do type inferene and

overload resolution, translating the \Sea" program into a \Lake" program. For

example, the following \Sea" program fragment:

// Type generator for ``list''

type list(type elem) {

return strut {

list(elem) *next;

elem data; } *;

}

// put string

void put(FILE *f, har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)
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{

put(s, l->data);

l = l->next;

}

}

// test funtion

void g(list(har *) l)

{

put(stdout, l);

}

Would be translated by the inferener to the following \Lake" program: (a real

translation would use the mangled names desribed for implementation 1)

// Type generator for ``list''

type list(type elem) {

return strut {

list(elem) *next;

elem data; } *;

}

// put integer

void put_1(FILE *f, har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put_2(stream s, list(elem) l, exists void put_p1(stream, elem))

{

while (l)

{

put_p1(s, l->data);

l = l->next;

}

}
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// test funtion

void g_1(list(har *) l)

{

put_2<FILE *, har *, put_1<>>(stdout, l);

}

\Lake" has two features that are missing from \C":

1. Polymorphi \Lake" funtions are speialized to be monomorphi \Lake"

funtion by the appliation of a tuple of type and operation parameters.

An unspeialized \Lake" funtion an be represented in \C" as a pointer to

a \C" funtion, that is prepared to take, as its �rst parameter, a pointer

to a struture ontaining bindings for its type and operation parameters.

A speialized \Lake" funtion is represented in \C" as a losure ontaining

a pointer to the polymorphi \C" funtion, as well as bindings for all its

operation parameters. When a speialized \C" losure is applied to a set of

atual arguments, we all the polymorphi funtion mentioned in the losure,

supplying a pointer to the losure as its �rst parameter. The polymorphi

funtion an then speialize its own behaviour by referring to the ontents of

the losure. No runtime support is needed for type parameters beause we

have restrited all type parameters to one representation.

We delare a new losure \strut" for eah polymorphi funtion de�nition,

beause this allows us to give types to the losure members, drastially re-

duing the number of type asts we have to do.

2. Type generators

Type generators an be expanded to \C" types by applying, at ompile time,

the type generator parameters to the type generator de�nition. This trans-

lation loses the speial type equivaleny rules de�ned for type generators,

fortunately all types generated from a single typegen will have the same rep-

resentation (in \only pointers" \Sea"), and an be made type ompatible

when appropriate, through judiious appliation of type asts.

In addition to these two translations, a liberal sprinkling of (void *) asts is

required to keep the \C" type-heker quiet. The resulting \C" program is:

typedef strut _list_poly {

strut list *next;
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void *data; } *list_poly;

typedef strut _list_int {

strut _list_int *next;

har *data; } list_int;

/* The first parameter to every funtion is a pointer to its losure. */

/* put integer */

strut put_1_losure {

void (*obj)(strut put_1_losure *, FILE *, har *);

};

void put_1(put_1_losure *, FILE *f, har *x)

{

fputs(x, f);

}

/* put list */

strut put_2_losure {

void (*obj)(strut put_2_losure *, void *);

void (**put_p1)(void *, void *, void *);

};

void put_2(strut put_2_losure *, list_poly l)

{

while(l)

{

*->put_p1((void *)->put_p1, s, l->data);

l = l->next;

}

}

strut put_1_losure C1 = {put_1};

strut put_2_losure C2 = {put_2,

void (**)(void *, void *, void *)&C1};
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/* test funtion */

void g_1(void *, list_int l)

{

C2->obj(&C2, (void *)stdout, l);

}

Whih an then be run through the host \C" ompiler.

4.4.1 Why not allow integers as well as pointers ?

Integers usually have the same representation as pointers, so for most mahines it is

possible, without ompromising eÆieny, to allow both integer and pointer types

to be bound to type parameters.

Two minor ompatibility problems would be introdued by this hange:

1. We would not be able to ompile \Sea" programs on mahines that used a

di�erent representation for pointers and integers. Fortunately, however, suh

mahines are rapidly beoming extint.

2. On a mahine that has separate integer and pointer registers (ie. the Motorola

68000), a register based alling onvention might load integer parameters into

integer registers and pointer parameters in pointer registers. Thus if we at-

tempted to all a monomorphi funtion from within a polymorphi funtion,

passing the integer arguments as if they were pointers, these arguments ould

end up in the wrong registers. The solution to this problem is to pass all

integer arguments as if they were pointers, but this is a nuisane.

We are opposed to this addition beause it adds little power to the language

while adding onfusion to the language de�nition.

A more interesting variant would allow all the built-in types as well as pointers,

to be bound to type parameters. This would provide most of the power of our

truly polymorphi version, without having to support runtime variable parameters

larger than a double. We ould implement this variant by passing all parameters

as �xed sized hunks large enough to hold a value of any of the basi types. See

the setion entitled \Why we use the stash for less-then-word-sized arguments" for

a disussion of the pitfalls of this tehnique. (In short, this ends up being just as

ompliated, and ineÆient as the fully general ase.)



Chapter 5

Experiene Using \Sea"

After implementing the prototype \Sea" ompiler we attempted to write a number

of libraries and sample programs to test the expressiveness of the new features.

In this setion we explore the limitations we ran into as well as some unexpeted

apabilities that emerged.

5.1 Values

The following setion is an exploration of how \values" are reated and manipulated

in \C", and the impliations of this for \Sea".

A \C" variable or parameter of type T is a name for a region of storage large

enough to hold a value of type T.

Objet : \A region of data storage in the exeution environment, the ontents

of whih an represent values ..." ANSI 1.6

\A delaration that also auses storage to be reserved for an objet or funtion

named by an identi�er is a de�nition" ANSI 3.5

Parameter : \An objet delared as part of a funtion delaration or de�nition

that aquires a value on entry to the funtion ..." ANSI 1.6

\If a return statement with an expression is exeuted, the value of the expression

is returned to the aller as the value of the funtion all expression ..." ANSI 3.6.6.4

So values of any \C" type an be stored in variables, passed as funtion param-

eters, and returned from funtions.

73
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Unfortunately \C" variables are not apable of representing very omplex values.

They work �ne for integers, oating point numbers, pointers, and small �xed-size

strutures (like those that might be used to represent omplex numbers). A \C"

variable has a size that is �xed at ompile time, annot be very big or it will be too

expensive to pass as a parameter, and an only have a very limited substruture

(e.g. no reursively de�ned substruture).

So straight \C" is a very limited language that annot represent omplex values

like \matries" and \lists". In pratie this problem is irumvented by building

omplex values out of multiple hunks of storage alloated from areas of memory

that are not used by the \C" language system, and then aessing these hunks of

storage as typed objets through \C" pointers.

While this tehnique does allow us to represent omplex abstrations in \C",

beause they are being reated outside of the ontrol of the language, the language's

built-in operations are oblivious to this substruture, so assignment, parameter

passing and value return all operate only on the top-level value. So when the

\C" programmer wants to work with a large value (like a matrix) he or she must

expliitly alloate and release storage for the value, expliitly reate temporaries to

hold intermediate values, and take into aount when the sharing of the body of

the value will be a problem and expliitly make opies.

We were able to write polymorphi routines that manipulated the small (in stor-

age requirements and omplexity) values that an �t within a single \C" variable.

We were also able to write routines that modi�ed the state of large polymorphi

heap-based data strutures (like linked lists). However, when we tried to implement

routines that operated on large heap-based values (like strings, bignums or matri-

es), we found that our routines beame polluted with expliit storage-management

operations, value-opying operations, return value onventions, parameter-passing

onventions, and sharing assumptions that were di�erent for eah abstration.

The following ode samples show a number of di�erent ways a simple sample

funtion ould be implemented in \C". Eah uses slightly di�erent storage manage-

ment onventions.

/* If a bignum an fit within a single `C' variable then we an implement

``pythag'' as follows.

*/

bignum pythag(bignum x, bignum y)

{

bignum r;
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r=bignum_sqrt(x*x+y*y);

return r;

}

/* Conventions :

1) Return values are stored on the heap and dealloation is the

responsibility of the aller.

2) Input parameters are never modified by funtions (unless expliitly

stated).

*/

bignum pythag(bignum x, bignum y)

{

bignum t1, t2, t3, t4;

t1 = bignum_mult(x, x);

t2 = bignum_mult(y, y);

t3 = bignum_add(t1, t2);

bignum_free(t1);

bignum_free(t2);

t4 = bignum_sqrt(t3);

bignum_free(t3);

return t4;

}

/* Conventions :

1) A pointer to an already reated bignum will be passed in for

storing a return value. We may also hoose to stipulate that this

output parameter not point to the same area as any of the input

parameters.

2) Input parameters are never modified by funtions (unless expliitly

stated).

This version generates fewer alls to the storage manager (the previous

version needed at least one mallo/free per funtion all to handle

the return value.)

Note :
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Although there has only been a minor hange in the onventions sine

the previous version, every line of ode is different.

*/

void pythag(bignum out, bignum x, bignum y)

{

bignum a, t1, t2, t3;

bignum_init(a);

bignum_init(t1);

bignum_init(t2);

bignum_init(t3);

bignum_mult(t1, x, x);

bignum_mult(t2, y, y);

bignum_add(t3, x, y);

bignum_sqrt(a, t3);

bignum_opy(out, a);

bignum_free(t3);

bignum_free(t2);

bignum_free(t1);

bignum_free(a);

return out;

}

5.2 Construtors and Destrutors

When onfronted with a similar problem, the designers of \C++" reated a system

of overloaded onstrutors, overloaded destrutors and an overloaded assignment

operator that allows the programmer to exeute a ode stub every time an objet|

of a spei� type|is reated, opied, or goes out of sope. The \C++" programmer

typially uses these hooks to either 1) maintain a separate deep substruture for

eah variable or parameter, and reover the storage oupied by this substruture

when the variable or parameter goes out of sope, or 2) implement a referene

ounting system for the objet so multiple top-level objets an share one substru-
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ture, yet the storage oupied by the substruture an be relaimed when there are

no more referenes to it.

`C++"s de�nition of onstrutors and destrutors is omplex, onfusing, and

full of grey areas. However, most of this omplexity appears to be the result of

integrating the system into an already existing language (\C"). Rather than at-

tempting to repeat their perilous (design) journey, thereby reating a fresh set of

subtle problems, \Sea" will use \C++"'s onstrutor/destrutor system.

If onstrutors/destrutors were applied to every objet in a system the result-

ing program would run very slowly, muh slower than if garbage olletion (a more

general, fully automati, storage relamation system) had been used. The advan-

tage to onstrutors/destrutors is that there is no ost unless they are atually

used, whih is typially for only a few types in a system. Another advantage of

onstrutors over garbage olletion is that they allow for the relamation of system

resoures like �le handles.

\C++" onstrutors are de�ned as part of lass, whereas \Sea" onstrutors

are de�ned as separate overloaded funtions that take a pointer to the type they

are meant to onstrut.

We an use \Sea"s polymorphi overloading system to de�ne onstrutors/destrutors

that work for any type that provides the base operations required for that style of

onstrutor/destrutor. For example, the following library implements a referene-

ounting onstrutor, destrutor, and assignment operator for any type that has a

\referene ount" �eld.

forall a : void onstrut(a *target,

exists void first_onstrut(a *), exists int *referene_ount(a *))

{

*referene_ount(target)++;

reate(target);

}

forall a : void init(a *target, a *soure,

exists int *referene_ount(a *))

{

*referene_ount(soure)++;

*target = *soure;

}

forall a : void op=(a *target, a soure,
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exists int *referene_ount(a *))

{

*referene_ount(&soure)++;

*target = soure;

}

forall a : void destroy(a *target,

exists void final_destroy(a *), exists int *referene_ount(a *))

{

if(!--*referene_ount(target))

final_destroy(target);

}

Then when we want to de�ne a referene-ounted \bignum" type, we an provide

just the basi de�nitions required by the above library. In \C++" programs, the

basi referene-ounting algorithm must be re-implemented for eah new type.

typedef strut _bignum {

int referene_ount;

har *digits;

} *bignum;

void first_onstrut(bignum *x)

{

*x->digits = NULL;

}

void final_destroy(bignum *x)

{

if (*x->digits != NULL)

free (*x->digits);

}

int *referene_ount(bignum *x)

{

return &(*x->referene_ount);

}

Unfortunately, onstrutors and destrutors are inompatible with the preferred

implementation strategies for \Sea", as will be illustrated by the following example:
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We an de�ne a polymorphi version of the pythag funtion in \Sea" as follows:

forall a : a pythag(a x, a y,

exists a op*(a,a), exists a op+(a,a), exists a sqrt(a))

{

a r;

r=sqrt(x*x+y*y);

return r;

}

After the ompiler adds the impliit onstrutor and destrutor operation parame-

ters pythag will read:

(We are using the same onstrutor/destrutor system as \C++", so in order

to aurately generate the following example we de�ned a pythag funtion for a

lass that had a onstrutor, destrutor, and a assignment operator, and ran this

program through the \front" (the AT&T \C++" to \C" translator.))

(Construtors and destrutors are integrated into the funtion alling onven-

tions, so it is not possible to do a truly aurate soure-level representation of a

\Sea" funtion with onstrutors and destrutors in plae. For the following ex-

ample we have replaed parts of the funtion alling and return onventions with

similar soure level onstruts.)

forall a : void pythag(a *result, a x, a y,

exists void mult(a *, a, a), exists void add(a *, a, a),

exists void sqrt(a *, a),

exists void onstrut(a *), exists void init(a *, a),

exists void assign(a *, a), exists void destroy(a *))

{

a result;

a 1r;

a V4;

a V5;

a R6;

a V7;

a V8;

a R9;

a R10;

a R11;
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onstrut (&1r);

mult (&R6, init (&V4, x), init (&V5, x));

mult (&R9, init (&V7, y), init (&V8, y));

plus (&R10, &R6, &R7);

sqrt (&R11, &R10);

assign (&1r, &R11);

destroy (&R11);

destroy (&R10);

destroy (&R9);

destroy (&V8);

destroy (&V7);

destroy (&R6);

destroy (&V5);

destroy (&V4);

init (result, &1r);

destroy (&1r);

return;

}

Often, when pythag is alled, no onstrutors or destrutors will be de�ned for the

polymorphi type a. (For example no onstrutors or destrutors are de�ned for

int.) In this ase the operation parameters onstrut, init, destroy and assign

will be bound to the default no-operation onstrutor.

A \Sea" ompiler that translated polymorphi \Sea" programs into equivalent

monomorphi programs (Implementation 3), ould remove all these null funtion

alls resulting in no performane degradation exept when onstrutors were atu-

ally used. (as in \C++")

Unfortunately, with any of the \Sea" implementations where operation parame-

ters are reeived at runtime, for every variable delaration, every parameter passed,

every return value, and every assignment operator we would have to generate a all

to a (possibly null) operation parameter. (Or, more eÆiently, evaluate a on-

ditional to determine if the all is really needed.) Thus the performane of all

polymorphi funtions would su�er tremendously.
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5.2.1 Garbage Colletion

A garbage olletor does automated storage relamation by releasing the storage

oupied by all objets that a program annot reah though any hain of pointer

dereferenes. Beause the program had no way of aessing this data, the fat that

it is not longer available an have no e�et on the program exeution.

Traditional garbage olletors �nd all live data by marking all the data aes-

sible from the program's variables (the roots), then reursively marking all data

aessible from urrently marked objets. (The atual algorithms that are used are

muh more omplex, but they are all based on this shell.)

In order for this type of garbage olletor to operate it must be able to: 1)

identify all the \root" pointers in program variables 2) identify all the pointers in

eah heap objet.

In many languages pointers are loated either by storing pointers in a speial

format that no other data objet an have (tagged pointers) or by tagging every

data objet (inluding stak frames) with enough type information to loate all

pointers within that objet.

Tagging Data Objets

A tehnique desribed by [DMH92℄ for tagging the runtime stak in a GCC-based

Modula-3 ompiler an also be used for \C". As funtions are ompiled we generate

a data struture that desribes, for eah point in a funtion's exeution, the loation

of all pointers or derived pointers. When a garbage olletion is then done, pointers

an be loated by walking up the all hain, and for eah funtion, looking in the

table assoiated with its urrent state of exeution (as identi�ed by the urrent

value of the program ounter within that funtion.) (There are limitations and

ompliations assoiated with this tehnique; see [DMH92℄ for details.)

To loate pointers in the heap, the ompiler an be modi�ed to generate tables

desribing the loation of pointers in every type. These tables an be assoiated

with eah type through our overloading system. We an then write a polymorphi

allo funtion that will tag eah alloated blok with a referene to the appropriate

pointer layout table.

Stati data an be tagged using a method similar to that we propose for the

heap, exept that the tagging will be done at ompile time.

There is no way for the garbage olletor to determine whih aess path into

a union was last used. Thus we must either add a tag bit to unions or we annot
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allow unions that have pointers in di�erent loations in di�erent arms.

If the garbage olletion algorithm is designed suh that pointers that do not

point into a heap objet are left alone, then the garbage-olleted heap an o-exist

with a onventional \C" heap. Members of the \C" heap would not be allowed

to point into the garbage olleted heap. Allowing the two heaps to o-exist is

important if we want to have aess to the large library of \C" ode available,

muh of whih will not play by our new rules.

\C" pointers regularly point into the middle of objets, and therefore, our

garbage olletor must be apable of reognising suh referenes.

Using the above tagging information it would be possible to use most of the

high-performane garbage olletors desribed in the literature.

Unfortunately, this tehnique requires substantial ompiler support, so it is not

appropriate if we want to use \C" as an intermediate language.

Tagged Pointers

Tagging \C" pointers is not pratial beause there is no way we ould reserve spe-

i� bit patterns for pointers only, without severe (and inompatible) modi�ations

to how aggregate data strutures are onstruted and manipulated.

In response to these problems Hans Boehm invented onservative pointer-�nding

garbage olletors. The observation he made was that a garbage olletor an

be written even with a pointer-identi�er that oasionally mistakes non-pointers

for pointers, and that suh a pointer-identi�er an be implemented simply and

eÆiently by heking if the prospetive word points to the beginning of a heap

objet.

The runtime heap has to be speially onstruted so that we an rapidly identify

words pointing to the beginning of an alloated heap objet. The way we do this

is by de�ning a table that has an entry pointing to the beginning of every heap

objet. Searhing this table as we are trying to identify pointers would be too time

onsuming, so we plae a pointer in the header of eah alloated objet that points

to its entry in the table. To hek if a word points to the beginning of a heap

objet, we hek if the pointer in the header of the objet points into the table,

and if it does, we hek if the pointer in the table refers bak into the heap objet.

(This is a simpli�ation of the algorithm presented in [Boehm℄ that uses slightly

more memory, but runs faster and does not require a ustom storage alloator.)
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Now that we have a way of identifying pointers we an implement a onventional

mark-sweep garbage olletor with every word in the stak and external variable

area as the set of roots.

Beause we will identify some non-pointers as pointers, we annot use any of the

garbage olletion tehniques that move data. (Without elaborate virtual memory

triks.) This is partiularly disappointing beause we would like to use our garbage

olletor data strutures to store and retrieve data strutures from seondary stor-

age.

The addition of garbage olletion makes \C" a muh more powerful and pleas-

ant language to program in. For example we an provide a muh better string

abstration if we don't have to worry about storage relamation:

har *onat(har *a, har *b)

{

har * = mallo(strlen(a)+strlen(b)+1);

strpy(, a);

strat(, b);

return ;

}

We an then evaluate expressions like \a = onat(onat("a", "b"))" with no

storage management onsiderations.

Suh strings an be passed as parameters, returned from funtions, and stored

in variables, all without expliit storage alloation grief. See above for a disussion

of why this is partiularly important when we are de�ning polymorphi funtions.

There are several problems with adding garbage olletion to \Sea" :

1. Pauses in exeution: There is a signi�ant pause in exeution while the

garbage olletor searhes the heap to �nd and mark live data. The du-

ration and frequeny of these pauses depends on the appliation, omputer,

and amount of memory. Many \C" appliations are interative or real-time

in nature and any pauses are unaeptable.

2. Signi�ant time overhead: The exat overhead depends on the program and

the amount of memory available.

3. Large memory requirements: Garbage-olleted programs that do a lot of

storage alloation (as is the preferred style with garbage olletion) should

expet to use several times more storage than they have live data.
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4. Portability: The urrent versions of Boehm's onservative garbage olletor

are not ompatible with the optimizations done by most modern ompilers

when they are told to generate \optimized ode". Not using ompiler opti-

mizations on modern RISC mahines leads to signi�ant performane degra-

dation. This is only an issue if our ompiler generates \C" ode (Eventually

someone will add a GC-friendly swith to GCC).

For the above reasons, rather than making garbage olletion a standard part

of the \Sea" language de�nition, we propose two variants of \Sea": \Sea level 1"

would not have garbage olletion and would be suitable for appliations where

performane or real-time onsiderations were an issue, and \Sea" level 2 would

have garbage olletion, and would feature muh more powerful polymorphi (and

non-polymorphi) libraries.

5.2.2 Expliit Storage Management

It should be noted that even in the absene of some form of storage relamation,

many interesting polymorphi routines an still be written. For example most

data-struture libraries (like lists or ditionaries) and data-struture manipulation

routines (like sort) operate on a large, already existing struture, and thus an

usually be implemented without muh storage management.

It is also possible to write routines that work for any type that use one spei�

style of storage alloation, and then standardize on this style for most types. For

example, we an de�ne \pythag" for any type that has a storage \release" routine:

forall a : a pythag(a x, a y,

exists a mult(a,a), exists a add(a,a),

exists a sqrt(a), exists void release(a))

{

a t1, t2, t3, t4;

t1 = mult(x, x);

t2 = mult(y, y);

t3 = add(t1, t2);

release(t1);

release(t2);

t4 = sqrt(t3);

release(t3);



CHAPTER 5. EXPERIENCE USING \SEA" 85

return t4;

}

This is muh less elaborate (and limited) than the full onstrutor/destrutor

sheme, but it does not reate the same implementation problems.

5.2.3 Implementation Seletion

As has already been disussed, we propose 2 levels of the \Sea" language 1) without

garbage olletion, suitable for limited memory environments or appliations with

real-time onstraints and 2) with garbage olletion, a muhmore powerful language

with muh more powerful libraries. We de�ne these as two di�erent variants of the

language so that the real-time programmer an know whih libraries are safe for

his or her appliations.

Earlier, we introdued a variant of \Sea" in whih only pointer types an be

bound to type variables. A ompiler for this variant an be implemented as a

translator to \C", and suh a ompiler ould probably be written in 15000-20000

lines of portable \C" ode.

Beause of the elaborate alling onventions and data-struture layout rules

required for an eÆient, unrestrited implementation of \Sea", a ompiler for suh

a language has to ompile diretly to the target assembly language. To make suh

a ompiler portable to a wide range of mahines requires onsiderable additional

work. Our urrent \Sea" ompiler is portable and, with some tuning, an generate

high-performane ode. It is implemented as 175000 lines of \C" ode. (almost all

of this is stok GCC).

Whih implementation is preferred depends on the appliation. The appliations

of early, experimental versions of \Sea" are as follows:

1. Developmental : Experiment with and re�ne language features.

\Sea" is one of the �rst languages to use \overloading polymorphism", so

as the language is used it is expeted that the language design will evolve

rapidly. This rapid evolution makes now a bad time to invest too heavily in

implementation tehnology.

2. Evangelial : Allow other programmers/researhers to experiment with this

style of programming.
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It is muh easier to get other people to experiment with a small, reliable,

totally portable pre-proessor than it is to get them to install and experiment

with a 175000 line ompiler.

3. Software Development : Use to onstrut atual programs that are meant to

be useful in their own right.

If someone writes a program in \pointers-only" \Sea" their program will be

easy to port to any environment that has a \C"-ompiler. All that is required

is that the user �rst ompile a small, totally portable pre-proessor.

A program written in full \Sea" will be dependent on a 175000 line ompiler

that takes onsiderable time and spae (20Mb) to bring up on one of the

supported arhitetures.

So for early, experimental versions of \Sea"-like languages we would argue that

the pointers-only implementation is more appropriate. We make this argument be-

ause the implementors of this projet feel that it would have been a more useful

experiment to have written a small portable ompiler, and experimented with lan-

guage features, than to have devoted so muh e�ort to making the ompiler fully

polymorphi.

5.3 Language Usage

5.3.1 Polymorphi Data Strutures

The following is a sample polymorphi data-struture implementation:

type list(type elem)

{

return strut {

list(elem) *next;

elem data; } *;

}

type hashnode(type key, type ontents)

{

return strut {

key k;
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ontents ; } *;

}

type hashtable(type key, type ontents)

{

return strut {

list(hashnode(key,ontents)) *table;

int size;

int (*hash)(key); } *;

}

forall key,ontents:

hashtable(key, ontents) reate(int hashsize, int (*hash)(key))

{

hashtable(key,elem) h;

h = allo(1);

h->table = allo(hashsize);

h->size = hashsize;

h->hash = hash;

return h;

}

forall key,ontents:

int lookup(hashtable(key,ontents) d, key k, ontents *ep,

exists int ompare(key, key))

{

int hash;

list(hashnode(key,ontents) l;

hash = d->hash(k) % d->hashsize;

for (l = h->table[hash℄; l != NULL; l = l->next)

{

if (ompare(l->data->k, k) == 0)

*ep = l->data->;

return 1;

}

return 0;
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}

forall key,ontents:

void insert(hashtable(key,ontents) d, key k, elem e)

{

...

}

forall key,ontents:

void print(hashtable(key,elem) d,

exists void print(key), exists void print(elem))

{

...

}

forall key,ontents:

void destroy(hashtable(key,ontents) d,

void (*free_key)(key *), void (*free_ontents)(ontents *))

{

int i;

list(hashnode(key,ontents) l,t;

// Free storage oupied table, hashlists, hashnodes and hashtable

for (i=0; i<h->size; i++)

{

for (l = h->table[i℄; l != NULL; l = t)

{

t = l->next;

free_key (&l->k);

free_ontents (&l->);

free(l->data);

free(l);

}

}

free(h->table);

free(h);

}

Notes:
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1. This data struture will work with \pointers-only" \Sea". In order to aom-

modate the \only pointers" restrition, we ouldn't store the key and ontents

diretly in the list node. This fored us to add an extra level of indiretion,

with the assoiated extra overhead and extra storage management ativity.

2. The garbage-olleted version of \Sea" is not required in order to use this

abstration. We have had to parameterize the hashtable destroy funtion

with storage release funtions for the types stored in the table.

3. We ould have made the \hash" funtion an \exist" parameter. But in that

ase it would be more diÆult if we wanted to use a di�erent hash funtion,

for the same type, in a di�erent ontext (perhaps we want a di�erent hash

funtion for a keyword symbol table that we do for an identi�er symbol table).

Beause \Sea" urrently laks nested funtions the only way we ould de�ne

two di�erent overloaded hash funtions for the same type would be to ompile

them in separate \." �les, eah with stati visibility. (This is also why the

free funtion parameters to destroy were not made into exist parameters.)

4. The print funtion above is an example of a type of overloaded utility fun-

tion we propose providing for all built-in types and library data strutures. It

is expeted that many data strutures in \Sea" programs will be stored using

the polymorphi data-struture libraries. If suh data strutures ould be

read and written in text and binary this would be a substantial onveniene

for the programmer. (Note how easily funtions like print an be de�ned

for omplex data strutures in terms of the print funtions for their mem-

ber types. For example to print a hashtable where eah element was also a

hashtable would require no additional ode.)

5. All the basi operations required for the \hashtable" funtions are provided by

the \hashtable" type generator. This makes it very onvenient to pass a poly-

morphi hashtable as a funtion parameter. (Compare this with \Abstrat

Polymorphi Data Strutures" desribed below.)

Polymorphi versions of all the basi data strutures an be similarly de�ned.

This single addition makes \C" a muh more powerful language.

5.3.2 Abstrat Polymorphi Data Strutures

Abstrat polymorphi data-struture parameters are de�ned entirely in terms of

their operations. Using this tehnique we an write polymorphi routines in terms
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of the harateristis they require from their data-struture parameters, rather than

in terms of a spei� data struture.

For example, the following browse routine will operate on any \sequene" that

an be stepped through in both diretions:

forall seq,pos,elem: void browse(seq s, pos p,

exists pos next(seq, pos, elem *),

exists pos prev(seq, pos, elem *),

exists void format(har *, elem),

exists int browse_view(elem))

{

...

}

Using this browser we an browse:

Array of menu options

Doubly linked list of field definitions in a database struture editor.

B-tree of filenames mathing searh riterion

Lines in the password file

Student reords from a database server

Funtions in a `C' file

Chunks of ``help'' text from a ``help'' file

Filenames in urrent diretory

A opy of the operating systems run-able proess queue

Abstrat input/output devies have similar broad appliation.

5.3.3 Polymorphi \printf"

In [OCD 92℄ a polymorphi variable-argument-length print funtion is desribed.

The following is a translation of this funtion into \Sea":

void print()

{

return;

}
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forall a,b: a print(b x, exists void put(b), exists a print)

{

put(x);

return print;

}

int main()

{

put(4)(5.0)("red");

return 0;

}

Unfortunately, beause our overload resolution algorithm is restrited so that it will

only onsider external funtion de�nitions or exist parameters (in order to allow

for programs to be transformed so that all losures are onstant), this program will

not ompile under \Sea".

For \Sea" we will borrow the \streams" pakage from \C++".
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Conlusions

We have integrated \overloading polymorphism" with \C"; no fundamental inom-

patibilities were enountered.

In most polymorphi programming languages, all values are onstants on a

garbage-olleted heap, and funtion parameters and return values are pointers to

these onstants. Beause all funtion parameters and return values have the same

representation (a pointer) regardless of type, polymorphi alling onventions for

these languages are not omplex.

\C"/\Sea" is de�ned in suh a way that passing a parameter to a funtion or

returning a value from a funtion involve passing the value diretly (usually by

opying it). This is a substantial ontributor to the high performane of \C", be-

ause we don't need an additional level of indiretion to aess every value. De�ning

an eÆient polymorphi alling onvention that an work within the onstraints of

\C" was a major hallenge.

Our new alling onvention results in 1) slightly worse performane for monomor-

phi funtions, and 2) polymorphi funtions that, apart from the e�ets of no in-

lined arithmeti funtions, perform not muh worse than equivalent monomorphi

funtions.

We had expeted to use \C++"-style onstrutors/destrutors for storage man-

agement. However, it was disovered that if we were generating polymorphi ob-

jet ode, we would not know until runtime whih type parameters had onstru-

tors/destrutors de�ned for them. Allowing for this exibility at runtime would

have had a large negative impat on the performane of polymorphi \Sea" fun-

tions. So the only storage management alternatives available for \Sea" are expliit

storage management or garbage olletion.

92
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In early experimentation with the \Sea" language we found we were able to

write de�ne a large lass of useful funtions without having to speify them in

terms of a spei� type. The prinipal problem that arose was that the list of

operation parameters was umbersome to onstrut, easy to get slightly wrong

(thereby limiting the domain of the funtion), and not very useful to a human

reader attempting to determine whether a spei� type has the required operations.



Bibliography

[OCD 92℄ Ophel, J., Cormak, G., and Duggan, D. Combining Overload-

ing and Parametri Polymorphism in ML Draft Copy, 1992.

[Aho 86℄ Aho, A.V., Sethi, R., and Ullman, J.D. Compilers|Priniples,

Tehniques, and Tools. Addison Wesley, 1986.

[Cardelli 85℄ Cardelli, L. and Wegner, P. On Understanding Types, Data

Abstration, and Polymorphism. Computing Surveys 17:4, De.

1985, 471-522.

[Cormak 90℄ Cormak, G., and A.K. Wright. Type-dependent Parameter In-

ferene. Proeedings of ACM Sigplan 90 Symposium on Pro-

gramming Language Design and Implementation.

[Stallman 88℄ Stallman, R. Internals of the GNU C Compiler. Free Software

Foundation.

[Stroustrup 90℄ Stroustrup, B. The Annotated C++ Referene Manual.

Addison-Wesley, 1990.

[Wright 86℄ Wright, A.K. Referene manual for the language ForeOne.

Masters Thesis, University of Waterloo, 1986.

[Dith�eld 92℄ Dith�eld, G. Cforall Referene Manual Phd Thesis, University

of Waterloo, In proess.

[DD 85℄ Donahue, J. and Demers, A. Data Types Are Values ACM

Transations on Programming Languages and Systems, July

1985. Pages 426-445.

[Boehm 87℄ Boehm, H and Weiser, M. Garbage Colletion in an unooper-

ative environment. Software: Pratie and Experiene, vol 18,

pages 807{820, Sept 1988.

94



BIBLIOGRAPHY 95

[DMH 92℄ Diwan, A., Moss, E. and Hudson, R. Compiler Support for

Garbage Colletion in a Statially Typed Language. Proeed-

ings of the ACM SIGPLAN '92 Conferene on Programming

Language Design and Implementation, pages 273{282.

[ANSI 90℄ X3J11 Tehnial Committee Programming Language C | ANSI

X3.159{1989 Amerian National Standards Institute, 1989.


