#pragma once //#include forall( __CFA_tysys_id_only_X & ) struct tag {}; #define ttag(T) ((tag(T)){}) #define ztag(n) ttag(n) #ifdef __CFA_DEBUG__ #define subcheck( arr, sub, lb, ub ) \ if ( (sub) < (lb) || (sub) >= (ub) ) \ abort( "subscript %ld exceeds dimension range [%d,%zd) for array %p.\n", \ (sub), (lb), (ub), (arr) ) #else #define subcheck( arr, sub, lb, ub ) do {} while (0) #endif // // The `array` macro is the public interface. // It computes the type of a dense (trivially strided) array. // All user-declared objects are dense arrays. // // The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding. // This type is meant for internal use. // CFA programmers should not instantiate it directly, nor access its field. // CFA programmers should call ?[?] on it. // Yet user-given `array(stuff)` expands to `arpk(stuff')`. // The comments here explain the resulting internals. // // Just as a plain-C "multidimesional" array is really array-of-array-of-..., // so does arpk generally show up as arpk-of-arpk-of... // // In the example of `array(float, 3, 4, 5) a;`, // `typeof(a)` is an `arpk` instantiation. // These comments explain _its_ arguments, i.e. those of the topmost `arpk` level. // // [N] : the number of elements in `a`; 3 in the example // S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S); // same as Timmed when striding is trivial, same as Timmed in the example // Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed"; // array(float, 4, 5) in the example // Tbase : (T-base) the deepest element type that is not arpk; float in the example // forall( [N], S & | sized(S), Timmed &, Tbase & ) { // // Single-dim array struct (with explicit packing and atom) // struct arpk { S strides[N]; }; // About the choice of integral types offered as subscript overloads: // Intent is to cover these use cases: // a[0] // i : zero_t // a[1] // i : one_t // a[2] // i : int // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t // float foo( size_t i ) { return a[i]; } // i : size_t // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) ) // for( i; 5 ) { total += a[i]; } // i : int // // It gets complicated by: // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode // but not in 32-bit mode. // - Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it // should give them type size_t. // // gcc -m32 cfa -m32 given bug gcc -m64 (and cfa) // ptrdiff_t int int long int // size_t unsigned int unsigned int unsigned long int // typeof( sizeof(42) ) unsigned int unsigned long int unsigned long int // int int int int // // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int} // // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t) // because assertion satisfaction requires types to match exacly. Both higher-dimensional // subscripting and operations on slices use asserted subscript operators. The test case // array-container/array-sbscr-cases covers the combinations. Mike beleives that commenting out // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit. // Mike is open to being shown a smaller set of overloads that still passes the test. static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, zero_t ) { //assert( 0 < N ); subcheck( a, 0L, 0, N ); return (Timmed &)a.strides[0]; } static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, one_t ) { //assert( 1 < N ); subcheck( a, 1L, 0, N ); return (Timmed &)a.strides[1]; } static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, int i ) { //assert( i < N ); subcheck( a, (long int)i, 0, N ); return (Timmed &)a.strides[i]; } static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, int i ) { //assert( i < N ); subcheck( a, (long int)i, 0, N ); return (Timmed &)a.strides[i]; } static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) { //assert( i < N ); subcheck( a, (long int)i, 0, N ); return (Timmed &)a.strides[i]; } static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) { //assert( i < N ); subcheck( a, (unsigned long int)i, 0, N ); return (Timmed &)a.strides[i]; } static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) { //assert( i < N ); subcheck( a, i, 0, N ); return (Timmed &)a.strides[i]; } static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, long int i ) { //assert( i < N ); subcheck( a, i, 0, N ); return (Timmed &)a.strides[i]; } static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) { //assert( i < N ); subcheck( a, i, 0, N ); return (Timmed &)a.strides[i]; } static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) { //assert( i < N ); subcheck( a, i, 0, N ); return (Timmed &)a.strides[i]; } static inline size_t ?`len( arpk( N, S, Timmed, Tbase ) & a ) { return N; } static inline void __taglen( tag(arpk( N, S, Timmed, Tbase )), tag(N) ) {} } // RAII pattern has workarounds for // - Trac 226: Simplest handling would be, require immediate element to be otype, let autogen // raii happen. Performance on even a couple dimensions is unacceptable because of exponential // thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the // other two. This solution offers ?{}() that needs only ?{}(), and similar for ^?{}. // skip initializing elements // array(float, 5) x = { delay_init }; enum () delay_init_t { delay_init }; forall( [N], S & | sized(S), Timmed &, Tbase & ) static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this, delay_init_t ) { void ?{}( S (&)[N] ) {} ?{}(this.strides); } // call default ctor on elements // array(float, 5) x; forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } ) static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this ) { ?{}( this, delay_init ); for (i; N) ?{}( (Timmed &)this.strides[i] ); } forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } ) static inline void ^?{}( arpk( N, S, Timmed, Tbase ) & this ) { void ^?{}( S (&)[N] ) {} ^?{}(this.strides); for (i; N ) { ^?{}( (Timmed &)this.strides[N-i-1] ); } } // // Sugar for declaring array structure instances // forall( Te * ) static inline Te mkar_( tag(Te) ) {} forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } ) static inline arpk( N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {} // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros // Make a FOREACH macro #define FE_0(WHAT) #define FE_1(WHAT, X) WHAT(X) #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__) #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__) #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__) #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__) //... repeat as needed #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME #define FOR_EACH(action,...) \ GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__) #define COMMA_ttag(X) , ttag(X) #define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) ) #define COMMA_ztag(X) , ztag(X) #define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) ) // // Sugar for multidimensional indexing // // Core -[[-,-,-]] operator #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT // Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__) forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { return this[ab][bc]; } #else // Workaround form. Listing all possibilities up to 4 dims. forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } ) static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) { return this[ab][bc]; } forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } ) static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) { return this[[ab0,ab1]][bc]; } forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } ) static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) { return this[[ab0,ab1,ab2]][bc]; } #endif // Available for users to work around Trac #265 // If `a[...0...]` isn't working, try `a[...ix0...]` instead. #define ix0 ((ptrdiff_t)0) // // Rotation // // Base forall( [Nq], Sq & | sized(Sq), Tbase & ) static inline tag(arpk( Nq, Sq, Tbase, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(Tbase ) ) { tag(arpk( Nq, Sq, Tbase, Tbase )) ret; return ret; } // Rec forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } ) static inline tag(arpk( N, S, recr, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(arpk( N, S, recq, Tbase )) ) { tag(arpk( N, S, recr, Tbase )) ret; return ret; } // Wrapper extern struct all_t {} all; forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } ) static inline result & ?[?]( arpk( N, S, Te, Tbase ) & this, all_t ) { return (result&) this; } // // Trait of array or slice // // desired: // forall(A &, Tv &, [N]) // trait ar { // Tv& ?[?]( A&, zero_t ); // Tv& ?[?]( A&, one_t ); // Tv& ?[?]( A&, int ); // ... // size_t ?`len( A& ); // void __taglen( tag(C), tag(N) ); // }; // working around N's not being accepted as arguments to traits #define ar( A, Tv, N ) { \ Tv& ?[?]( A&, zero_t ); \ Tv& ?[?]( A&, one_t ); \ Tv& ?[?]( A&, int ); \ Tv& ?[?]( A&, unsigned int ); \ Tv& ?[?]( A&, long int ); \ Tv& ?[?]( A&, unsigned long int ); \ size_t ?`len( A& ); \ void __taglen( tag(A), tag(N) ); \ }