public class JavaThread {
	// Simplistic low-quality Marsaglia Shift-XOR pseudo-random number generator.
	// Bijective   
	// Cycle length for non-zero values is 4G-1.
	// 0 is absorbing and should be avoided -- fixed point.
	// The returned value is typically masked to produce a positive value.
	static volatile int Ticket = 0 ; 

	private static int nextRandom (int x) {
		if (x == 0) { 
			// reseed the PRNG
			// Ticket is accessed infrequently and does not constitute a coherence hot-spot. 
			// Note that we use a non-atomic racy increment -- the race is rare and benign. 
			// If the race is a concern switch to an AtomicInteger.  
			// In addition accesses to the RW volatile global "Ticket"  variable are not 
			// (readily) predictable at compile-time so the JIT will not be able to elide 
			// nextRandom() invocations.  
			x = ++Ticket ; 
			if (x == 0) x = 1 ; 
		}
		x ^= x << 6;
		x ^= x >>> 21;
		x ^= x << 7;
		return x ;   
	}
	static int x = 2;

	static private final int NoOfTimes = Integer.parseInt("100000000") ;

	public synchronized void noop() {
		x = nextRandom( x );
	}
	public static void helper() throws InterruptedException {
		JavaThread j = new JavaThread();
		// Inhibit biased locking ...
		x = (j.hashCode() ^ System.identityHashCode(j)) | 1 ;     
		for(int i = 1; i <= NoOfTimes; i += 1) {
			x = nextRandom(x);
			j.noop();
		}
	}
	public static void InnerMain() throws InterruptedException {
		long start = System.nanoTime();
		helper();
		long end = System.nanoTime();
		System.out.println( (end - start) / NoOfTimes );
	}
	public static void main(String[] args) throws InterruptedException {
		for (int n = Integer.parseInt("5"); --n >= 0 ; ) { 
			InnerMain();
			Thread.sleep(2000);     // 2 seconds
			x = nextRandom(x);
		}
		if ( x == 0 ) System.out.println(x);
	}
}
