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1 Overview 

cfa-cc is the reference compiler for the Cforall programming language, which is a non-

object-oriented extension to C.  

Cforall attempts to introduce productive modern programming language features to C 

while maintaining as much backward-compatibility as possible, so that most existing C 
programs can seamlessly work with Cforall.  

Since the Cforall project was dated back to the early 2000s, and only restarted in the past 

few years, there is a significant amount of legacy code in the current compiler codebase, 

with little proper documentation available. This becomes a difficulty while developing new 

features based on the previous implementations, and especially while diagnosing 
problems.  

Currently, the Cforall team is also facing another problem: bad compiler performance. For 

the development of a new programming language, writing a standard library is an 

important part. The incompetence of the compiler causes building the library files to take 

tens of minutes, making iterative development and testing almost impossible. There is 

ongoing effort to rewrite the core data structure of the compiler to overcome the 

performance issue, but many bugs may appear during the work, and lack of documentation 

makes debugging extremely difficult. 

This developer’s reference will be continuously improved and eventually cover the 

compiler codebase. For now, the focus is mainly on the parts being rewritten, and also the 

performance bottleneck, namely the resolution algorithm. It is aimed to provide new 

developers to the project enough guidance and clarify the purposes and behavior of certain 

functions which are not mentioned in the previous Cforall research papers. 
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2 Compiler Framework 

 

2.1 AST Representation 

 

Source code input is first transformed into abstract syntax tree (AST) representation by the 

parser before analyzed by the compiler. 

 

There are 4 major categories of AST nodes used by the compiler, along with some derived 

structures. 

 

Declaration nodes 

 

A declaration node represents either of: 

- Type declaration: struct, union, typedef or type parameter (see Appendix 

A.3) 

- Variable declaration 

- Function declaration 

 

Declarations are introduced by standard C declarations, with the usual scoping rules.  

In addition, declarations can also be introduced by the forall clause (which is the origin 

of Cforall’s name): 

 

forall (<TypeParameterList> | <AssertionList>) 

  declaration 

 

Type parameters in Cforall are similar to C++ template type parameters. The Cforall 

declaration 

forall (dtype T) ... 

behaves similarly as the C++ template declaration 

template <typename T> ... 
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Assertions are a distinctive feature of Cforall: contrary to the C++ template where 

arbitrary functions and operators can be used in a template definition, in a Cforall 
parametric function, operations on parameterized types must be declared in assertions.  

Consider the following C++ template: 

template <typename T> int foo(T t) { 

  return bar(t) + baz(t); 

} 

Unless bar and baz are also parametric functions taking any argument type, they must be 

declared in the assertions, or otherwise the code will not compile: 

forall (dtype T | { int bar(T); int baz(t); }) int foo (T t) { 

  return bar(t) + baz(t); 

} 

Assertions are written using the usual function declaration syntax. The scope of type 

parameters and assertions is the following declaration. 

 

Type nodes 

A type node represents the type of an object or expression. 

Named types reference the corresponding type declarations. The type of a function is its 

function pointer type (same as standard C). 

With the addition of type parameters, named types may contain a list of parameter values 

(actual parameter types). 

 

Statement nodes 

Statement nodes represent the statements in the program, including basic expression 

statements, control flows and blocks. 

Local declarations (within a block statement) are represented as declaration statements. 

 

Expression nodes 

Some expressions are represented differently in the compiler before and after resolution 
stage: 
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- Name expressions: NameExpr pre-resolution, VariableExpr post-resolution 

- Member expressions: UntypedMemberExpr pre-resolution, MemberExpr post-

resolution 

- Function call expressions (including overloadable operators): UntypedExpr pre-
resolution, ApplicationExpr post-resolution 

The pre-resolution representations contain only the symbols. Post-resolution results link 

them to the actual variable and function declarations. 
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2.2 Compilation Passes 

 

Compilation steps are implemented as passes, which follows a general structural recursion 

pattern on the syntax tree. 

The basic work flow of compilation passes follows preorder and postorder traversal on 

tree data structure, implemented with visitor pattern, and can be loosely described with 
the following pseudocode: 

 

Pass::visit (node_t node) { 

  previsit(node); 

  if (visit_children) 

    for each child of node: 

      child.accept(this); 

  postvisit(node); 

} 

 

Operations in previsit() happen in preorder (top to bottom) and operations in 

postvisit() happen in postorder (bottom to top). The precise order of recursive 

operations on child nodes can be found in Common/PassVisitor.impl.h (old) and 
AST/Pass.impl.hpp (new). 

Implementations of compilation passes need to follow certain conventions: 

- Passes should not directly override the visit method (Non-virtual Interface 

principle); if a pass desires different recursion behavior, it should set 
visit_children  to false and perform recursive calls manually within previsit or 

postvisit procedures. To enable this option, inherit from WithShortCircuiting mixin. 

- previsit may mutate the node but must not change the node type or return null. 

- postvisit may mutate the node, reconstruct it to a different node type, or delete it by 

returning null.  

- If the previsit or postvisit method is not defined for a node type, the step is skipped. 

If the return type is declared as void, the original node is returned by default. These 

behaviors are controlled by template specialization rules; see 
Common/PassVisitor.proto.h (old) and AST/Pass.proto.hpp (new) for details. 

Other useful mixin classes for compilation passes include: 
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- WithGuards allows saving values of variables and restore automatically upon exiting 

the current node. 

- WithVisitorRef creates a wrapped entity of current pass (the actual argument 

passed to recursive calls internally) for explicit recursion, usually used together 

with WithShortCircuiting. 

- WithSymbolTable gives a managed symbol table with built-in scoping rule handling 
(e.g. on entering and exiting a block statement) 

 

NOTE: If a pass extends the functionality of another existing pass, due to C++ overloading 

resolution rules, it must explicitly introduce the inherited previsit and postvisit procedures 

to its own scope, or otherwise they will not be picked up by template resolution: 

class Pass2: public Pass1 { 

  using Pass1::previsit; 

  using Pass1::postvisit; 

  // new procedures 

} 
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2.3 Data Structure Change WIP (new-ast) 

 

It has been observed that excessive copying of syntax tree structures accounts for a 

majority of computation cost and significantly slows down the compiler. In the previous 

implementation of the syntax tree, every internal node has a unique parent; therefore all 

copies are required to duplicate everything down to the bottom. A new, experimental re-

implementation of the syntax tree (source under directory AST/ hereby referred to as 

“new-ast”) attempts to overcome this issue with a functional approach that allows sharing 

of common sub-structures and only makes copies when necessary. 

 

The core of new-ast is a customized implementation of smart pointers, similar to 
std::shared_ptr and std::weak_ptr in C++ standard library. Reference counting is 

used to detect sharing and allows optimization. For a purely functional (a.k.a. immutable) 

data structure, all mutations are modelled by shallow copies along the path of mutation. 

With reference counting optimization, unique nodes are allowed to be mutated in place. 

This however, may potentially introduce some complications and bugs; a few issues are 

discussed near the end of this section. 

 

Source: AST/Node.hpp 

class ast::Node is the base class of all new-ast node classes, which implements 

reference counting mechanism. Two different counters are recorded: “strong” reference 

count for number of nodes semantically owning it; “weak” reference count for number of 

nodes holding a mere reference and only need to observe changes.  

 

class ast::ptr_base is the smart pointer implementation and also takes care of 

resource management. 

Direct access through the smart pointer is read-only. A mutable access should be obtained 
by calling shallowCopy or mutate as below. 

Currently, the weak pointers are only used to reference declaration nodes from a named 

type, or a variable expression. Since declaration nodes are intended to denote unique 

entities in the program, weak pointers always point to unique (unshared) nodes. This may 

change in the future, and weak references to shared nodes may introduce some problems; 

see mutate function below. 

All node classes should always use smart pointers in the structure and should not use raw 
pointers.  
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void ast::Node::increment(ref_type ref) 

Increments this node’s strong or weak reference count. 

 

void ast::Node::decrement(ref_type ref, bool do_delete = true) 

Decrements this node’s strong or weak reference count. If strong reference count reaches 
zero, the node is deleted by default. 

NOTE: Setting do_delete to false may result in a detached node. Subsequent code should 

manually delete the node or assign it to a strong pointer to prevent memory leak. 

Reference counting functions are internally called by ast::ptr_base. 

 

 

template<typename node_t> 

node_t * shallowCopy(const node_t * node) 

Returns a mutable, shallow copy of node: all child pointers are pointing to the same child 

nodes. 

 

template<typename node_t> 

node_t * mutate(const node_t * node) 

If node is unique (strong reference count is 1), returns a mutable pointer to the same node. 

Otherwise, returns shallowCopy(node). 

It is an error to mutate a shared node that is weak-referenced. Currently this does not 

happen. The problem may appear once weak pointers to shared nodes (e.g. expression 
nodes) are used; special care will be needed. 

NOTE: This naive uniqueness check may not be sufficient in some cases. A discussion of the 

issue is presented at the end of this section. 

 

template<typename node_t, typename parent_t, typename field_t, 

typename assn_t> 

const node_t * mutate_field(const node_t * node, field_t parent_t::* 

field, assn_t && val) 
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template<typename node_t, typename parent_t, typename coll_t, typename 

ind_t, typename field_t> 

const node_t * mutate_field_index(const node_t * node, coll_t 

parent_t::* field, ind_t i, field_t && val) 

Helpers for mutating a field on a node using pointer to member (creates shallow copy 
when necessary). 

 

Issue: Undetected sharing 

The mutate behavior described above has a problem: deeper shared nodes may be 

mistakenly considered as unique. This diagram shows how the problem could arise: 

 

 

Figure 1: Deep sharing of nodes 

 

Suppose that we are working on the tree rooted at P1, which 

is logically the chain P1-A-B and P2 is irrelevant, and then 

mutate(B) is called. The algorithm considers B as unique since 

it is only directly owned by A. However, the other tree P2-A-B 
indirectly shares the node B and is therefore wrongly mutated. 

 

 

 

 

To partly address this problem, if the mutation is called higher up the tree, a chain 

mutation helper can be used: 

Source: AST/Chain.hpp 

template<typename node_t, Node::ref_type ref_t> 

auto chain_mutate(ptr_base<node_t, ref_t> & base) 

This function returns a chain mutator handle which takes pointer-to-member to go down 

the tree while creating shallow copies as necessary; see struct _chain_mutator in the 

source code for details. 
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For example, in the above diagram, if mutation of B is wanted while at P1, the call using 

chain_mutate looks like the following: 

chain_mutate(P1.a)(&A.b) = new_value_of_b; 

Note that if some node in chain mutate is shared (therefore shallow copied), it implies that 

every node further down will also be copied, thus correctly executing the functional 

mutation algorithm. This example code creates copies of both A and B and performs 
mutation on the new nodes, so that the other tree P2-A-B is untouched. 

However, if a pass traverses down to node B and performs mutation, for example, in 

postvisit(B), information on sharing higher up is lost. Since the new-ast structure is only in 

experimental use with the resolver algorithm, which mostly rebuilds the tree bottom-up, 

this issue does not actually happen. It should be addressed in the future when other 

compilation passes are migrated to new-ast and many of them contain procedural 

mutations, where it might cause accidental mutations to other logically independent trees 

(e.g. common sub-expression) and become a bug. 

  



12 
 

3 Compiler Algorithm Documentation 

 

This documentation currently covers most of the resolver, data structures used in variable 

and expression resolution, and a few directly related passes. Later passes involving code 

generation is not included yet; documentation for those will be done afterwards. 

 

 

3.1 Symbol Table 

 

NOTE: For historical reasons, the symbol table data structure was called “indexer” in the 
old implementation. Hereby we will be using the name SymbolTable everywhere.  

 

The symbol table stores a mapping from names to declarations and implements a similar 

name space separation rule, and the same scoping rules in standard C.1 The difference in 

name space rule is that typedef aliases are no longer considered ordinary identifiers. 

In addition to C tag types (struct, union, enum), Cforall introduces another tag type, trait, 

which is a named collection of assertions. 

 

Source: AST/SymbolTable.hpp 

Source: SymTab/Indexer.h 

 

SymbolTable::addId(const DeclWithType * decl) 

Since Cforall allows overloading of variables and functions, ordinary identifier names need 

to be mangled. The mangling scheme is closely based on the Itanium C++ ABI,2 while 

making adaptations to Cforall specific features, mainly assertions and overloaded variables 

by type. Naming conflicts are handled by mangled names; lookup by name returns a list of 
declarations with the same literal identifier name. 

 

 
1 ISO/IEC 9899:1999, Sections 6.2.1 and 6.2.3 
2 https://itanium-cxx-abi.github.io/cxx-abi/abi.html, Section 5.1 
 

https://itanium-cxx-abi.github.io/cxx-abi/abi.html
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SymbolTable::addStruct(const StructDecl * decl) 

SymbolTable::addUnion(const UnionDecl * decl) 

SymbolTable::addEnum(const EnumDecl * decl) 

SymbolTable::addTrait(const TraitDecl * decl) 

Adds a tag type declaration to the symbol table. 

 

SymbolTable::addType(const NamedTypeDecl * decl) 

Adds a typedef alias to the symbol table. 

 

C Incompatibility Note: Since Cforall allows using struct, union and enum type names 
without the keywords, typedef names and tag type names cannot be disambiguated by 

syntax rules. Currently the compiler puts them together and disallows collision. The 
following program is valid C but not valid Cforall: 

struct A {}; 

typedef int A; 

// gcc: ok, cfa: Cannot redefine typedef A 

In actual practices however, such usage is extremely rare, and typedef struct A A; is 

not considered an error, but silently discarded. Therefore, we expect this change to have 
minimal impact on existing C programs. 

Meanwhile, the following program is allowed in Cforall: 

typedef int A; 

void A(); 

// gcc: A redeclared as different kind of symbol, cfa: ok 

 

3.2 Type Environment and Unification 

The core of parametric type resolution algorithm. 

Type Environment organizes type parameters in equivalent classes and maps them to 

actual types. Unification is the algorithm that takes two (possibly parametric) types and 

parameter mappings and attempts to produce a common type by matching the type 

environments. 
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The unification algorithm is recursive in nature and runs in two different modes internally: 

- Exact unification mode requires equivalent parameters to match perfectly; 

- Inexact unification mode allows equivalent parameters to be converted to a 
common type. 

For a pair of matching parameters (actually, their equivalent classes), if either side is open 

(not bound to a concrete type yet), they are simply combined.  

Within inexact mode, types are allowed to differ on their cv-qualifiers; additionally, if a 

type never appear either in parameter list or as the base type of a pointer, it may also be 

widened (i.e. safely converted). As Cforall currently does not implement subclassing similar 

to object-oriented languages, widening conversions are on primitive types only, for 

example the conversion from int to long. 

The need for two unification modes come from the fact that parametric types are 

considered compatible only if all parameters are exactly the same (not just compatible). 

Pointer types also behaves similarly; in fact, they may be viewed as a primitive kind of 

parametric types. int* and long* are different types, just like vector(int) and 

vector(long) are, for the parametric type vector(T). 

 

The resolver should use the following “public” functions: 3 

Source: ResolvExpr/Unify.cc 

bool unify(const Type *type1, const Type *type2, TypeEnvironment &env, 

OpenVarSet &openVars, const SymbolTable &symtab, Type *&commonType) 

Attempts to unify type1 and type2 with current type environment. 

If operation succeeds, env is modified by combining the equivalence classes of matching 

parameters in type1 and type2, and their common type is written to commonType. 

If operation fails, returns false. 

 

bool typesCompatible(const Type * type1, const Type * type2, const 

SymbolTable &symtab, const TypeEnvironment &env) 

bool typesCompatibleIgnoreQualifiers(const Type * type1, const Type * 

type2, const SymbolTable &symtab, const TypeEnvironment &env) 

 
3 Actual code also tracks assertions on type parameters; those extra arguments are omitted here for 
conciseness. 
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Determines if type1 and type2 can possibly be the same type. The second version ignores 

the outermost cv-qualifiers if present. 4 

The call has no side effect. 

NOTE: No attempts are made to widen the types (exact unification is used), although the 
function names may suggest otherwise. E.g. typesCompatible(int, long) returns false. 

 

3.3 Expression Resolution 

The design of the current version of expression resolver is outlined in the Ph.D. Thesis from 

Aaron Moss [1].  

A summary of the resolver algorithm for each expression type is presented below. 

 

All overloadable operators are modelled as function calls. For a function call, 

interpretations of the function and arguments are found recursively. Then the following 
steps produce a filtered list of valid interpretations: 

1) From all possible combinations of interpretations of the function and arguments, 

those where argument types may be converted to function parameter types are 

considered valid. 

2) Valid interpretations with the minimum sum of argument costs are kept. 

3) Argument costs are then discarded; the actual cost for the function call expression is 

the sum of conversion costs from the argument types to parameter types. 

4) For each return type, the interpretations with satisfiable assertions are then sorted 

by actual cost computed in step 3. If for a given type, the minimum cost 

interpretations are not unique, it is said that for that return type the interpretation 

is ambiguous. If the minimum cost interpretation is unique but contains an 

ambiguous argument, it is also considered ambiguous. 

Therefore, for each return type, the resolver produces either of: 

- No alternatives 

- A single valid alternative 

- An ambiguous alternative 

Note that an ambiguous alternative may be discarded at the parent expressions because a 

different return type matches better for the parent expressions. 

 

 
4 In const int * const, only the second const is ignored. 
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The non-overloadable expressions in Cforall are: cast expressions, address-of (unary &) 

expressions, short-circuiting logical expressions (&&, ||) and ternary conditional 
expression (?:). 

For a cast expression, the convertible argument types are kept. Then the result is selected 

by lowest argument cost, and further by lowest conversion cost to target type. If the lowest 

cost is still not unique, or an ambiguous argument interpretation is selected, the cast 

expression is ambiguous. In an expression statement, the top level expression is implicitly 
cast to void. 

For an address-of expression, only lvalue results are kept and the minimum cost is selected. 

For logical expressions && and ||, arguments are implicitly cast to bool, and follow the rule 

of cast expression as above. 

For the ternary conditional expression, the condition is implicitly cast to bool, and the 

branch expressions must have compatible types. Each pair of compatible branch 

expression types produce a possible interpretation, and the cost is defined as the sum of 

expression costs plus the sum of conversion costs to the common type. 

 

TODO: Write a specification for expression costs. 

 

3.4 Assertion Satisfaction 

The resolver tries to satisfy assertions on expressions only when it is needed: either while 

selecting from multiple alternatives of a same result type for a function call (step 4 of 

resolving function calls), or upon reaching the top level of an expression statement. 

Unsatisfiable alternatives are discarded. Satisfiable alternatives receive implicit 

parameters: in Cforall, parametric functions are designed such that they can be compiled 

separately, as opposed to C++ templates which are only compiled at instantiation. Given a 

parametric function definition: 

forall (otype T | {void foo(T);}) 

void bar (T t) { foo(t); } 

The function bar does not know which foo to call when compiled without knowing the call 

site, so it requests a function pointer to be passed as an extra argument. At the call site, 

implicit parameters are automatically inserted by the compiler. 

 

TODO: Explain how recursive assertion satisfaction and polymorphic recursion work. 
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4 Tests 

 

4.1 Test Suites 

Automatic test suites are located under the tests/ directory. A test case consists of an 

input CFA source file (name ending with .cfa), and an expected output file located 

in .expect/ directory relative to the source file, with the same file name ending with .txt. 

So a test named tuple/tupleCast has the following files, for example: 

tests/ 

..  tuple/ 

......  .expect/ 

..........  tupleCast.txt 

......  tupleCast.cfa 

 

If compilation fails, the error output is compared to the expect file. If compilation succeeds, 

the built program is run and its output compared to the expect file. 

To run the tests, execute the test script test.py under the tests/ directory, with a list of 

test names to be run, or --all to run all tests. The test script reports test cases 

fail/success, compilation time and program run time. 

 

4.2 Performance Reports 

To turn on performance reports, pass -S flag to the compiler.  

3 kinds of performance reports are available: 

- Time, reports time spent in each compilation step 

- Heap, reports number of dynamic memory allocations, total bytes allocated, and 

maximum heap memory usage 

- Counters, for certain predefined statistics; counters can be registered anywhere in 

the compiler as a static object, and the interface can be found at 
Common/Stats/Counter.h.   

It is suggested to run performance tests with optimized build (g++ flag -O3) 
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