
The C

A

Scheduler
PhD Comprehensive II Research Proposal

Thierry Delisle

September 1, 2020



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

1 Introduction

2 C

A

and Concurrency

3 Scheduling in Practice

4 Project: Proposal & Details

5 Conclusion

0 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

C
A

and Concurrency

1 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

C

A
2 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Concurrency in C

A

User Level Threading

◮ M:N threading.

◮ User Level Context Switching causes kernel-threads to
run a different user-thread.

Threads organized in clusters:

◮ Clusters have their own kernel threads.

◮ Threads in a cluster are on run on the kernel threads of
that cluster.

3 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Concurrency in C

A

Processors

Blocked Tasks

Ready Tasks

Other Cluster(s)User Cluster

Manager
Discrete-event

preemption

generator/coroutine task clusterprocessormonitor

4 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Scheduling goal for C

A

The C

A

scheduler should be viable for any workload.

This implies:

1. Producing a scheduler with sufficient fairness guarantees.

2. Handling kernel-threads running out of work.

3. Handling blocking I/O operations.

5 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Scheduling in Practice

6 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

In the Wild

Schedulers found in production application generally fall into
two categories:

◮ Feedback Scheduling

◮ Priority Scheduling (explicit or not)

7 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Feedback Scheduling

Most operating systems based their scheduling on feedback
loops.

The scheduler runs a thread and adjusts some metric to
choose when to run it, e.g., least CPU time first.

Relies on the following assumptions:

1. Threads live long enough for useful feedback information
to be to gathered.

2. Threads belong to multiple users so fairness across
threads is insufficient.

8 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Priority Scheduling

Runs all ready threads in group A before any ready
threads in group B.

Explicit priorities:

◮ Threads given a priority at creation, e.g., Thread A has
priority 1, Thread B has priority 6.

Implicit priorities:

◮ Certain threads are preferred, based on various metrics,
e.g., last run, last run on this CPU.

9 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Priority Scheduling: Work-Stealing

Work-Stealing is a very popular strategy.

Algorithm

1. Each processor has a list of ready threads.

2. Each processor runs threads from its ready queue first.

3. If a processor’s ready queue is empty, attempt to run
threads from some other processor’s ready queue.

Work-Stealing has implicit priorities: For a given processor,
threads on it’s queue have higher priority.
Processors begin busy for long periods can mean starvation.

10 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Project: Proposal & Details

11 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Central Ready-Queue

C

A

will have a single ready-queue per cluster.

The ready-queue will be sharded internally to reduce
contention.

No strong coupling between internal queues and processors.

Constrasts with work-stealing which has a queue per
processor.

12 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Central Ready-Queue

Threads
Ready

TS

Array of
Queues

TS

TS

13 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Central Ready-Queue Challenges

Semi-“Empty” ready-queues
means success rate of randomly
guessing goes down.

Array of
Queues

Threads
Ready

Possible solutions:

◮ Data structure tracking the work, can be dense or sparse,
global or sharded.

◮ Add bias towards certain sub-queues.

14 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Dynamic Resizing

Processors can be added at anytime on a cluster.

The array of queues needs to be adjusted in consequence.

Solution: Global Reader-Writer lock

◮ Acquire for reading for normal scheduling operations.

◮ Acquire for right when resizing the array and
creating/deleting internal queues.

15 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Idle Sleep

Processors which cannot find threads to run should sleep,
using pthread cond wait, sigwaitinfo, etc.

Scheduling a thread may need to wake sleeping processors.

◮ Threads can be scheduled from processors terminating or
running outside the cluster. In this case, all processors on
the cluster could be sleeping.

If some processors are sleeping, waking more may be wasteful.
A heuristic for this case is outside the scope of this project.

16 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O

◮ I/O Operations should block user-threads rather than
kernel-threads.

◮ This requires 3 components:
1. an OS abstraction layer over the asynchronous interface,

2. an event-engine to (de)multiplex the operations,

3. and a synchronous interface for users to use.

17 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: OS Abstraction

select

“select() allows a program to monitor multiple file
descriptors, waiting until one or more of the file
descriptors become “ready” for some class of I/O
operation.”

— Linux Programmer’s Manual

+ moderate overhead per syscall

- Relies on syscalls returning EWOULDBLOCK.

18 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: OS Abstraction

epoll

More recent system call with a similar purpose.

+ Smaller overhead per syscall.

+ Shown to work well for sockets.

- Still relies on syscalls returning EWOULDBLOCK.

- Does not support linux pipes and TTYs.

19 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: OS Abstraction

Kernel Threads

Use a pool of kernel-threads, to which blocking calls are
delegated.

◮ Technique used by many existing systems, e.g., Go, libuv

+ Definitely works for all syscalls.

− Can require many kernel threads.

20 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: OS Abstraction

io uring

A very recent framework for asynchronous operations
available in Linux 5.1 and later. Uses two ring buffers to
submit operations and poll completions.

+ Handles many syscalls.

+ Does not rely on syscalls returning EWOULDBLOCK.

− Requires synchronization on submission.

− System call itself is serialized in the kernel.

21 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: Event Engine

An event engine must be built to fit the chosen OS
Abstraction.

The engine must park user-threads until operation is
completed.

Depending on the chosen abstraction the engine may need to
serialize operation submission.

Throughput and latency are important metrics.

22 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Asynchronous I/O: The interface

The Asynchronous I/O needs an interface.

Several options to take into consideration:

◮ Adding to existing call interface, e.g., read and
cfaread.

◮ Replacing existing call interface.

◮ True asynchronous interface, e.g., callbacks, futures.

23 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Conclusion

24 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Summary

Runtime system and scheduling are still open topics.

This work offers a novel runtime and scheduling package.

Existing work only offers fragments that users must assemble
themselves when possible.

25 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Timeline

May

Oct

2020

2020
Creation of the performance benchmark.

Nov

Mar

2020

2021
Completion of the implementation.

Mar

Apr

2021

2021
Final performance experiments.

May

Aug

2021

2021
Thesis writing and defense.

26 / 27



The C

A

Scheduler

Thierry Delisle

Introduction

C

A

and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

Timeline

Questions?

27 / 27


	Introduction
	C180A and Concurrency
	Scheduling in Practice
	Project: Proposal & Details
	Conclusion

