// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // list -- lets a user-defined stuct form intrusive linked lists // // Author : Michael Brooks // Created On : Wed Apr 22 18:00:00 2020 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Feb 2 11:32:26 2023 // Update Count : 2 // #pragma once #include forall( Decorator &, T & ) struct tytagref { inline T &; }; forall( tOuter &, tMid &, tInner & ) trait embedded { tytagref( tMid, tInner ) ?`inner( tOuter & ); }; // embedded is reflexive, with no info (void) as the type tag forall (T &) static inline tytagref(void, T) ?`inner ( T & this ) { tytagref( void, T ) ret = {this}; return ret; } // // P9_EMBEDDED: Use on every case of plan-9 inheritance, to make "implements embedded" be a closure of plan-9 inheritance. // // struct foo { // int a, b, c; // inline (bar); // }; // P9_EMBEDDED( foo, bar ) // // usual version, for structs that are top-level declarations #define P9_EMBEDDED( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) P9_EMBEDDED_BDY_( immedBase ) // special version, for structs that are declared in functions #define P9_EMBEDDED_INFUNC( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, ) P9_EMBEDDED_BDY_( immedBase ) // forward declarations of both the above; generally not needed // may help you control where the P9_EMBEEDED cruft goes, in case "right after the stuct" isn't where you want it #define P9_EMBEDDED_FWD( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) ; #define P9_EMBEDDED_FWD_INFUNC( derived, immedBase ) auto P9_EMBEDDED_DECL_( derived, immedBase, ) ; // private helpers #define P9_EMBEDDED_DECL_( derived, immedBase, STORAGE ) \ forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \ STORAGE inline tytagref(immedBase, Tbase) ?`inner( derived & this ) #define P9_EMBEDDED_BDY_( immedBase ) { \ immedBase & ib = this; \ Tbase & b = ib`inner; \ tytagref(immedBase, Tbase) result = { b }; \ return result; \ } #define EMBEDDED_VIA( OUTER, MID, INNER ) \ (struct { tytagref(MID, INNER) ( * ?`inner ) ( OUTER & ); }){ ?`inner } #define DLINK_VIA( TE, TLINK ) \ EMBEDDED_VIA( TE, TLINK, dlink(TE) ) // The origin is the position encountered at the start of iteration, // signifying, "need to advance to the first element," and at the end // of iteration, signifying, "no more elements." Normal comsumption of // an iterator runs ?`moveNext as the first step, and uses the return // of ?`moveNext as a guard, before dereferencing the iterator. So // normal consumption of an iterator does not dereference an iterator // in origin position. The value of a pointer (underlying a refence) // that is exposed publicly as an iteraor, and also a pointer stored // internally in a link field, is tagged, to indicate "is the origin" // (internally, is the list-head sentinel node), or untagged, to indicate // "is a regular node." Intent is to help a user who dereferences an // iterator in origin position (which would be an API-use error on their // part), by failing fast. #if defined( __x86_64 ) // Preferred case: tag in the most-significant bit. Dereference // has been shown to segfault consistently. Maintenance should // list more architectures as "ok" here, to let them use the // preferred case, when valid. #define ORIGIN_TAG_BITNO ( 8 * sizeof( size_t ) - 1 ) #else // Fallback case: tag in the least-significant bit. Dereference // will often give an alignment error, but may not, e.g. if // accessing a char-typed member. 32-bit x86 uses the most- // significant bit for real room on the heap. #define ORIGIN_TAG_BITNO 0 #endif #define ORIGIN_TAG_MASK (((size_t)1) << ORIGIN_TAG_BITNO) #define ORIGIN_TAG_SET(p) ((p) | ORIGIN_TAG_MASK) #define ORIGIN_TAG_CLEAR(p) ((p) & ~ORIGIN_TAG_MASK) #define ORIGIN_TAG_QUERY(p) ((p) & ORIGIN_TAG_MASK) forall( tE & ) { struct dlink{ tE *next; tE *prev; }; static inline void ?{}( dlink(tE) & this ) { this.next = 0p; this.prev = 0p; } forall( tLinks & = dlink(tE) ) struct dlist { inline dlink(tE); }; forall( tLinks & | embedded( tE, tLinks, dlink(tE) ) ) { static inline tE * $get_list_origin_addr( dlist(tE, tLinks) & lst ) { dlink(tE) & link_from_null = ( * (tE *) 0p )`inner; ptrdiff_t link_offset = (ptrdiff_t) & link_from_null; size_t origin_addr = ((size_t) & lst) - link_offset; size_t preResult = ORIGIN_TAG_SET( origin_addr ); return (tE *)preResult; } static inline void ?{}( dlist(tE, tLinks) & this ) { tE * listOrigin = $get_list_origin_addr( this ); ( ( dlink(tE) & ) this ){ listOrigin, listOrigin } ; } } } forall( tE &, tLinks & | embedded( tE, tLinks, dlink(tE) ) ) { static inline void insert_after(tE & list_pos, tE &to_insert) { verify (&list_pos != 0p); verify (&to_insert != 0p); dlink(tE) & linkToInsert = to_insert`inner; verify(linkToInsert.prev == 0p); verify(linkToInsert.next == 0p); tE & list_pos_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & list_pos ); dlink(tE) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & after_raw = * list_pos_links.next; tE & after_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & after_raw ); linkToInsert.prev = & list_pos; linkToInsert.next = & after_raw; dlink(tE) & afterLinks = after_elem`inner; afterLinks.prev = &to_insert; list_pos_links.next = &to_insert; asm( "" : : : "memory" ); } static inline void insert_before(tE & list_pos, tE &to_insert) { verify (&list_pos != 0p); verify (&to_insert != 0p); dlink(tE) & linkToInsert = to_insert`inner; verify(linkToInsert.next == 0p); verify(linkToInsert.prev == 0p); tE & list_pos_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & list_pos ); dlink(tE) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & before_raw = * (list_pos_links).prev; tE & before_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & before_raw ); linkToInsert.next = & list_pos; linkToInsert.prev = & before_raw; dlink(tE) & beforeLinks = before_elem`inner; beforeLinks.next = &to_insert; (list_pos_links).prev = &to_insert; asm( "" : : : "memory" ); } static inline tE & remove(tE & list_pos) { verify (&list_pos != 0p); verify( ! ORIGIN_TAG_QUERY((size_t) & list_pos) ); dlink(tE) & list_pos_links = list_pos`inner; tE & before_raw = * list_pos_links.prev; tE & before_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & before_raw ); dlink(tE) & before_links = before_elem`inner; tE & after_raw = * list_pos_links.next; tE & after_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t) & after_raw ); dlink(tE) & after_links = after_elem`inner; before_links.next = &after_raw; after_links.prev = &before_raw; asm( "" : : : "memory" ); list_pos_links.prev = 0p; list_pos_links.next = 0p; asm( "" : : : "memory" ); return list_pos; } static inline tE & ?`first( dlist(tE, tLinks) &lst ) { tE * firstPtr = lst.next; if (ORIGIN_TAG_QUERY((size_t)firstPtr)) firstPtr = 0p; return *firstPtr; } static inline tE & ?`last ( dlist(tE, tLinks) &lst ) { tE * lastPtr = lst.prev; if (ORIGIN_TAG_QUERY((size_t)lastPtr)) lastPtr = 0p; return *lastPtr; } static inline bool ?`isEmpty( dlist(tE, tLinks) & lst ) { tE * firstPtr = lst.next; if (ORIGIN_TAG_QUERY((size_t)firstPtr)) firstPtr = 0p; return firstPtr == 0p; } static inline bool ?`isListed( tE & e ) { verify (&e != 0p); dlink(tE) & e_links = e`inner; return (e_links.prev != 0p) || (e_links.next != 0p); } static inline tE & ?`elems( dlist(tE, tLinks) & lst ) { tE * origin = $get_list_origin_addr( lst ); return *origin; } static inline bool ?`moveNext( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = * (tE*) ORIGIN_TAG_CLEAR( (size_t) & ref_inner ); &ref_inner = oldReferent`inner.next; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t) & ref_inner ); } static inline bool ?`movePrev( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = * (tE*) ORIGIN_TAG_CLEAR( (size_t) & ref_inner ); &ref_inner = oldReferent`inner.prev; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t) & ref_inner ); } static inline bool ?`hasNext( tE & e ) { return e`moveNext; } static inline bool ?`hasPrev( tE & e ) { return e`movePrev; } static inline tE & ?`next( tE & e ) { if( e`moveNext ) return e; return * 0p; } static inline tE & ?`prev( tE & e ) { if( e`movePrev ) return e; return * 0p; } static inline void insert_first( dlist(tE, tLinks) &lst, tE & e ) { insert_after(lst`elems, e); } static inline void insert_last( dlist(tE, tLinks) &lst, tE & e ) { insert_before(lst`elems, e); } static inline tE & try_pop_front( dlist(tE, tLinks) &lst ) { tE & first_inlist = lst`first; tE & first_item = first_inlist; if (&first_item) remove(first_inlist); return first_item; } static inline tE & try_pop_back( dlist(tE, tLinks) &lst ) { tE & last_inlist = lst`last; tE & last_item = last_inlist; if (&last_item) remove(last_inlist); return last_item; } #if !defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__)) static bool $validate_fwd( dlist(tE, tLinks) & this ) { if ( ! & this`first ) return ( (& this`last) == 0p); tE & lagElem = *0p; while ( tE & it = this`elems; it`moveNext ) { if (& lagElem == 0p && &it != & this`first ) return false; & lagElem = & it; } if (& lagElem != & this`last) return false; // TODO: verify that it is back at this`elems; return true; } static bool $validate_rev( dlist(tE, tLinks) & this ) { if ( ! & this`last ) return ( (& this`first) == 0p); tE & lagElem = *0p; while ( tE & it = this`elems; it`movePrev ) { if (& lagElem == 0p && &it != & this`last ) return false; & lagElem = & it; } if (& lagElem != & this`first) return false; // TODO: verify that it is back at this`elems; return true; } static inline bool validate( dlist(tE, tLinks) & this ) { return $validate_fwd(this) && $validate_rev(this); } #endif }