
1

cfa-cc Developer’s Reference

Table of Contents

1 Overview 2

2 Compiler Framework 3

 2.1 AST Representation 3

 2.2 Compilation Passes 6

 2.3 Data Structure Change WIP (new-ast) 8

3 Compiler Algorithm Documentation 12

 3.1 Symbol Table 12

 3.2 Type Environment and Unification 13

 3.3 Expression Resolution 15

 3.4 Assertion Satisfaction 16

4 Tests 17

 4.1 Test Suites 17

 4.2 Performance Reports 17

2

1 Overview

cfa-cc is the reference compiler for the Cforall programming language, which is a non-

object-oriented extension to C.

Cforall attempts to introduce productive modern programming language features to C

while maintaining as much backward-compatibility as possible, so that most existing C
programs can seamlessly work with Cforall.

Since the Cforall project was dated back to the early 2000s, and only restarted in the past

few years, there is a significant amount of legacy code in the current compiler codebase,

with little proper documentation available. This becomes a difficulty while developing new

features based on the previous implementations, and especially while diagnosing
problems.

Currently, the Cforall team is also facing another problem: bad compiler performance. For

the development of a new programming language, writing a standard library is an

important part. The incompetence of the compiler causes building the library files to take

tens of minutes, making iterative development and testing almost impossible. There is

ongoing effort to rewrite the core data structure of the compiler to overcome the

performance issue, but many bugs may appear during the work, and lack of documentation

makes debugging extremely difficult.

This developer’s reference will be continuously improved and eventually cover the

compiler codebase. For now, the focus is mainly on the parts being rewritten, and also the

performance bottleneck, namely the resolution algorithm. It is aimed to provide new

developers to the project enough guidance and clarify the purposes and behavior of certain

functions which are not mentioned in the previous Cforall research papers.

3

2 Compiler Framework

2.1 AST Representation

Source code input is first transformed into abstract syntax tree (AST) representation by the

parser before analyzed by the compiler.

There are 4 major categories of AST nodes used by the compiler, along with some derived

structures.

Declaration nodes

A declaration node represents either of:

- Type declaration: struct, union, typedef or type parameter (see Appendix

A.3)

- Variable declaration

- Function declaration

Declarations are introduced by standard C declarations, with the usual scoping rules.

In addition, declarations can also be introduced by the forall clause (which is the origin

of Cforall’s name):

forall (<TypeParameterList> | <AssertionList>)

 declaration

Type parameters in Cforall are similar to C++ template type parameters. The Cforall

declaration

forall (dtype T) ...

behaves similarly as the C++ template declaration

template <typename T> ...

4

Assertions are a distinctive feature of Cforall: contrary to the C++ template where

arbitrary functions and operators can be used in a template definition, in a Cforall
parametric function, operations on parameterized types must be declared in assertions.

Consider the following C++ template:

template <typename T> int foo(T t) {

 return bar(t) + baz(t);

}

Unless bar and baz are also parametric functions taking any argument type, they must be

declared in the assertions, or otherwise the code will not compile:

forall (dtype T | { int bar(T); int baz(t); }) int foo (T t) {

 return bar(t) + baz(t);

}

Assertions are written using the usual function declaration syntax. The scope of type

parameters and assertions is the following declaration.

Type nodes

A type node represents the type of an object or expression.

Named types reference the corresponding type declarations. The type of a function is its

function pointer type (same as standard C).

With the addition of type parameters, named types may contain a list of parameter values

(actual parameter types).

Statement nodes

Statement nodes represent the statements in the program, including basic expression

statements, control flows and blocks.

Local declarations (within a block statement) are represented as declaration statements.

Expression nodes

Some expressions are represented differently in the compiler before and after resolution
stage:

5

- Name expressions: NameExpr pre-resolution, VariableExpr post-resolution

- Member expressions: UntypedMemberExpr pre-resolution, MemberExpr post-

resolution

- Function call expressions (including overloadable operators): UntypedExpr pre-
resolution, ApplicationExpr post-resolution

The pre-resolution representations contain only the symbols. Post-resolution results link

them to the actual variable and function declarations.

6

2.2 Compilation Passes

Compilation steps are implemented as passes, which follows a general structural recursion

pattern on the syntax tree.

The basic work flow of compilation passes follows preorder and postorder traversal on

tree data structure, implemented with visitor pattern, and can be loosely described with
the following pseudocode:

Pass::visit (node_t node) {

 previsit(node);

 if (visit_children)

 for each child of node:

 child.accept(this);

 postvisit(node);

}

Operations in previsit() happen in preorder (top to bottom) and operations in

postvisit() happen in postorder (bottom to top). The precise order of recursive

operations on child nodes can be found in Common/PassVisitor.impl.h (old) and
AST/Pass.impl.hpp (new).

Implementations of compilation passes need to follow certain conventions:

- Passes should not directly override the visit method (Non-virtual Interface

principle); if a pass desires different recursion behavior, it should set
visit_children to false and perform recursive calls manually within previsit or

postvisit procedures. To enable this option, inherit from WithShortCircuiting mixin.

- previsit may mutate the node but must not change the node type or return null.

- postvisit may mutate the node, reconstruct it to a different node type, or delete it by

returning null.

- If the previsit or postvisit method is not defined for a node type, the step is skipped.

If the return type is declared as void, the original node is returned by default. These

behaviors are controlled by template specialization rules; see
Common/PassVisitor.proto.h (old) and AST/Pass.proto.hpp (new) for details.

Other useful mixin classes for compilation passes include:

7

- WithGuards allows saving values of variables and restore automatically upon exiting

the current node.

- WithVisitorRef creates a wrapped entity of current pass (the actual argument

passed to recursive calls internally) for explicit recursion, usually used together

with WithShortCircuiting.

- WithSymbolTable gives a managed symbol table with built-in scoping rule handling
(e.g. on entering and exiting a block statement)

NOTE: If a pass extends the functionality of another existing pass, due to C++ overloading

resolution rules, it must explicitly introduce the inherited previsit and postvisit procedures

to its own scope, or otherwise they will not be picked up by template resolution:

class Pass2: public Pass1 {

 using Pass1::previsit;

 using Pass1::postvisit;

 // new procedures

}

8

2.3 Data Structure Change WIP (new-ast)

It has been observed that excessive copying of syntax tree structures accounts for a

majority of computation cost and significantly slows down the compiler. In the previous

implementation of the syntax tree, every internal node has a unique parent; therefore all

copies are required to duplicate everything down to the bottom. A new, experimental re-

implementation of the syntax tree (source under directory AST/ hereby referred to as

“new-ast”) attempts to overcome this issue with a functional approach that allows sharing

of common sub-structures and only makes copies when necessary.

The core of new-ast is a customized implementation of smart pointers, similar to
std::shared_ptr and std::weak_ptr in C++ standard library. Reference counting is

used to detect sharing and allows optimization. For a purely functional (a.k.a. immutable)

data structure, all mutations are modelled by shallow copies along the path of mutation.

With reference counting optimization, unique nodes are allowed to be mutated in place.

This however, may potentially introduce some complications and bugs; a few issues are

discussed near the end of this section.

Source: AST/Node.hpp

class ast::Node is the base class of all new-ast node classes, which implements

reference counting mechanism. Two different counters are recorded: “strong” reference

count for number of nodes semantically owning it; “weak” reference count for number of

nodes holding a mere reference and only need to observe changes.

class ast::ptr_base is the smart pointer implementation and also takes care of

resource management.

Direct access through the smart pointer is read-only. A mutable access should be obtained
by calling shallowCopy or mutate as below.

Currently, the weak pointers are only used to reference declaration nodes from a named

type, or a variable expression. Since declaration nodes are intended to denote unique

entities in the program, weak pointers always point to unique (unshared) nodes. This may

change in the future, and weak references to shared nodes may introduce some problems;

see mutate function below.

All node classes should always use smart pointers in the structure and should not use raw
pointers.

9

void ast::Node::increment(ref_type ref)

Increments this node’s strong or weak reference count.

void ast::Node::decrement(ref_type ref, bool do_delete = true)

Decrements this node’s strong or weak reference count. If strong reference count reaches
zero, the node is deleted by default.

NOTE: Setting do_delete to false may result in a detached node. Subsequent code should

manually delete the node or assign it to a strong pointer to prevent memory leak.

Reference counting functions are internally called by ast::ptr_base.

template<typename node_t>

node_t * shallowCopy(const node_t * node)

Returns a mutable, shallow copy of node: all child pointers are pointing to the same child

nodes.

template<typename node_t>

node_t * mutate(const node_t * node)

If node is unique (strong reference count is 1), returns a mutable pointer to the same node.

Otherwise, returns shallowCopy(node).

It is an error to mutate a shared node that is weak-referenced. Currently this does not

happen. The problem may appear once weak pointers to shared nodes (e.g. expression
nodes) are used; special care will be needed.

NOTE: This naive uniqueness check may not be sufficient in some cases. A discussion of the

issue is presented at the end of this section.

template<typename node_t, typename parent_t, typename field_t,

typename assn_t>

const node_t * mutate_field(const node_t * node, field_t parent_t::*

field, assn_t && val)

10

template<typename node_t, typename parent_t, typename coll_t, typename

ind_t, typename field_t>

const node_t * mutate_field_index(const node_t * node, coll_t

parent_t::* field, ind_t i, field_t && val)

Helpers for mutating a field on a node using pointer to member (creates shallow copy
when necessary).

Issue: Undetected sharing

The mutate behavior described above has a problem: deeper shared nodes may be

mistakenly considered as unique. This diagram shows how the problem could arise:

Figure 1: Deep sharing of nodes

Suppose that we are working on the tree rooted at P1, which

is logically the chain P1-A-B and P2 is irrelevant, and then

mutate(B) is called. The algorithm considers B as unique since

it is only directly owned by A. However, the other tree P2-A-B
indirectly shares the node B and is therefore wrongly mutated.

To partly address this problem, if the mutation is called higher up the tree, a chain

mutation helper can be used:

Source: AST/Chain.hpp

template<typename node_t, Node::ref_type ref_t>

auto chain_mutate(ptr_base<node_t, ref_t> & base)

This function returns a chain mutator handle which takes pointer-to-member to go down

the tree while creating shallow copies as necessary; see struct _chain_mutator in the

source code for details.

11

For example, in the above diagram, if mutation of B is wanted while at P1, the call using

chain_mutate looks like the following:

chain_mutate(P1.a)(&A.b) = new_value_of_b;

Note that if some node in chain mutate is shared (therefore shallow copied), it implies that

every node further down will also be copied, thus correctly executing the functional

mutation algorithm. This example code creates copies of both A and B and performs
mutation on the new nodes, so that the other tree P2-A-B is untouched.

However, if a pass traverses down to node B and performs mutation, for example, in

postvisit(B), information on sharing higher up is lost. Since the new-ast structure is only in

experimental use with the resolver algorithm, which mostly rebuilds the tree bottom-up,

this issue does not actually happen. It should be addressed in the future when other

compilation passes are migrated to new-ast and many of them contain procedural

mutations, where it might cause accidental mutations to other logically independent trees

(e.g. common sub-expression) and become a bug.

12

3 Compiler Algorithm Documentation

This documentation currently covers most of the resolver, data structures used in variable

and expression resolution, and a few directly related passes. Later passes involving code

generation is not included yet; documentation for those will be done afterwards.

3.1 Symbol Table

NOTE: For historical reasons, the symbol table data structure was called “indexer” in the
old implementation. Hereby we will be using the name SymbolTable everywhere.

The symbol table stores a mapping from names to declarations and implements a similar

name space separation rule, and the same scoping rules in standard C.1 The difference in

name space rule is that typedef aliases are no longer considered ordinary identifiers.

In addition to C tag types (struct, union, enum), Cforall introduces another tag type, trait,

which is a named collection of assertions.

Source: AST/SymbolTable.hpp

Source: SymTab/Indexer.h

SymbolTable::addId(const DeclWithType * decl)

Since Cforall allows overloading of variables and functions, ordinary identifier names need

to be mangled. The mangling scheme is closely based on the Itanium C++ ABI,2 while

making adaptations to Cforall specific features, mainly assertions and overloaded variables

by type. Naming conflicts are handled by mangled names; lookup by name returns a list of
declarations with the same literal identifier name.

1 ISO/IEC 9899:1999, Sections 6.2.1 and 6.2.3
2 https://itanium-cxx-abi.github.io/cxx-abi/abi.html, Section 5.1

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

13

SymbolTable::addStruct(const StructDecl * decl)

SymbolTable::addUnion(const UnionDecl * decl)

SymbolTable::addEnum(const EnumDecl * decl)

SymbolTable::addTrait(const TraitDecl * decl)

Adds a tag type declaration to the symbol table.

SymbolTable::addType(const NamedTypeDecl * decl)

Adds a typedef alias to the symbol table.

C Incompatibility Note: Since Cforall allows using struct, union and enum type names
without the keywords, typedef names and tag type names cannot be disambiguated by

syntax rules. Currently the compiler puts them together and disallows collision. The
following program is valid C but not valid Cforall:

struct A {};

typedef int A;

// gcc: ok, cfa: Cannot redefine typedef A

In actual practices however, such usage is extremely rare, and typedef struct A A; is

not considered an error, but silently discarded. Therefore, we expect this change to have
minimal impact on existing C programs.

Meanwhile, the following program is allowed in Cforall:

typedef int A;

void A();

// gcc: A redeclared as different kind of symbol, cfa: ok

3.2 Type Environment and Unification

The core of parametric type resolution algorithm.

Type Environment organizes type parameters in equivalent classes and maps them to

actual types. Unification is the algorithm that takes two (possibly parametric) types and

parameter mappings and attempts to produce a common type by matching the type

environments.

14

The unification algorithm is recursive in nature and runs in two different modes internally:

- Exact unification mode requires equivalent parameters to match perfectly;

- Inexact unification mode allows equivalent parameters to be converted to a
common type.

For a pair of matching parameters (actually, their equivalent classes), if either side is open

(not bound to a concrete type yet), they are simply combined.

Within inexact mode, types are allowed to differ on their cv-qualifiers; additionally, if a

type never appear either in parameter list or as the base type of a pointer, it may also be

widened (i.e. safely converted). As Cforall currently does not implement subclassing similar

to object-oriented languages, widening conversions are on primitive types only, for

example the conversion from int to long.

The need for two unification modes come from the fact that parametric types are

considered compatible only if all parameters are exactly the same (not just compatible).

Pointer types also behaves similarly; in fact, they may be viewed as a primitive kind of

parametric types. int* and long* are different types, just like vector(int) and

vector(long) are, for the parametric type vector(T).

The resolver should use the following “public” functions: 3

Source: ResolvExpr/Unify.cc

bool unify(const Type *type1, const Type *type2, TypeEnvironment &env,

OpenVarSet &openVars, const SymbolTable &symtab, Type *&commonType)

Attempts to unify type1 and type2 with current type environment.

If operation succeeds, env is modified by combining the equivalence classes of matching

parameters in type1 and type2, and their common type is written to commonType.

If operation fails, returns false.

bool typesCompatible(const Type * type1, const Type * type2, const

SymbolTable &symtab, const TypeEnvironment &env)

bool typesCompatibleIgnoreQualifiers(const Type * type1, const Type *

type2, const SymbolTable &symtab, const TypeEnvironment &env)

3 Actual code also tracks assertions on type parameters; those extra arguments are omitted here for
conciseness.

15

Determines if type1 and type2 can possibly be the same type. The second version ignores

the outermost cv-qualifiers if present. 4

The call has no side effect.

NOTE: No attempts are made to widen the types (exact unification is used), although the
function names may suggest otherwise. E.g. typesCompatible(int, long) returns false.

3.3 Expression Resolution

The design of the current version of expression resolver is outlined in the Ph.D. Thesis from

Aaron Moss [1].

A summary of the resolver algorithm for each expression type is presented below.

All overloadable operators are modelled as function calls. For a function call,

interpretations of the function and arguments are found recursively. Then the following
steps produce a filtered list of valid interpretations:

1) From all possible combinations of interpretations of the function and arguments,

those where argument types may be converted to function parameter types are

considered valid.

2) Valid interpretations with the minimum sum of argument costs are kept.

3) Argument costs are then discarded; the actual cost for the function call expression is

the sum of conversion costs from the argument types to parameter types.

4) For each return type, the interpretations with satisfiable assertions are then sorted

by actual cost computed in step 3. If for a given type, the minimum cost

interpretations are not unique, it is said that for that return type the interpretation

is ambiguous. If the minimum cost interpretation is unique but contains an

ambiguous argument, it is also considered ambiguous.

Therefore, for each return type, the resolver produces either of:

- No alternatives

- A single valid alternative

- An ambiguous alternative

Note that an ambiguous alternative may be discarded at the parent expressions because a

different return type matches better for the parent expressions.

4 In const int * const, only the second const is ignored.

16

The non-overloadable expressions in Cforall are: cast expressions, address-of (unary &)

expressions, short-circuiting logical expressions (&&, ||) and ternary conditional
expression (?:).

For a cast expression, the convertible argument types are kept. Then the result is selected

by lowest argument cost, and further by lowest conversion cost to target type. If the lowest

cost is still not unique, or an ambiguous argument interpretation is selected, the cast

expression is ambiguous. In an expression statement, the top level expression is implicitly
cast to void.

For an address-of expression, only lvalue results are kept and the minimum cost is selected.

For logical expressions && and ||, arguments are implicitly cast to bool, and follow the rule

of cast expression as above.

For the ternary conditional expression, the condition is implicitly cast to bool, and the

branch expressions must have compatible types. Each pair of compatible branch

expression types produce a possible interpretation, and the cost is defined as the sum of

expression costs plus the sum of conversion costs to the common type.

TODO: Write a specification for expression costs.

3.4 Assertion Satisfaction

The resolver tries to satisfy assertions on expressions only when it is needed: either while

selecting from multiple alternatives of a same result type for a function call (step 4 of

resolving function calls), or upon reaching the top level of an expression statement.

Unsatisfiable alternatives are discarded. Satisfiable alternatives receive implicit

parameters: in Cforall, parametric functions are designed such that they can be compiled

separately, as opposed to C++ templates which are only compiled at instantiation. Given a

parametric function definition:

forall (otype T | {void foo(T);})

void bar (T t) { foo(t); }

The function bar does not know which foo to call when compiled without knowing the call

site, so it requests a function pointer to be passed as an extra argument. At the call site,

implicit parameters are automatically inserted by the compiler.

TODO: Explain how recursive assertion satisfaction and polymorphic recursion work.

17

4 Tests

4.1 Test Suites

Automatic test suites are located under the tests/ directory. A test case consists of an

input CFA source file (name ending with .cfa), and an expected output file located

in .expect/ directory relative to the source file, with the same file name ending with .txt.

So a test named tuple/tupleCast has the following files, for example:

tests/

.. tuple/

...... .expect/

.......... tupleCast.txt

...... tupleCast.cfa

If compilation fails, the error output is compared to the expect file. If compilation succeeds,

the built program is run and its output compared to the expect file.

To run the tests, execute the test script test.py under the tests/ directory, with a list of

test names to be run, or --all to run all tests. The test script reports test cases

fail/success, compilation time and program run time.

4.2 Performance Reports

To turn on performance reports, pass -S flag to the compiler.

3 kinds of performance reports are available:

- Time, reports time spent in each compilation step

- Heap, reports number of dynamic memory allocations, total bytes allocated, and

maximum heap memory usage

- Counters, for certain predefined statistics; counters can be registered anywhere in

the compiler as a static object, and the interface can be found at
Common/Stats/Counter.h.

It is suggested to run performance tests with optimized build (g++ flag -O3)

18

References

[1] Aaron Moss (2019). C∀ Type System Implementation. UWSpace.

http://hdl.handle.net/10012/14584

