Contextual Polymorphism

by

Glen Jeffrey Ditchfield

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 1994

(©Glen Jeffrey Ditchfield 1994

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

il

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

1ii

Abstract

Programming languages often provide for various sorts of static type checking as a way of detecting
invalid programs. However, statically checked type systems often require unnecessarily specific
type information, which leads to frustratingly inflexible languages. Polymorphic type systems

restore flexibility by allowing entities to take on more than one type.

This thesis discusses polymorphism in statically typed programming languages. It provides
precise definitions of the term “polymorphism” and for its varieties, “ad-hoc polymorphism”, “uni-
versal polymorphism”, “inclusion polymorphism”, and “parametric polymorphism”, and surveys

and compares many existing mechanisms for providing polymorphism in programming languages.

Finally, it introduces a new polymorphism mechanism, conteztual polymorphism. Contextual
polymorphism is a variant of parametric polymorphism that is based on contezts, which are ab-
stractions of collections of declarations, and assertions, which link polymorphic routines to the
environments that call them. Contexts themselves provide a useful structuring mechanism for
software, because they represent the notions (and relationships between notions) that program-
mers have in mind when they design programs. Contextual polymorphism avoids many problems
associated with other polymorphism mechanisms, while preserving their benefits. The formal
definition of these language constructs is given in terms of an extension of F,, the w-order poly-
morphic typed lambda calculus. The practicality of the constructs is shown by a discussion of

Cforall, an extension of the programming language C that supports contextual polymorphism.

v

Acknowledgements

I would like to thank Professor Don Cowan, Professor Doug Lea, and Professor Bruno Preiss,
for agreeing to serve on my examining committee and for their many helpful suggestions and
questions; Professor Gord Cormack, Professor Dominic Duggan, Dr. John Ophel, and Dr. Bob
Zarnke for comments and conversations stretching back over many years; and my supervisor,

Professor Peter Buhr, for not letting me quit.

Dedication

To Helen Cameron, for the past and the future.

vi

Contents

1 Introduction 1
1.1 Definitions and Notations e 2
1.2 Desirable Properties o i e e e e e e e e e e e 4

Efficiency e e e e e e 4
Strong Static Interface Checking 4
Expressiveness it i e e e e e 5
Separate Interfaces L. L o oL, 6
Code Reuse e 7
Simple Base Language, 8
1.3 Polymorphism e e e 9

2 Polymorphism Mechanisms 14

2.1 Ad-Hoc Mechanisms e 14
2.1.1 Overloading e 14
2.1.2 Transfer Functions L o oo 16
2.1.3 Set-Theoretic Union Types 17

2.2 Universal Mechanisms L e 19
2.2.1 Inclusion Polymorphism L 0oL 19

Infinite Unions 0L o e 20

vii

Record Subtyping L 22

Statically Typed Object-Oriented Languages 27

2.2.2 Parametric Polymorphism Lo 0 o000 29
Universal Quantification L Lo Lo 29

F-Bounded Quantification L 0oL, 34

Operation Inference o o s 35

Descriptive Classes i e 37
Parameterized Modules 0. 42

2.3 Summary e e e e e e e e e e e e e 47
3 Contextual Polymorphism 50
3.1 Definition of Contexts and Assertions 50
3.1.1 Typesand Kinds o 52
3.1.2 Environments, Contexts, and Assertions 53
3.1.3 Judgements 54
3.14 TypelJudgements. e 55
3.1.5 Kind Judgements o o 57
3.1.6 Specialization Lo e 58
3.1.7 Argument Inference oo o o 60

3.2 Use of Contexts and Assertions 60
3.2.1 Guidance e e 60
3.2.2 Abstract Superclasses Lo L Lo o 62
3.2.3 Context Hierarchies, 64
3.24 Abstract Types e 65
3.2.5 Existential Types L L e 66
3.2.6 Imheritance e 70

3.3 Contexts and Polymorphism L o0 oo 70

3.3.1 Subtypes and F-Bounded Quantification 71

3.3.2 Parameterized Modules 73
3.3.3 Descriptive Classes e 75

3.4 Summary L e e e e e e e 76
4 Notes on Cforall 77
4.1 Overloading e 78
4.2 Lvalues e 79
4.3 Polymorphism e 80
4.3.1 Type Abstraction L e 80
4.3.2 Contexts and Assertions L oo oo 82
4.3.3 Local Routines e 84

4.4 Overload Resolution e 85
4.4.1 Implicit Conversion it e e 86
4.4.2 Safe Conversions e 87
4.4.3 Conversion Cost L e 88
4.4.4 Degrees of Polymorphism, 89
4.4.5 Overload Resolution Rules. 89
4.4.6 Summary of Overload Resolution 95

4.5 Opaque Types o . i i e e e 95
4.5.1 Assertions and Type Declarations 98

4.6 Context Examples L e 100
4.6.1 CTypes o i e e e e 100
Scalar, Arithmetic, and Integral Types 100

Modifiable Types e 101

Pointer and Array Types o e 102

4.6.2 Relationships Between Operations 105
Relational and Equality Operators 106

Arithmetic and Integer Operations 107

ix

5 Conclusions 109

5.1 Future Work e 112

Bibliography 114

Chapter 1

Introduction

Expressiveness and safety are two important criteria for judging programming languages. In-
formally, the expressiveness of a language measures the variety of useful programs that can be
written with it, and its safety measures the variety of meaningless programs that can not be
written with it. These attributes can conflict with each other to some extent, and part of the art

of programming language design lies in balancing their demands.

Many languages provide strong type checking as a safety feature. Every data item has an
associated type, which defines the set of operations that can be applied to the data; if a program
attempts to apply an operation to data of the wrong type, the language’s translator or run-time
system detects and reports the error (as opposed to silently allowing the program to attempt a
meaningless computation). Type checking can occur statically or dynamically. Static checking
occurs before program execution, based on information about the types of values deduced from
the text of the program. In some programming languages, the actual type of a value during
execution may differ from its statically determined type. In those cases, a static type checker must
make conservative assumptions. Dynaemic checking occurs during execution, and can use exact
type information. For some programs a programmer may be able to prove that a program will
encounter no type errors when it executes, even though that “theorem” is beyond the capabilities
of a static type checker for that programming language. In such cases, dynamic type checking
provides greater expressiveness. However, programmers rarely attempt proofs of dynamic type-
safety because of their difficult nature, and programming errors are notoriously plentiful, so static

type checking provides greater safety.

This conflict has led to a search for programming languages that are statically checkable but

CHAPTER 1. INTRODUCTION 2

less restrictive. Ideally, no useful, semantically well-defined computation would be statically type-
unsafe. Polymorphic languages aim for that goal by allowing programmers to define computations

that are valid for operands of many different types.

This thesis examines polymorphic languages in detail. The remainder of this chapter defines
some useful terms and gives some criteria for comparing languages. Chapter two reviews the
kinds of polymorphism, and surveys a number of existing polymorphism mechanisms. Chapter
three discusses a novel polymorphism mechanism, called contextual polymorphism. Chapter four
demonstrates contextual polymorphism in the context of Cforall, an extension of the C program-

ming language.

1.1 Definitions and Notations

A set of values that can be represented by a computer and that is distinguishable from all other
such sets is a type. Different languages use different rules to distinguish between sets. One
programming language might allow a program to contain two types that implement the notion
of “complex number”, each represented by a pair of floating-point numbers, but with one type
interpreted as rectangular coordinates and the other as polar coordinates. A different language

might treat all such pairs as having the same type.

A type generator defines types, based on other types and values; for example, many languages
have an array type generator that defines array types based on an element type and bounding

values of an index type.

A notion is a concept, such as “cosine” or “dictionary” or “file merge” or “six”. An imple-

mentation is a programming-language text that defines computations that allow a computer to
provide the behaviour associated with a notion. An interface is a programming-language text
that provides information about the use and behaviour of implementations. Interfaces differ from
types in that they may include extra information such as routine pre- and post-conditions; also,
some languages provide entities such as modules, which have interfaces but are not values and

hence do not have types.

An operation is a notion such as “add” or “sort”, which defines the effect of a calculation.
An algorithm is a notion that describes a sequence of calculations that perform an operation. A
routine 1s an implementation of an algorithm; this includes pre-defined routines and operators

like “+” and abs.

CHAPTER 1. INTRODUCTION 3

A group of programming-language statements that use an implementation is called a client of

the implementation.

Discussions that do not depend on a specific programming language will use the following

notation.

e and e; denote arbitrary expressions.
o, 0;, 7 and 7; denote arbitrary types.
e : 7 means “the value of e has type 7”.

The type 1,—72— - - - T, is the type of a routine taking an arguments of type 7, 72,... and
returning a value of type 7,. The sine function has type real—real, and the real addition

function has type real—real—real.

The expression Azy : 71 -Azz : T2+ ...- e, where e is an expression of type 7,, is a routine

with type 1 —73— -- -7, and with parameters named zq, zo,.. ..

Record types use the notation “(---x---)”, so (fi : 71X fa : T2) is a record type with two

fields named f; and fs, with types 71 and 7, respectively.
The expression “(f1 := e1, f2 := e3)” creates a record value.

Inference rules have the form

s
meaning that if p, ¢, ..., and r can be proven, then s can be proven. For example, the
usual type-checking rule for routine calls is

€1 :T1—T2 €2 1T

e1(ez) 1 7

or, in English, “if e; is a routine taking an argument of type 7, and returning a value of
type 72, and if e; has type 1, then applying e; to es results in a value of type m5”. The rule
for record field extraction is

e:{(fiimXfaiTaxX . . X fn i)

efii

The definitions of many other terms and notations appear at their first use. The index contains

an entry for every definition.

CHAPTER 1. INTRODUCTION 4

1.2 Desirable Properties

Many authors have listed many properties that they believed were characteristics of good pro-
gramming languages. Of those properties, the following seem particularly relevant to issues that

arise when comparing polymorphic programming languages.

Efficiency It should be possible to implement the features of a language efficiently enough so
that programmers rarely feel the need to avoid them or work around them in the interests of

COIISCI‘ViIIg computer Iresources.

“If anyone is to be allowed to introduce inefliciency, it should be the user programmer,
not the language designer. The user programmer can take advantage of this freedom
to write better structured and clearer programs, and should not have to expend extra
effort to obscure the structure and write less clear programs just to regain the efficiency

which has been so arrogantly pre-empted by the language designer.” [28]

Strong Static Interface Checking

“The [programming language] should be designed to reduce as far as possible the
scope for coding error; or at least to guarantee that such errors can be detected by a
compiler, before the program even begins to run. Certain programming errors cannot
always be detected in this way, and must be cheaply detectable at run time; in no
case can they be allowed to give rise to machine or implementation dependent effects,

which are inexplicable in terms of the language itself.” [28]

“Strong interface checking” extends the familiar concept of strong type checking: no operation
can be performed on data unless the behaviour of the operation is defined for that data. The
difference between strong type checking and strong interface checking is that checking is based on
the interfaces of data and operations. An interface might not provide complete type information:
for instance, many languages let programmers declare “incomplete” record types, which do not
specify the record’s fields, and records of these types can be operated on in certain restricted
ways. An interface might also describe properties that are not part of a language’s type system,

such as a routine’s preconditions.

Static checking (where possible) is preferable to dynamic checking because it guarantees that

certain classes of errors are not present in the program. If dynamic checking is used, that guarantee

CHAPTER 1. INTRODUCTION 5

can only be provided by exhaustive testing, which is at best slow and at worst impossible, or
by human verification, which is expensive and error-prone. All other things being equal, the
more static checks a programming language provides for, the better it is, since a larger class of
errors is excluded. However, a language design must balance safety against efficiency, because
some conceivable checks are infeasible or impossible: for instance, static verification of routine

preconditions would in general require a full theorem prover.

Expressiveness A programming language is ezpressive if it can be used in a clear, uncontorted
way to implement a wide variety of notions. One language is more expressive than another if it

can express all of the notions that the other can, and other notions as well.

One aspect of expressiveness is flextbility: the ability to express notions that are quite different
from those foreseen by the language’s designers. A second is support for polymorphic data. The
existence of polymorphic data follows from the principle of declaration correspondence, proposed
by Landin [31] and discussed extensively by Harland [26], who states it this way: “all options or
properties associated with declarations [should] be uniformly available.” Hence, if programmers
can define routines with parameters that can be bound to arguments with different types, it should
be possible for them to define data structures with fields that can be bound to values of different
types. For example, a program might contain a list of various geometric figures, such as circles
and polygons; every element could have a different type. The program could safely apply any

operation that is valid for any type of figure to any element of the list.

A third aspect of the expressiveness of a programming language is its ability to describe
properties of notions. Notions have various properties, such as relationships between the types
of the operands of an operation; different notions have different properties. Consider the notion
min(a,b), which returns the smaller of two arguments. That notion has at least two important

properties.

e It is associated with the notion of “ordered values”, which defines the types of its operands
and its returned value. An implementation of min should accept values from any of (and

only) those “ordered types” that implement “ordered values”.

e The arguments of min do not just have ordered types; they must have the same type. If the
arguments belong to different ordered types, there may not be an ordering defined between
them, even though each has its own defined ordering. Similarly, the value returned by min
is not just any ordered value; it has exactly the same type as the argument values. If a

program applies min to two integers, the result will be an integer. This information can be

CHAPTER 1. INTRODUCTION 6

used to optimize the code that calls min. In general, this {ype maiching can combine with
a language’s type generators, so that the type of one argument must match the type of a

field of a record argument, and so on.

(As has been mentioned, the meaning of “the same type” depends upon the programming
language. In a language with an assignment operation that copies values into variables, “the
same type” may mean “the same representation”. In another language, two values a and b

might have the same type if a single “<” routine exists such that a < b= —(b < a).)

These points illustrate two, more general forms of expressiveness: in the first case, the ability to

describe properties of a type; in the second, the ability to describe relationships between types.

Within a program, interfaces of implementations of notions must express these properties.
Perfectly precise interfaces state all of the notion’s properties, and no others. A language that
lets programmers define more precise interfaces is more expressive. An interface may fall short of
perfect precision in two ways. It may state extra properties: in these cases, the language lacks
generality (the ability to define interfaces and implementations with the largest possible domain
of applicability possible), and some semantically well-defined computations are inexpressible. Al-
ternately, interfaces may be permissive: they may omit relevant properties, in which case uses of
the implementation can not be checked as carefully; in the best cases, potentially static checks
must be replaced by explicitly programmed dynamic checks. (In the worst cases, the checks never
occur. A “convention” comment that states what must or must not be done with some implemen-
tation is evidence of such a lack of precision; such unenforced conventions are dangerous, because

subtle errors often result when they are accidentally or intentionally violated.)

Separate Interfaces The definition of an implementation always defines an interface of that
implementation. Some programming languages provide no other way to define interfaces; in
others, the implementation and its interface must reside in one textual unit. The designers of
Ada [57] took a different approach. Ada source code is gathered into units called packages, which
are divided into two parts: the package specification defines the interface of a package, and the
package body provides the implementation. Ichbiah [29] argued that this design has the following
benefits:

e Client programmers can be prevented from reading the implementation. This lets imple-
mentors keep the implementation confidential, for instance by distributing only a compiled

form of the implementation along with the textual form of the interface.

CHAPTER 1. INTRODUCTION 7

e Even if confidentiality is not required, preventing client programmers from reading the
textual form of the implementation keeps them from inferring, and making use of, incidental
properties of the implementation that might be changed in the future. In other words, the

interface provides a contract that clients and implementations can be measured against.

e Implementations and interfaces can be separately compiled safely.
I would like to add three points to this list:

e Translators only need access to interfaces, instead of the entire implementation, when check-

ing client programs.

e It becomes easier to have several implementations corresponding to an interface, each suited

to different clients.

e It becomes possible to have several interfaces to one implementation. One reason would be
to provide interfaces corresponding to different levels of encapsulation, as in C++’s public
and protected class interfaces [55]. Another is to provide interfaces for different sorts of
clients; for instance an implementation of a buffer might provide “reader” and “writer”

interfaces.

Code Reuse As the programming community develops experience in a problem area, it dis-
covers new useful notions, and borrows old ones from other areas. These notions will be used in
many programs. For instance, the proportion of commercial data processing code that is made
up of such reusable notions is estimated to be 60% [32], or even 90% [4]. Hence, a programming
language should encourage production of reusable code, since reuse can greatly reduce the cost of
programming; Lanergan and Grasso believe that their approach to code and design reuse increase
productivity by 50% when new programs are written and greatly eases the task of program com-
prehension during maintenance, once programmers have become familiar with the reusable code

[32].

It is also important to provide support for different forms of reuse. The implementation of a
notion can be used in many programs that need that notion, an implementation can be reused in
the construction of similar implementations, and an interface can be reused in the description of

similar interfaces.

The simplest way to reuse code is to copy and modify it. This is not a satisfactory form
of reuse, since maintaining many copies of similar code increases wasted effort and raises the

probability of errors and inconsistencies.

CHAPTER 1. INTRODUCTION 8

Flexibility obviously encourages reuse. So does the separation of interfaces from implemen-
tations. A client that can not make use of hidden details is protected from changes in the im-
plementation of those details; this weakens the urge to use copy-and-modify as a defense against

such changes. The stronger the separation is, the more it will encourage reuse.

The ability to replace an interface or implementation with a more general version, without
affecting clients of the original, is called generalizability. Generalizability lets a programmer
replace a “minimum” routine defined for integer parameters with one defined for parameters with
any ordered type without requiring changes to any routine calls. This promotes reuse by reducing

the fear of “ripple effects” that can result from changes to reused code.

The ability to augment the domain of an interface or implementation without modifying it is
called incrementality[16]. Incrementality lets a programmer define a “less than” routine for a type
that does not have one, perhaps so that instances can be passed to a “minimum” routine. This

promotes reuse by allowing programmers to adapt existing implementations to new domains.

Simple Base Language “The language should get as much mileage as possible out of its
definitional mechanism, never introducing something as a distinct language construct which can
better be explained in terms of the definitional mechanism” [27, p. 13]. Replacing programming-
language primitives with programmer-definable facilities leads to a smaller, simpler language, and
simplicity is generally held to be a virtue in programming languages (provided that simplicity is
not achieved at the expense of other desirable properties) [28, 65]. Furthermore, the existence of
a standard library of useful facilities written in a programming language provides evidence of the

flexibility and expressive power of the language.

Shaw and Wulf [49] argue that programming languages pre-empt many decisions that could
be left open for programmers, and that this can result in contorted programs, can prevent op-
timization, and (because of lost efficiency) can discourage the use of high-level languages. They
describe ways for programmers to retain control over concurrency, iteration, storage layout, and
even procedure invocation. For instance, programming languages often provide some way to dy-
namically manage objects in memory. In the C language, this capability is provided by standard
library routines such as malloc and free [2]. Programmers can replace these routines if they
need tracing or debugging features [7, 67|, or garbage-collecting allocators [5], or allocators that
are tuned to their programs. In Pascal [30], storage management is provided by primitive new and
dispose routines. Since they are tied in to the compiler’s run-time environment, replacing them

is usually difficult or impossible. In this respect, C is more flexible than Pascal. (Unfortunately,

CHAPTER 1. INTRODUCTION 9

C’s type system is such that the flexibility is bought at the cost of a loss of type safety.) As
another example, Hilfinger shows that, with some extensions to Ada’s abstraction mechanisms,

its exception handling and tasking facilities could have been provided by library packages [27].

1.3 Polymorphism

The type of a notion is often quite vague. Consider the notion of a “minimum” operation, which
returns the smallest of its arguments. This includes notions of operations that take numeric argu-
ments, or arguments from any ordered type. Similarly, the operation might take two arguments,
or an unbounded number of arguments, or a single argument that is a set of such values. Hence,

neither the types of the arguments nor the type of the notion “minimum” are rigidly defined.

Polymorphism allows languages to reflect this vagueness. Strachey informally defined polymor-
phic routines and operations to be those that “have several forms depending on their arguments”
[54], and gave as an example the “+” operation, which in most programming languages works with
many combinations of numeric types. He also coined terms for two main sorts of polymorphism:

ad-hoc polymorphism and parametric polymorphism.

In ad-hoc polymorphism there is no single systematic way of determining the type
of the result from the type of the arguments. There may be several rules of limited
extent which reduce the number of cases, but these are themselves ad-hoc both in
scope and content. All the ordinary arithmetic operators and functions come into this
category. It seems, moreover, that the automatic insertion of transfer functions by the
compiling system is limited to this class.

Parametric polymorphism is more regular and may be illustrated by an example.
Suppose f is a function whose argument is of type o and whose result is of type 8
(so that the type of £ might be written o = 3), and that L is a list whose elements
are all of type o (so that the type of L is a list). We can imagine a function, say
Map, which applies £ in turn to each member of L. and makes a list of the results.
Thus Map[f,L] will produce a 3 1list. We would like Map to work on all types of
list provided £ was a suitable function, so that Map would have to be polymorphic.
However its polymorphism is of a particularly simple parametric type which could be
written

(¢ list,a = B) = B list.

where a and 3 stand for any types.

CHAPTER 1. INTRODUCTION 10

The polymorphism exhibited by “the ordinary arithmetic operators” might be what is now called
overloading, which allows several routines with distinct types but with the same name to exist
within a scope. For instance, Algol 68 [58] defines two not operations, one for boolean values
and one for bit strings. It also could cover what Strachey called dynamic type determination:
arguments contain a type tag, and polymorphic routines dynamically test the tag to decide what

to do.

Cardelli and Wegner introduced the term inclusion polymorphism for the sort of polymor-
phism found in “object oriented” languages, where “an object can be viewed as belonging to
many different classes that need not be disjoint; that is, there may be inclusion of classes” [11].
They do not define the term “class”, which means different things in different object oriented

!, They group parametric and inclusion polymorphism together as forms of universal

languages
polymorphism. Inclusion polymorphism is associated with polymorphic data structures, while

parametric polymorphism is associated with polymorphic routines.

These definitions are not precise, and the examples of ad-hoc polymorphism show that problems
arise when they are applied to concepts that developed later. Does not the type checking algorithm
of any compiler or run-time system constitute a “single systematic way” of determining the types of
expressions in its language? How “regular” must a rule be to exclude a polymorphism mechanism
from the ad-hoc category? Clearly it would be nice to have sharper definitions. One interpretation

emphasizes the behaviour of polymorphic routines:

ad-hoc polymorphism occurs when a function is defined over several different types,
acting in a different way for each type ...parametric polymorphism occurs when a

function is defined over a range of types, acting in the same way for each type. [60]

Parametric polymorphism is obtained when a function works uniformly on a range of
types; these types normally exhibit some common structure. Ad-hoc polymorphism is
obtained when a function works, or appears to work, on several different types (which
may not exhibit a common structure) and may behave in unrelated ways for each
type ...In terms of implementation, a universally polymorphic function will execute
the same code for arguments of any admissible type, whereas an ad-hoc polymorphic

function may execute different code for each type of argument. [11]

This view has two (related) difficulties. First, Strachey seems to be concerned only with t¢ypes,

not with behaviour. Second, when the implementation of a polymorphic routine is hidden from

1“Class” is not the same as “type”, which they do define.

CHAPTER 1. INTRODUCTION 11

clients, “the way it acts” (and especially the code it executes!) is unobservable. It seems better
to define polymorphism only in terms of types and interfaces; that is, the “common structure” of

arguments that is referred to above.

Note also that Strachey’s terms apply to language mechanisms, not to the notions that are
implemented with them. A language can provide more than one polymorphism mechanism; a
notion might be implemented by an overloading of parametrically polymorphic and monomorphic
routines, and in that case it would not make sense to say that the notion (or its implementation)
exhibits parametric or ad-hoc polymorphism. The relevant property is the range of use of the
implementation: is it applicable to some finite set of currently-defined types, or can it be used
with an infinite set of types, including some that will be defined in the future? In the latter case,
the types can not be specified directly; instead, the implementation of the notion must state some

common structure or interface that the types must possess.

The following definitions are reasonably precise, emphasize the importance of common struc-
ture and infinite applicability, and refer to programming-language phenomena such as implemen-
tations and identifiers, not to notions or to unobservable phenomena such as the behaviour of

implementations.

e polymorphism is the ability to implement a notion so that it applies to more than one type.

e ad-hoc polymorphism is present when an implementation has one or more interfaces that

are defined for a set of types which need not have any common structure.

This definition does not require any similarity in the types (or even the number of argu-
ments) of the interfaces associated with an identifier, because it must cover the case of a
“minimum” notion that has interfaces defined for a single (set-valued) argument and for a
pair of arguments. Unfortunately, this also covers cases where the interfaces do not represent

“_»

the same notion. Many programming languages have a binary operator, that represents

“_»

the notion of subtraction, and a unary operator that represents the notion of arithmetic

negation.

o universal polymorphism is present when an implementation has a single interface that is

applicable to a potentially infinite set of types defined by a common structure.

e A routine exhibits parametric polymorphism when the value of a parameter defines other
parts of the routine’s interface. The parameterized interface defines a structure, and the

routine accepts any argument list (and only those lists) that possess that structure, but

CHAPTER 1. INTRODUCTION 12

the lists can have a potentially infinite number of different types, corresponding to different

parameter values.

e inclusion polymorphism is present when an identifier can be bound to values from a poten-

tially infinite set of types with a common structure.

The boundary between inclusion polymorphism and parametric polymorphism is thin. Con-
sider the & 1ist parameter of Strachey’s Map example. It can be bound to values of different
types during different calls, but it does not demonstrate inclusion polymorphism because its
value can only have one type: « list, for the current value of a. If inclusion polymorphism
was present, « list would only define some, but not all, of the attributes of the value’s
actual type, and the parameter could be bound to a list of any type that possessed a’s

attributes.

It is interesting to consider some boundary cases of these definitions. The language EL1 [63]
uses the type generator ONEOF (t1,t2) to define the union of the types t1 and t2. A routine that

doubles an integer or a real number could be defined as follows.

DOUBLE1 « EXPR(V:ONEOF(INT, REAL); ONEOF(INT, REAL))
BEGIN
V+V
END

Then DOUBLE1 (3) would return a ONEOF (INT, REAL) value containing the integer 6, and DOUBLE1(3.5)
would return one containing the real number 7.0. By the “behavioural” definition, DOUBLE1 is

an example of parametric polymorphism because the routine body does not contain special cases

for the different argument types. By the definitions used here, DOUBLE1 is an example of ad-hoc
polymorphism, because it does not use a required structure to define the types of arguments it
accepts; it just lists a set of types. Both argument types have a “+” operation, but that does not
define the set of legal argument types: DOUBLE1 will not accept a COMPLEX argument, even though
COMPLEX has a “+” operation.

EL1 also contains a GENERIC construct that allows routines to perform calculations based on

the dynamic types of arguments.

DOUBLE2 « EXPR(V:ONEOF(INT, REAL); ONEOF(INT, REAL))
GENERIC(V)
[INT] = FIXADD(V, V)

CHAPTER 1. INTRODUCTION 13

[REAL] = FLOATADD(V, V)
END

DOUBLE2 is an example of ad-hoc polymorphism by any definition, including Strachey’s. However,
DOUBLE1 and DOUBLE2 have the same interface!

Chapter 2

Polymorphism Mechanisms

Chapter 1 discussed a number of desirable properties of programming languages, and defined
several broad classes of polymorphism. This chapter discusses specific mechanisms that have
been used to introduce polymorphism into languages, and evaluates the extent to which they
support for the desirable properties. It does not deal in great detail with deep semantic issues;
instead it concentrates on the pragmatic effects that these mechanisms have on programs that use

them.

2.1 Ad-Hoc Mechanisms

Recall the definition given in chapter 1: ad-hoc polymorphism is present when an implementation
has one or more interfaces that are defined for a set of types which need not have any common
structure. Ad-hoc polymorphism comes in three varieties: overloading, transfer functions, and

set-theoretic unions.

2.1.1 Overloading

“A construct in a typed programming language is said to be overloaded when there are several
different implementations of the construct and the version appropriate to a particular case is
chosen using type information reflecting its context within the program”[61]. For example, Algol
68 overloads the not operator: one version takes a boolean argument and returns a boolean value,

and the other takes and returns bit strings. Overloading is an ad-hoc mechanism because each

14

CHAPTER 2. POLYMORPHISM MECHANISMS 15

implementation has a different interface, and the types mentioned in different interfaces need not

have anything in common.

When an overloaded identifier is used, one of its implementations must be selected. Statically
checked programming languages usually use static overload resolution: the language translator
attempts to choose one implementation of each overloaded identifier in an expression, based on the
type rules of the language and the declarations of identifiers in the context of the expression. If the
translator can not choose between two implementations, it judges the expression to be ambiguous
and rejects it. Consequently, a valid expression using overloading is equivalent to an expression
that uses unique identifiers, so static resolution has no effect on generalizability, static checking,
strong checking, or separation of interfaces from implementations. It is also efficient, since there
is no added run-time cost, and since the increased compilation cost should also be acceptable;
arguably, if a language definition makes overload resolution expensive, then overloading in that

language is too complex to be used effectively by programmers.

Overloading provides incrementality, since more overloadings can be added if they are needed.
It simplifies the language, since notions like not can be presented as a library instead of a special
case of the language. It also increases expressiveness by reducing the severity of name clashes:
for instance, two libraries can declare the same identifier, as long as the overloading rules allow
them to be distinguished. It provides type matching: consider two implementations of min, one
accepting a pair of integers and returning an integer, and the other accepting and returning real
numbers. The arguments and result must have the same type. Overloading also lets interfaces
define their applicable notions, to a limited extent. However, it does little to increase generality;

a full description of the notion of “minimum” would require an infinite number of overloadings.

Other drawbacks of overloading are due to its unconstrained nature. First, there is no guaran-
tee that all overloadings of an identifier implement the same notion, and hence a small programmer
error can result in a call to a routine that does entirely the wrong thing. Second, many authors
feel that overloading can reduce program readability [23, 59]. This is partly because, in a case
where an identifier represents more than one notion, it can be difficult to determine which notion
the author of some code had in mind. But it is also due to a paradoxical effect: overloading
makes it easier to get a general understanding of code (“Aha! This code sums the elements of a
vector!”), but makes it harder to get a detailed understanding (“Aha! This code calls the addition
routine for quaternions!”) These problems can be reduced if programmers have access to program

analysis tools, and if programmers use taste and discretion when overloading.

CHAPTER 2. POLYMORPHISM MECHANISMS 16

2.1.2 Transfer Functions

One of Strachey’s examples of ad-hoc polymorphism was the automatic insertion of a transfer
function. This is also known as implicit conversion and as coercion. Cardelli and Wegner define
it as “a semantic operation that is needed to convert an argument to the type expected by a
function, in a situation that would otherwise result in a type error [11]”. For instance, the sin
routine in Algol 68 takes a real argument. If it is called with an integer argument, the language
translator inserts a transfer function to convert the argument to a real value, and passes the result
to sin. In languages such as C++, programmers can define new transfer functions to complement

programmer-defined types.

Note that, by this definition, a transfer function creates a new value of the desired type. In
certain cases, the bit patterns of the old and new values may be the same and no computation
is needed, but that is an optimization. (By some definitions, coercions merely change the type of
an existing value, without creating a new value or altering it in any way.) A call to a sin routine
that takes a real parameter will always return a real result, even if the argument is an integer.
If an integer result is needed, then another transfer function must be applied to the real result
to create it. In general, such inverse transfer functions may not exist, or successively applying
the transfer function and its inverse may result in the loss of information present in the original

value.

Transfer functions introduce polymorphism because routines like sin can be applied to many
different types of arguments. The polymorphism is ad-hoc because the set of types is defined
by the set of available transfer functions, not by any properties of the types. It is different
from other polymorphism mechanisms in that it adapts the arguments to suit the routines; other
polymorphism mechanisms produce routines that adapt to their arguments. Hence it has no effect
on interface precision or separation of interfaces from implementations, and does not provide a way

to simplify a language by replacing language constructs with programmer-definable abstractions.

An expression that uses transfer functions is equivalent to an expression where the transfer
functions are called explicitly, so implicit calls do not affect strong static checking and are no less
efficient than explicit conversions. Programmer-defined transfer functions provide a weak form of
incrementality, since new transfer functions let old routines be applied to arguments of new types,
and may occasionally provide some generalizability, if a new, more general routine is accompanied
by a transfer function that converts old arguments to the new form. However, the potential loss of
type precision and of information makes transfer function polymorphism unsatisfactory in most

cases.

CHAPTER 2. POLYMORPHISM MECHANISMS 17

2.1.3 Set-Theoretic Union Types

The EL1 ONEOF type used by the routines DOUBLE1 and DOUBLE2 on page 12 is an example of a
set-theoretic union type. More advanced versions of the idea have been proposed by Reynolds [45]
and Pierce [43]. These types are defined in terms of other member types; if a type is considered
to be a set of values, then the union type is the set of all values contained in those member
types. Consequently a value may belong to more than one type. Set-theoretic unions provide
polymorphism, because they allow identifiers to be bound to values from the different member

types. The polymorphism is ad-hoc because no common structure is needed among argument
types.

The GENERIC construct used by DOUBLE2 is an example of a conformity clause. A conformity
clause is similar to a case statement, but it examines the type of a data item instead of its
value. Each branch of the clause describes types that the data item might have, and statements
to execute if it has one of those types. If the branch specifies a type constant, then strong static

checking is possible in the branch.

A language might provide dynamic overload resolution instead of conformity clauses. In such a
language, if an expression uses an overloaded routine identifier, and an argument to the routine is a
union, then the member type that the value belongs to would be used to resolve the overloading.
In effect, an implicit conformity clause is used to call the appropriate implementation of the
overloaded routine. The overloaded routines in such languages are sometimes called multimethods.

Ghelli has described a strongly and statically checked type system for such a language [22].

Many languages provide unions that are not set-theoretic unions. In these languages a union
type is distinct from its member types, and special actions are needed to convert between values

of the union type and values of the member types. Consider the Algol 68 version of DOUBLE2.

mode ir = union(int, real);
proc double68 = (ir v) ir:
case v
in (int 7): 7 + ¢,
(real r): r + 7
esac;
double68(3);
double68(3.5)

Note that the case statement (the Algol 68 conformity clause) provides a name (i or 7) to refer

CHAPTER 2. POLYMORPHISM MECHANISMS 18

to the member-type value contained within the union parameter ». v can not be assigned to a
real variable or passed to a real parameter, even if it happens to contain a real value. This
shows that there is a distinction between a union value and the member value that it contains.
When a member value such as 3 is passed to double68, a uniting coercion implicitly converts it to
a union value. Hence, the polymorphism of double68 is actually transfer function polymorphism,

not union polymorphism.

Unions increase expressiveness in an interesting way: it becomes possible to handle data whose
exact type is not statically known. For instance, it may be impossible to statically decide whether
the argument of a call to DOUBLE1 is an INT or a REAL: the argument might be a ONEOF parameter

of a routine that calls DOUBLE1, or its value might depend on input to the program.

Unions provide a small amount of generalizability, since a union type can be expanded to
include more members: DOUBLE1 could be changed to have a parameter of type ONEOF(INT,
REAL, COMPLEX) without affecting its clients. They allow language simplification; for instance,
polymorphic operators can be presented as library routines. They have no effect on incrementality
or on separation of interfaces and implementations. As an example of interface precision, consider

an EL1 “minimum” routine:

MIN «— EXPR(A: ONEOF(INT, REAL); B: ONEOF(INT, REAL);
ONEOF (INT, REAL))
BEGIN ... END

This example shows that unions prevent type matching: one argument of MIN could be an INT
while the other is REAL. Furthermore, if the arguments have the same type, the value returned by
MIN has that same type, but MIN’s type does not express that fact. The example also shows that
unions do not provide full generality, since the arguments to a fully general MIN routine would

have to be unions of an infinite number of ordered types.

Set-theoretic unions can have reasonable efficiency. Typically, types are encoded as type tags.
Distinct types must have distinct tags. (This may be difficult to arrange for some combinations
of computing environments and type systems.) Type tags have a space cost; in the worst case,
every value must contain a type tag, but a translator can often optimize away the tags of values
whose types are never in doubt. Since the exact size of a union value is unknown, enough space

must be allocated to hold the largest possible value, or values must be manipulated via pointers.

CHAPTER 2. POLYMORPHISM MECHANISMS 19

The execution time cost of type tags is moderate; Steenkiste [53] studied an implementation for
the MIPS-X processor of Portable Standard Lisp, a dynamically-typed language. He concluded

that a collection of benchmark programs would spend 22% to 32% of their time processing tags.

2.2 Universal Mechanisms

The common feature of all ad-hoc polymorphism mechanisms is that the domains of implemen-
tations that use them are not defined by some common structure. In contrast, universal poly-
morphism uses a common structure to define a single interface that is applicable to a potentially
infinite set of types. It has two varieties: inclusion polymorphism lets programs bind identifiers
to values from a set of types defined by a common structure, and parametric polymorphism lets
the interface of a routine depend on the value of one of its parameters, so that valid argument
lists must match a structure defined by the interface. Several polymorphism mechanisms exist for

each of these varieties of polymorphism.

2.2.1 Inclusion Polymorphism

Some programming languages define a subtype relationship between types. If a type 7 is a subtype
of another type 72 (written 74 C 72) then values of type 71 can be used in certain situations that
require a value of type 7. The situations vary among languages, but typically they use the

following type-checking rule:
€e:n 1C7m

€:Ty
Combining this with the function-checking rule on page 3 gives

€] : To—Ts es: T nCm

e1(ez) : 73

This is a universal polymorphism mechanism, because routines accept arguments with any of a
set of types that share a common structure defined by the language’s subtype rules. It is inclusion
polymorphism because the parameters of the routine can be bound to arguments with different

subtypes of the parameter type.

Subtyping can allow simplification of the language kernel. Recall that the Algol 68 not operator
performs logical negation on boolean and bit string values. In a language with subtypes, this
could be expressed as a single routine that takes an argument of type “logical”, which would be

a supertype of the boolean and bit string types.

CHAPTER 2. POLYMORPHISM MECHANISMS 20

If every operation that is valid for values of a type is also valid for all subtypes of the type,
then subtyping preserves strong static checking. Subtyping has no effect on separation of imple-
mentations and interfaces. However, it does reduce the precision of interfaces, since it leaves no
static way to refer to the actual type of an argument to a polymorphic routine; only the name of
the supertype is known. Hence type matching vanishes: there is no way to declare statically that
two values have ezactly the same type. Such information, if present at all, is given in comments,

and enforced at run-time, when it is too late to correct errors.

Subtypes can also provide polymorphic data structures, for instance if the language allows

record fields declared to have type 7 to be bound to values of subtypes of 7.

Infinite Unions

The simplest form of subtyping defines a type that is a supertype of every other data type, or in
other words, an infinite set-theoretic union of all other types. (It is possible to have infinite versions
of Algol 68’s style of union, but they are not discussed in this section.) For instance, EL1 has
an ANY type, which can be combined with the type generators of the language to produce records
with fields that can hold any value, parameters that accept any argument, and so on. Routines
that have parameters whose types involve infinite unions exhibit inclusion polymorphism; the
“required structure” of the argument types is the set of properties common to all data types, such
as the ability to be assigned or instantiated. If an infinite union is used in a type generator, then

the generator defines a more precise structure: the EL1 routine

NAME_OF «— EXPR(S:STRUCT(NAME: STRING, VAL: ANY);
STRING)
BEGIN
S.NAME
END

will accept as an argument any record that has two fields, the first of which is a string called

NAME, and the second of which is anything called VAL.

The implementation of infinite unions can be much like the implementation of finite unions,
except that when allocating space for an infinite union variable, a compiler can not simply allocate
enough space to hold the largest member type. Consequently, indirection must be used in more

cases.

CHAPTER 2. POLYMORPHISM MECHANISMS 21

Strong interface checking and static checking can be applied in the cases of operations that can
be performed on values of type ANY, and of operations that can be performed on every data type:
a typical example is computing a reference to a value. These operations are surprisingly useful.
For example, routines that implement operations on “collection” types such as lists often use
only those operations, since the routines reorganize values but do not operate on them directly.
Hence these languages allow safe, statically checkable implementations of collection types that
are independent of the collection’s element types. This is an increase in both expressiveness and

flexibility, and therefore in reusability.

ADD — EXPR(C:COLLECTION, V: ANY) ...

Unfortunately, due to the absence of type matching, static type information about data that
passes through polymorphic routines or data structures vanishes. (A program can add an INT to
a collection, but when some operation retrieves the integer from the collection, its static type will

be ANY, not INT.)

Infinite unions allow smaller language kernels, since operations like the traditional cons, car,
and cdr operations on lists can be treated as library routines. However, routines can only replace
language primitives that take any value as an argument: a not operation should not be defined

this way, because “logical negation” is not a sensible operation for most types.

When a data item has static type ANY, its dynamic type of the data must be recovered before
any type-specific operation can be performed on it. This could be done with a conformity clause,
but the usefulness of this has limits because only a finite number of tests can be performed.
Checking could also involve dynamic overload resolution, with its run-time costs and dynamic
checking. Another alternative is to pass the operations along with the data, as routine parameters
or as routine fields of the value. This requires some care on the programmer’s part, and still

requires dynamic type checking in general.

Infinite unions provide a form of generality, but not a useful form, because they do not allow
programmers to specify many sorts of restrictions on the values that a union may take on. For
instance, a truly polymorphic version of DOUBLE1 should accept any type that has a “+” operation,
but the ANY type does not provide a way to specify that only such values are acceptable. Similarly,
it provides only weak generalizability (a routine with an INT parameter can be replaced by one
with an ANY parameter) and incrementality (any new type is a subtype of ANY, and hence extends

the domain of routines with ANY parameters).

CHAPTER 2. POLYMORPHISM MECHANISMS 22

Record Subtyping

Cardelli [1, 9] described subtype rules for routine and record types. A subtype of a record type
can add new fields, and can change the type of an existing field to a subtype of the original field

type:
Tlgrl' ngrl' ngr,'n

(himX el) Ty i X el Ty X ol o 1)
In effect, this rule provides a looser version of structural equivalence for record types.
The rule for routines also allows changes in types: a subtype of a routine type can replace the
result type by a subtype, and can replace the argument type by a supertype.

o1 C o3 1 C T

02—71 C 01—
For instance, if a program uses two types Integer and Fraction, with Integer C Fraction,

then
Fraction — Integer C Integer — Fraction

and a routine with the first type can be passed as an argument to a parameter with the second
type. This pattern of replacement is known as contravariance, since the result and argument
types change in opposite ways. It follows naturally from the flow of data through routines: in
through the parameters and out through the result, with subtype-to-supertype transformations

at each point.

Unfortunately, many operations are naturally covarieni. Consider the natural types of the

addition operations associated with Fraction and Integer:

+: Integer — Integer — Integer

+: Fraction — Fraction — Fraction

Since these operation’s types exhibit covariance, neither’s type is a supertype of the other’s,
whether Fraction and Integer have some subtype relationship or not. Furthermore, there can
be no type T such T—-T—T is a supertype of both. This makes it impossible to write a “double”
routine that would accept either “+” operation as an argument. This problem can not be solved
by using a covariant subtype rule, because covariant rules require dynamic type checking [13].

The best that can be done would give the two routines the types

+: Addable — Addable — Integer

+: Addable — Addable — Fraction

CHAPTER 2. POLYMORPHISM MECHANISMS 23

where Addable is some supertype of Integer and Fraction; then both types would be subtypes of
Addable—Addable—T2, if T2 is a subtype of both Integer and Fraction. Clearly this approach
would lose type precision. It also would require two problematic types, Addable and T2, which

must be a supertype and a subtype, respectively, of all types with a “+” operation.

Record subtype languages have a second distinguishing feature: routines stored in fields in
records can refer directly to the record itself, typically through the special identifier self. In
effect, the record becomes an extra parameter of the routines that it contains. Programs that
use record subtyping would not implement “+” as an ordinary routine. Instead, programmers
implement types such as Fraction as records that bundle together a value and the routines that
operate on it. Built-in types such as Integer are treated as if they were records containing
routines. Polymorphic routines use record types as parameter types, and accept any argument

whose type is a subtype of the parameter type.

type Addable = (plus: Addable — Addable)
-- assume Integer C Addable
type Fraction = (plus: Addable — Fraction X
numerator: Integer x denominator: Integer)

-— Fraction C Addable.

double: Addable — Addable = ...
—- Double the fraction “one half”
double (numerator := 1, denominator := 2,

plus:=Ap:Addable-(... self.i ...))

This does not prevent the loss of static type information mentioned above: the plus routine for
Fractions still takes an Addable argument, not a Fraction, and the result of the call to Double
has static type Addable, not Fraction. However, this is an improvement over the situation
presented by infinite union polymorphism, since routine and record types refer to Addable, not
to an overly-general type like ANY. Furthermore, the subtype rules let subtypes change the types
of routine fields, as long as covariance is observed: the result type of the plus field changes
from Addable in the declaration of Addable to the more precise Fraction in the declaration of
Fraction. Consequently, programs have less need for conformity clauses or dynamic overload

resolution.

Subtyping provides generality: a routine will accept any argument that supports the opera-

tions defined by the routine’s parameter’s fields. However, the contravariant subtyping rule for

CHAPTER 2. POLYMORPHISM MECHANISMS 24

routines has the effect of limiting generality, as shown in [8] (where the problem arises in “negative
recursion” in routine fields of recursive record types). Consider this attempt to define a polymor-
phic min routine, which uses the notion of “ordered” values: values that provide a 1t operation

that returns true if the value is less than or equal to 1t’s argument.

type Ordered = (1t: Ordered — Boolean)
min: Ordered — Ordered — Ordered

= Ap:0Ordered-Aq:0rdered-if p.1lt(q) then p else q

(Ordered serves a useful purpose, even though instances of it contain no data and its 1t routine
field has not been implemented; it defines the interface of ordered values.) A programmer might
define a String type, containing character strings, with a 1t operation that compares strings in

lexicographical order:

type String = (... 1lt: String — Boolean ...)

However, min does not accept String arguments, even though String defines 1t, because String

is not a subtype of Ordered. This can be demonstrated by contradiction: assume

StringCOrdered.

Then the record subtyping rule and the types of their 1t fields gives

String—Boolean C Ordered—Boolean

and applying the routine subtype rule to the parameter types gives

Ordered C String

Combining this with the original assumption gives

Ordered = String

Which is clearly false. String would be a subtype of Ordered if it were defined as

type String = (... 1lt: Ordered — Boolean ...).

CHAPTER 2. POLYMORPHISM MECHANISMS 25

In this case, String C Ordered, but 1t’s parameter type is too general, and gives 1t no fields
with which to do the comparison! In cases like these, subtyping languages can not define their

parameter types with full generality.

Note that routine types and record types can not have a subtype relationship; hence a poly-
morphic routine can not have a parameter that can accept both routine arguments and data
arguments. There are some notions for which this makes sense (see [16] for an example), but

these notions can not be implemented in their full generality.

The loss of type matching has one potentially beneficial consequence: it allows “mixed mode”
operations. Since Integer and Fraction are both subtypes of Addable, the type-checking rules

let programmers add integers to fractions. This is not an unmixed blessing.

e The implementation of plus for fractions must do something sensible for any argument type

that is a subtype of Addable, even for types created after Fraction.

e Assume that the programming language provides a type that implements the real num-
bers and is a subtype of Addable. The result of adding a fraction to a real number
is a real number; in general, for any TCAddable, the result of adding a T to a fraction
might be a T, so Fraction’s plus must have type Addable—Addable, not the more precise

Addable—Fraction

e Two types can have a common supertype, and yet mixed mode computations between them

may not make sense.

The last point requires an extended example. As an example, consider a program that also uses a
Name type that is a subtype of Ordered, but that has a 1t routine that compares names in “phone

book” order instead of lexicographical order.

type Name = (... 1t: Ordered — Boolean ...)

s: String
n: Name = ...
min s n

min n s

Both calls are legal: Name and String are both subtypes of Ordered, so s and n are legal arguments
given the subtype-based type-checking rule. However, the calls could have different results: “St.
John” comes before “Smith” in phone books. Since subtyping weakens the property of type

CHAPTER 2. POLYMORPHISM MECHANISMS 26

matching, the programmer has no way to specify that the two types are actually incomparable.
This disagreement is arguably minor where min is concerned, but a sorting routine given a mixture
of Strings and Names might fail to terminate if this sort of ambiguity caused it to repeatedly swap

a Name value and a String value with each other.

A type defines operations that every subtype must provide, and hence represents a notion that
contains all of those subtypes. The name of the field provides a statically checkable (but weak)
indication of the semantics of the operation: a routine field named “plus” probably implements
addition. Record values implement the notion, and the record’s routine fields implement imple-
ment operations associated with that notion. For example, a program that performs geometric
calculations might use several types representing regions of the Cartesian plane, each of which
provides a contains operation that decides if the region contains a given point. The notion of

“region” can be represented as a type.

type Point = (x:Real X y:Real)

type Region = (contains: Point — Boolean)

in_both: Point — Region — Region — Boolean
= A