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Abstract

Many statically-typed programming languages provide anabstract data type

construct, such as the package in Ada, the cluster in CLU, and the module

in Modula2. However, in most of these languages, instances of abstract data

types are not first-class values. Thus they cannot be assigned to a variable,

passed as a function parameter, or returned as a function result.

The higher-order functional language ML has a strong and static type

system with parametric polymorphism. In addition, ML provides type recon-

struction and consequently does not require type declarations for identifiers.

Although the ML module system supports abstract data types, their instanc-

es cannot be used as first-class values for type-theoretic reasons.

In this dissertation, we describe a family of extensions of ML. While re-

taining ML’s static type discipline, type reconstruction, and most of its syn-

tax, we add significant expressive power to the language by incorporating

first-class abstract types as an extension of ML’s free algebraic datatypes. In

particular, we are now able to express

• multiple implementations of a given abstract type,

• heterogeneous aggregates of different implementations of the same ab-
stract type, and

• dynamic dispatching of operations with respect to the implementation
type.

Following Mitchell and Plotkin, we formalize abstract types in terms of ex-

istentially quantified types. We prove that our type system is semantically

sound with respect to a standard denotational semantics.

We then present an extension of Haskell, a non-strict functional language

that uses type classes to capture systematic overloading. This language re-

sults from incorporating existentially quantified types into Haskell and

gives us first-class abstract types with type classes as their interfaces. We

can now express heterogeneous structures over type classes. The language

is statically typed and offers comparable flexibility to object-oriented lan-
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guages. Its semantics is defined through a type-preserving translation to a

modified version of our ML extension.

We have implemented a prototype of an interpreter for our language, in-

cluding the type reconstruction algorithm, in Standard ML.
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1 Introduction

Many statically-typed programming languages provide anabstract data type

construct, such as the package in Ada, the cluster in CLU, and the module

in Modula2. In these languages, an abstract data type consists of two parts,

interface and implementation. The implementation consists of one or more

representation types and someoperations on these types; the interface spec-

ifies thenames and types of the operations accessible to the user of the ab-

stract data type. However, in most of these languages, instances of abstract

data types are not first-class values in the sense that they cannot be assigned

to a variable, passed to a function as a parameter or returned by a function

as a result. Besides, these languages require that types of identifiers be de-

clared explicitly.

1.1 Objectives

This dissertation seeks to answer the following question:

Is it feasible to design a high-level programming language that satis-

fies the following criteria:

1. Strong and static typing: If a program is type-correct, no type errors oc-

cur at runtime.

2. Type reconstruction: Programs need not contain any type declarations

for identifiers; rather, the typings are implicit in the program and can
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be reconstructed at compile time.

3. Higher-order functional programming: Functions are first-class val-

ues; they may be passed as parameters or returned as results of a func-

tion, and an expression may evaluate to a function.

4. Parametric polymorphism: An expression can have different types de-

pending on the context in which it is used; the set of allowable contexts

is determined by the uniquemost general type of the expression.

5. Extensible abstract types with multiple implementations: The specifi-

cation of an abstract type is separate from its (one or more) implemen-

tations; code written in terms of the specification of an abstract type

applies to any of its implementations; more implementations may be

added later in the program.

6. First-class abstract types: Instances of abstract types are also first-

class values; they can be combined to heterogeneous aggregates of dif-

ferent implementations of the same abstract type.

From a language design point of view, criterion 1 is important for pro-

gramming safety, criteria 2, 3, 4, and 6 are desirable for conciseness and

flexibility of programming, and criterion 5 is crucial for writing reusable li-

braries and extensible systems.

1.2 Approach

The functional language ML [MTH90] already satisfies criteria 1 through 4

fully, and criteria 5 and 6 in a limited, mutually exclusive way. For this rea-

son and for the extensive previous work on the type theory of ML and related

languages, we choose ML as a starting point for our own work.

In this dissertation, we describe a family of extensions of ML. While re-

taining ML’s static type discipline and most of its syntax, we add significant

expressive power to the language by incorporating first-class abstract types

as an extension of ML’s free algebraic datatypes1. The extensions described
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are independent of the evaluation strategy of the underlying language; they

apply equally to strict and non-strict languages. In particular, we are now

able to express

• multiple implementations of a given abstract type,

• heterogeneous aggregates of different implementations of the same ab-

stract type, and

• dynamic dispatching of operations with respect to the implementation

type.

Note that a limited form of heterogenicity may already be achieved in

ML by building aggregates over a free algebraic datatype. However, this ap-

proach is not satisfactory because all implementations, corresponding to the

alternatives of the datatype, have to be fixed when the datatype is defined.

Consequently, such a datatype is not extensible and hence useless for the

purpose of, for example, writing a library function that we expect to work

for any future implementation of an abstract type.

ML also features several constructs that provide some form of data ab-

straction. The limitations of these constructs are further discussed in

Chapter 2.

1.3 Dissertation Outline

The chapters in this dissertation are organized as follows:

• Chapter 2. Preliminaries. In this chapter, we review the preliminary

notions and concepts used in the course of the dissertation. First, we

give an overview of the functional languages ML and Haskell and dis-

cuss the shortcomings of data abstraction in ML. Then, we describe the

untyped and several typedλ-calculi and existentially quantified types

as a formal basis for our type-theoretic considerations. Further, we dis-

cuss standard and order-sorted unification algorithms, which are used

1ML’s version of a variant record in Pascal or Ada.
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in type reconstruction algorithms. Finally, we give a review of domains

and ideals, which we use as a semantic model for the languages we dis-

cuss.

• Chapter 3. An Extension of ML with First-Class Abstract Types.

This chapter presents a semantic extension of ML, where the compo-

nent types of a datatype may be existentially quantified. We show how

datatypes over existential types add significant flexibility to the lan-

guage without even changing ML syntax. We then describe a determin-

istic Damas-Milner type inference system [DM82] [CDDK86] for our

language, which leads to a syntactically sound and complete type re-

construction algorithm. Furthermore, the type system is shown to be

semantically sound with respect to a standard denotational semantics.

• Chapter 4. An Extension of ML with a Dotless Dot Notation.In this

chapter, we describe a further extension of our language. The use of ex-

istential types in connection with an elimination construct (open  or

abstype ) is impractical in certain programming situations; this is dis-

cussed in [Mac86]. A formal treatment of the dot notation, an alterna-

tive used in actual programming languages, is found in [CL90]. This

notation assumes the same representation type each time a value of ex-

istential type is accessed, provided that each access is via the same

identifier. We describe an extension of ML with an analogous notation.

A type reconstruction algorithm is given, and semantic soundness is

shown by translating into the language from Chapter 3.

• Chapter 5. An Extension of Haskell with First-Class Abstract

Types.This chapter introduces an extension of the functional language

Haskell [HPJW+92] with existential types. Existential types combine

well with the systematic overloading polymorphism provided by

Haskell type classes [WB89]; this point is first discussed in [LO91].

Briefly, we extend Haskell’sdata  declaration in a similar way as the
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ML datatype declaration above. In Haskell, it is possible to specify

what type class a (universally quantified) type variable belongs to. In

our extension, we can do the same for existentially quantified type

variables. This lets us use type classes as signatures of abstract data

types; we can then construct heterogeneous aggregates over a given

type class.

• Chapter 6. Related Work, Future Work, and Conclusions.This

chapter concludes with a comparison with related work. Most previous

work on existential types does not consider type reconstruction; other

work that includes type reconstruction seems to be semantically un-

sound. We apparently are the first to permit polymorphic instantiation

of variables of existential type in the body of the elimination construct.

In our system, such variables arelet -bound and therefore polymor-

phic, whereas other work treats them monomorphically. We give an

outlook of future work, which includes further extensions with mutable

state and a practical implementation.

The figure below illustrates the relationship between ML, Haskell, the

languages introduced in this dissertation, and other possible extensions.
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Mini-ML

Haskell

Mini-ML+ExTypes

Mini-ML+Dot Haskell+ExTypes

Haskell+Dot
MiniML+Dot

Haskell+Dot

Standard ML

existential types

dot notation

type classes

mutable state
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2 Preliminaries

In this chapter, we review the preliminary notions and concepts used in the

course of the dissertation. First, we give an overview of the functional lan-

guages ML and Haskell and discuss in detail the shortcomings of data ab-

straction in ML. Then, we describe the untyped and several typedλ-calculi

and existentially quantified types as a formal basis for our type-theoretic

work below. Further, we discuss standard and order-sorted unification algo-

rithms, which are used in type reconstruction algorithms for implicitly typed

languages. Finally, we give a brief review of domains and ideals, which we

use as a semantic model for the languages we discuss.

2.1 The Languages ML and Haskell

This section gives an overview of the functional languages ML and Haskell

and discusses the shortcomings of the data abstraction constructs provided

by ML. We assume some general background in programming languages;

prior exposure to a statically typed functional language is helpful.

2.1.1 ML

We present a few programming examples that illustrate the relevant core of

ML [MTH90] and its type system. For a full introduction, see [Har90]. The

syntax of core expressions is defined recursively as constants, identifiers,

and three constructs:
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Constants ::=0 | 1 |

Identifiers ::= x  | y  |

Abstractions ::= fn =>

Applications ::=

Bindings ::= let val in

Expressions ::=  |  |  |  |

We also assume that a conditional constructif  and a fixed-point operator

fix  are predefined.

To bind an identifier, we can just write

val x =

which corresponds to an implicitlet  binding whose body encompasses the

rest of the program. For functions, we can write

fun f x =

instead of

val rec f = fn x =>

If the function is not recursive, that is,f  is not called in , the keywordrec

may be omitted. The simplest polymorphic function is the identity function,

given by

fn x => x

which simply returns its argument. Its semantics is clearly independent of

the type of its argument. The following is an example of a higher-order func-

tion definition:

fun compose f g = fn x => f(g(x))

c …

x …

f x e

a e e'

b x e= e'

e c x f a b

e

e

e

e
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For the expressionf(g(x))  to be well-typed, the following assumptions

about the types off , g, andx  must hold for some types’a , ’b , and’c 1.

x : ’a

f : ’b -> ’c

g : ’a -> ’b

Under these assumptions,compose  has the type

compose : (’b -> ’c) -> (’a -> ’b) -> (’a -> c)

where->  is the function type constructor. Since this assumption holds for

any types’a , ’b , and’c , we can think of this type as universally quantified

type scheme over the type variables, written as

We can now define a function that composes another function with itself:

fun twice f = compose f f

The type inferred fortwice  is

twice : (’a -> ’a) -> (’a -> ’a)

and we can applytwice  as follows:

fun succ x = x + 1

(twice succ) 3

evaluating to5. It is important to note that in the definition oftwice , both

occurrences of the argumentf  are required to have the same type. Conse-

quently, ’a  = ’b  = ’c  in this instance ofcompose .

The parameters of a function abstraction, henceforth called -bound

identifiers, behave differently fromlet -bound identifiers:

• All occurrences of a -bound identifier have to have the same type.

1ML uses quoted letters to represent the Greek letters often used in type expres-
sions.

α β γ∀∀∀ . β γ→( ) α β→( ) α γ→( )→ →

λ

λ
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• Each occurrence of alet-bound identifier may have a different type,

which has to be an instance of themost generalor principal type in-

ferred for that identifier.

Furthermore, ML has a built-in type constructor for (homogeneous) lists,

which is parameterized by the element type. Predefined constants and func-

tions on lists include:

nil : ’a list

:: : ’a * ’a list -> ’a list

hd : ’a list -> ’a

tl : ’a list -> ’a list

null: ’a list -> bool

Lists are written in the form

[ , , ]

For instance,

(compose hd hd) [[1,2],[3,4,5]]

is type-correct and evaluates to1, while

(twice hd) [[1,2],[3,4,5]]

is not type-correct, since the type ofhd  is not of the form’a -> ’a .

Lastly, ML offers user-defined free algebraic datatypes. A datatype dec-

laration of the form

datatype  =  of  |  |  of

declares a type (or a type constructor, if arguments are present) , where

’s are value constructor functions of types . Value construc-

tors can also lack the argument, in which case they are constants. The pre-

definedlist  type can actually be written as a datatype:

datatype  list = nil | cons of ’a * ’a list

e1 … en

arg[ ] T K1 τ1 … Kn τn

T

Ki τi arg T( )→

α
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Values whose type is such a datatype can be constructed by applying a value

constructor to an argument of appropriate type. They can be deconstructed

by means of apattern-matchinglet  expression of the (simplified) form

let val  =  in

For example,

val cons(x,xs) = [1,2,3]

would decompose the list on the right-hand side, bindingx  to 1 andxs  to

[2,3] .

2.1.2 Shortcomings of Abstract Type Constructs in ML

ML already provides three distinct constructs that can be used to describe

abstract data types:

• The abstype  mechanism is used to declare an abstract data type with

a single implementation. It has been partially superseded by the mod-

ule system.

• The ML module system provides signatures, structures, and functors.

Signatures act as interfaces of abstract data types and structures as

their implementations; functors are essentially parametrized struc-

tures. Several structures may share the same signature, and a single

structure may satisfy several signatures. However, structures are not

first-class values in ML for type-theoretic reasons discussed in

[Mac86] [MH88]. This leads to considerable difficulties in a number of

practical programming situations. The following example illustrates

K x e e'
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how an abstract typeSTACK is programmed in the ML module system:

signature ELEM = sig

type elem

val init : elem

end

signature STACK = sig

type elem

type stack

val empty : stack

val push : elem -> stack -> stack

val pop : stack -> stack

val top : stack -> elem

val isempty : stack -> bool

end

functor ListStack(Elem : ELEM) : STACK = struct

type elem = Elem.elem

type stack = elem list

val empty = []

fun push x xs = x :: xs

val pop = tl

val top = hd

val isempty = null

end

functor ArrayStack(Elem : ELEM) : STACK = struct

type elem = Elem.elem

type stack = int ref * elem array

val maxElem = 100

val empty =

(ref 0,Array.array(maxElem,Elem.init))

fun push x (i,s) =

(inc i; Array.update(s,!i,x); (i,s))

fun pop(i,s) = (dec i; (i,s))

fun top(i,s) = Array.sub(s,!i)
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fun isempty(i,s) = !i = 0

end

structure IntElem = struct

type elem = int

val init = 0

end

structure IntListStack = ListStack(IntElem)

structure IntArrayStack = ArrayStack(IntElem)

Note that two different implementations ofSTACK are given. However,

the typesIntListStack.stack  and IntArrayStack.stack  are

different; thus we cannot construct, for example, the following list:

[IntListStack.empty,IntArrayStack.empty]

• Abstract data types can be implemented as a tuple (or record) of clo-

sures; the hidden bindings shared between the closures correspond to

the representation, and the closures themselves correspond to the oper-

ations. The type of the tuple corresponds to the interface. A discussion

of this approach is found in [Ode91]. The following example illustrates

a use of a heterogeneous list ofint Stack ’s.

datatype ’a Stack =

stack of {empty : unit -> ’a Stack,

push : ’a -> ’a Stack,

pop : unit -> ’a Stack,

top : unit -> ’a,

isempty : unit -> bool}

fun makeListStack xs =

stack{empty = fn() => makeListStack [],

push = fn x => makeListStack(x::xs),

pop = fn() => makeListStack(tl xs),

top = fn() => hd xs,

isempty= fn() => null xs}
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fun makeArrayStack xs = ...

fun empty (stack{empty=e,...}) = e()

fun push y (stack{push=pu,...}) = pu y

fun pop (stack{pop=po,...}) = po()

fun top (stack{top=t,...}) = t()

fun isempty(stack{isempty=i,...}) = i()

map (push 8) [makeListStack [2,4,6],

makeArrayStack [3,5,7]]

The shortcoming of this approach is that the internal representation of

an instance of an abstract type is completely encapsulated; consequent-

ly, the extensibility of the abstract type is severely limited. The next

example of an abstract typeMult  supporting asquare  operation il-

lustrates this limitation:

datatype Mult = mult of {square: unit -> Mult}

fun makeMult(i,f) =

mult{square = fn() => makeMult(f(i,i),f)}

fun square(mult{square=s}) = s()

map square

[makeMult(3, op *: int * int -> int),

makeMult(7.5, op *: real * real -> real)]

The problem arises when we want to define an additional operation on

Mult , saycube . In this case, we need to add another field to the record

component type ofMult , and we even need to change the definitions
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of makeMult  andsquare , although the latter was defined outside of

makeMult :

datatype Mult = mult of {square: unit -> Mult,

cube : unit -> Mult}

fun makeMult(i,f) =

mult{square = fn() => makeMult(f(i,i),f),

cube = fn() => makeMult(f(i,f(i,i)),f)}

fun square(mult{square=s,...}) = s()

It is possible to work around this limitation using nested records as de-

scribed in [Ode91].

Another, more serious limitation of the encapsulation imposed by the

closure approach becomes apparent when we model abstract types with

operations involving another argument of the same abstract type. Con-

sider the following attempt at describing an abstract typeTree :

datatype Tree = tree of {eq : Tree -> bool,

right : unit -> Tree,

left : unit -> Tree,

...}

Theeq  function could then be implemented by converting two trees to

a common representation and comparing them. Suppose now that we

want to compare two subtrees of the same tree. There is no obvious way

to take advantage of the knowledge that both subtrees have the same

representation; they still need to be converted before the comparison.

2.1.3 Haskell

The functional programming language Haskell [HPJW+92] has a polymor-

phic type discipline similar to ML’s. In addition, it usestype classes as a sys-

tematic approach to operator overloading. Type classes capture common sets

of operations, for example multiplication, which is common to bothint  and
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real  types. A particular type may be an instance of a type class and has an

operation corresponding to each operation defined in the type class. Further,

type classes may be arranged in a class hierarchy, in the sense that a derived

type class captures all operations of its superclasses and may add new ones.

Type classes were first introduced in the article [WB89], which also gives

additional motivating examples and shows how Haskell programs are trans-

lated to ML programs.

The syntax of the Haskell core consists of essentially the same expres-

sions as the ML core, with the addition of class and instance declarations of

the following form:

class  where

 ::

 ::

instance  where

 =

 =

To motivate the type class approach, consider the overloading of mathe-

matical operators in ML. Although4*4  and4.7*4.7  are valid ML expres-

sions, we cannot define a function such as

fun square x = x * x

in ML, as the overloading of the operator*  cannot be resolved unambigu-

ously. In Haskell, we first declare a classNum to capture the operationsInt

andFloat  have in common:

class Num a where

(-) :: a -> a

(+) :: a -> a -> a

(*) :: a -> a -> a

C a

op1 τ1

…
opn τn

C t

op1 e1

…
opn en
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At this point, we can already type thesquare  function, although we cannot

use it yet, since we do not have any instances ofNum. The typing is

square :: Num a => a -> a

which reads, “for anya that is an instance ofNum, square  has type

a -> a .” We then declare two instances ofNum, assuming the existence of

some predefined functions onInt  andFloat :

instance Num Int where

(-) = intUMinus

(+) = intAdd

(*) = intMult

instance Num Float where

(-) = floatUminus

(+) = floatAdd

(*) = floatMult

When we now writesquare 4.0 , the type reconstructor finds out that4.0

is of typeFloat , which in turn is an instance ofNum. The multiplication

used isfloatMult , as specified in the instance declaration forFloat . Giv-

en a definition of the functionmap, we can write the function

squarelist xs = map square xs

which squares each element in a list. It has type

squarelist :: Num a => [a] -> [a]

where[a]  is the Haskell version of’a list .

Haskell also provides algebraic datatypes, which differ from the ones in

ML only in that the formal arguments of the type constructor can be speci-

fied to be instances of a certain type class.

It should also be mentioned that Haskell is apure, non-strict functional

language, whereas ML is astrict language and provides mutable state in the

form of references.
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2.2 The Lambda Calculus, Polymorphism, and

Existential Quantification

In this section, we describe the untyped, the simply typed, and the first-order

polymorphic λ-calculi, which constitute the type-theoretic basis for func-

tional languages such as ML and Haskell. We also give an introduction to

existentially quantified types, which provide a type-theoretic description of

abstract data types.

2.2.1 The Untypedλ-calculus

The untypedλ-calculus is a formal model of computation. While theλ-cal-

culus is equivalent to Turing machines in computational power, its simple,

functional structure lends itself as a useful model for reasoning about pro-

grams, in particular, functional programs. We give a brief introduction to the

λ-calculus; a comprehensive reference is [Bar84].

λ-terms are defined as follows:

Constants1

Identifiers

Terms ::=  |  |  |

In a λ-abstraction  of the form , where  is someλ-term, the variable

 is said to bebound in  and is called abound variable. Any variable  in

 other than  that is not bound in aλ-abstraction inside  is said to occur

free in  and is called afree variable. We assume that no free variable is

identical to any bound variable within aλ-term.

Theλ-calculus provides severalconversion rules for transforming oneλ-

term into an equivalent one. The conversion rules are defined as follows:

1Constants are not actually part of thepure λ-calculus, but are a useful enrich-

ment.

c

x

e c x λx.e e e'( )

a λx.e e

x a y

e x e

a
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• β-conversion:

This rule models function application. It states that aλ-abstraction

 is applied to a term  by replacing each free occurrence of  in

 by a copy of . In addition, bound variables in  have to be renamed

to avoid name conflict with variables that are free in .  stands

for this new term.

• α-conversion:

This rule states that the bound variable of aλ-abstraction may be re-

named, provided that the renamed variable does not occur free in .

• η-conversion:

This rule can be used to eliminate a redundantλ-abstraction, provided

that the bound variable does not occur free in .

• δ-conversion:

The δ-rules define conversion of built-in constants and functions, for

example,

We view the set ofλ-terms as divided intoα-equivalence classes; this means

that any twoλ-terms that can be transformed into one another viaα-conver-

sion are in the same equivalence class, and any one term is viewed as a rep-

resentant of itsα-equivalence class.

λx.e( ) e' e e' x⁄[ ]⇔

λx.e e' x

e e' e

e' e e' x⁄[ ]

λx.e λy.e y x⁄[ ]⇔ y FV e( )∉

e

λx. e x( ) e⇔ x FV e( )∉

e

times3 4( ) 12⇔
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While conversion rules express that two terms are equivalent,reduction

rules are used to evaluate a term. There are two reduction rules,β-reduction

andδ-reduction; the most important rule,β-reduction, is given by

Semantically, a λ-term is evaluated by repeatedly applying reduction rules

until no more reductions can be applied; the resulting term is said to be in

normal form. A given λ-term may have several subterms to whichβ-reduc-

tion can be applied; such subterms are called reducible terms orredexes. An

evaluation strategy whereβ-reduction is always applied to the leftmost out-

ermost redex first is called is callednormal order evaluation. A strategy

where β-reduction is always applied to the leftmost innermost redex is

calledapplicative order evaluation. In programming languages, normal or-

der evaluation is often implemented by lazy or call-by-name evaluation, and

applicative order evaluation is a special case of eager (call-by-value) eval-

uation. Normal order evaluation isnormalizing, which means that it termi-

nates for every term that has a normal form. Although applicative order

evaluation does not guarantee termination, it is sometimes preferred in prac-

tice for efficiency reasons.

In the λ-calculus, recursion is expressed by the  combinator, which is

defined by the equation . The  combinator can be defined by the

following λ-abstraction:

A recursive function can then be expressed as aλ-term containing , for ex-

ample the factorial,

assuming suitableδ-rules for the built-in functions used.

λx.e( ) e' e e' x⁄[ ]⇒

Y

Yf f Yf( )= Y

Y λh. λx. h xx( )( )( ) λx. h xx( )( )( )( )=

Y

Y λf.λn. if equal n 0( ) 1 times n f minus n1( )( )( )( )( )
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2.2.2 The Simply Typedλ-Calculus

Typed λ-calculi are like the untypedλ-calculus, except that every bound

identifier is given atype. The simply typedλ-calculus describes languages

that have a notion of type. Informally, types are subsets of the set of all val-

ues that share a certain common structure, for example all integers, or all

Booleans. An important difference between typed and untyped calculi is that

typed calculi introduce the notion of (static)type correctness of a term,

which one would like to check before trying to evaluate the term. The un-

typedλ-calculus could be regarded as a typedλ-calculus in which each iden-

tifier or constant has the same type  and all terms are type-correct.

An comprehensive survey of typing in programming languages is [CW85].

As an example, consider the successor function, which we could define

as

Assuming the typing , we would obtain the typing

where  is the function type constructor and  the tuple type constructor

used for multiple function arguments. We could then define

and the term

would be type-correct and result in . On the other hand,

would not be type-correct, since the type of  is  rather than .

general

succ λn : int.n 1+=

+ : int int× int→

succ: int int→

→ ×

twice λf : int int→ .λx : int.f f x( )=

twice succ( ) 4

6

twice 7

7 int int int→
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We would like to formalize the notion of type correctness. For example,

to guarantee that a function application is type-correct, it is enough to know

that the argument term is of the same type as the domain type of the function.

Then the type of the resulting term is the range type of the function. Such a

rule is formally expressed by aninference rule consisting of zero or more

antecedents and oneconclusion. Each antecedent or conclusion is atype

judgment of the form  where  is a well-formed term,  awell-

formed1 type, and  a set of assumptions of the form  stating that the

identifier or constant  has type ;  reads as “entails.” For example, the

rule governing function application is written as

and is read as: “If assumption set  entails type  for expression  and

if  entails type  for expression , then  entails type  for the applica-

tion .

The type system of a typedλ-calculus is described by a system of such in-

ference rules. Type-correct terms are those for which a type judgment can

be derived within the given inference system.

The following inference system describes the simply typedλ-calculus:

(TAUT)

(APP)

(ABS)

1For our purposes, types are well-formed iff they are composed from the basic

types , , etc., by application of the type constructors  and .

A |− e : τ e τ

A x : τ

int bool → ×

x τ |−

A |− e : τ' τ→ A |− e' : τ'
A |− e e'( ) : τ

---------------------------------------------------------------------------

A τ' τ→ e

A τ' e' A τ

e e'( )

A |− x : A x( )

A |− e : τ' τ→ A |− e' : τ'
A |− e e'( ) : τ

---------------------------------------------------------------------------

A τ' x⁄[ ] |− e : τ
A |− λx : τ'.e : τ' τ→
-----------------------------------------------------
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where  stands for the assumption set  extended with the assump-

tion .

One possible proof for the typing

looks as follows1:

When designing a statically typed programming language, we generally

want type correctness to bedecidable. That is, we would like to have an al-

gorithm that decides, given a type judgment, whether there is a proof for this

type judgment. We would also like the type system to be semanticallysound,

meaning that a type-correct program can be evaluated without, for example,

trying to apply an argument to a term that is not a function.

2.2.3 The Typedλ-Calculus with let -Polymorphism

The typedλ-calculus withlet -polymorphism is a formalization of the idea

that there areλ-abstractions that have many different types depending on

their argument terms. It provides a type-theoretic model for the language

ML described in Section 2.1.1. As a motivating example, consider that the

result of the (untyped)λ-abstraction

1The horizontal bars are read in top-down order.

A τ' x⁄[ ] A

x : τ

twice : int int→( ) int int→( )→

int x⁄
int int→ f⁄

|− f : int int→

int x⁄
int int→ f⁄

|− x : int

int x⁄
int int→ f⁄

|− f : int int→

int x⁄
int int→ f⁄

|− f x : int

-----------------------------------------------------------------------

int x⁄
int int→ f⁄

|− f f x( ) : int

--------------------------------------------------------------------------------------------------------------------------------------------------------------

int int→ f⁄[ ] |− λx : int.f f x( ) : int int→
--------------------------------------------------------------------------------------------------------------------------------------------------------------

∅ |− λf : int int→ .λx : int.f f x( )( ) : int int→( ) int int→( )→
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

id λx.x=
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always has the same type as its argument. We can express this by giving

the universally quantified type , where  is atype variable

representing any well-formed type; this typing is read as: “for every type ,

 has type .” While  is not a well-formed type, it makes

sense to think of  as a type parameter, which can be instantiated to the type

of the argument passed to . We therefore call constructs such as

type schemes or polymorphic types, whereas types that are not

universally quantified are calledmonomorphic types. In our typed calculus,

we can think of  as first parameterized by the argument type and then by

the argument itself. This is expressed by aλ-abstraction enclosed by aΛ-

abstraction, which denotes abstraction over a type argument:

and its application to an argument has the form

,

where type arguments to aΛ-abstraction are enclosed in square brackets.

Terms are called polymorphic or monomorphic depending on their type. In

the typedλ-calculus withlet -polymorphism, we do not allow arguments of

λ-abstractions to be polymorphic. Consequently, aΛ-abstraction can only

occur at the outermost level of a term or on the right side of a special binding

construct that expresses the binding of a term to an identifier. This construct

is calledlet -expression and is of the form .

The following inference system describes the typed λ-calculus withlet -

polymorphism, where ’s stand for types and ’s for type schemes.

(TAUT)

(APP)

id

id : α.∀ α α→ α

α

id α α→ α.∀ α α→

α

id

α.∀ α α→

id

id Λα.λx : α.x=

id int[ ] 3

let x e= in e'

τ σ

A |− x : A x( )

A |− e : τ' τ→ A |− e' : τ'
A |− e e'( ) : τ

---------------------------------------------------------------------------
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(ABS)

(LET)

(INST)

(GEN)

Note that the ABS rule requires the expression from which the abstraction

is constructed to be monomorphic, and the APP rule enforces that in an ap-

plication the function and its argument have to be monomorphic.

The following is a sample proof in this system:

The ML core language can be thought of as an implicitly typed version

of the typedλ-calculus withlet -polymorphism; this is discussed in detail

in [MH88]. ML usestype reconstruction to compute the explicit type anno-

tations of an implicitly typed expression. The problem of polymorphic type

reconstruction was first discussed in [Mil78] and further developed in

[DM82] and [Dam85].

A τ' x⁄[ ] |− e : τ
A |− λx : τ'.e : τ' τ→
-----------------------------------------------------

A |− e : σ A σ x⁄[ ] |− e' : τ
A |− let x e= in e' : τ

--------------------------------------------------------------------------------

A |− e : α.∀ σ
A |− e τ[ ] : σ τ α⁄[ ]
---------------------------------------------------

A |− e : σ α FV A( )∉
A |− Λα.e : α.∀ σ

-----------------------------------------------------------------

α x⁄[ ] |− x : α
∅ |− λx : α.x : α α→

∅ |− Λα.λx : α.x : α.∀ α α→
----------------------------------------------------------------------------
----------------------------------------------------------------------------

α.∀ α α→ id⁄[ ] |− id int[ ] : int int→
α.∀ α α→ id⁄[ ] |− 3 : int

α.∀ α α→ id⁄[ ] |− id int[ ] 3 : int
------------------------------------------------------------------------------------------------

∅ |− let id Λα.λx : α.x= in id int[ ] 3 : int
-----------------------------------------------------------------------------------------------------------------------
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2.2.4 Higher-Order Typed λ-Calculi

A considerable amount of research has focused on the second-order typedλ-

calculus and higher-order systems [REFS]. Since all languages presented in

this dissertation are extensions of the typedλ-calculus withlet -polymor-

phism, we do not further discuss higher-order calculi here.

2.2.5 Existential Quantification

Existentially quantified types, or in short, existential types, are a type-theo-

retic formalization of the concept of abstract data types, which are featured

in different forms by various programming languages.

In Ada, abstract types are expressed viaprivate types. Consider as an ex-

ample the following package specification, which describes an stack of in-

tegers:

package STACK_PKG is

type STACK_TYPE is private;

procedure PUSH(in out S: STACK_TYPE;

A : INTEGER);

procedure POP(in out S: STACK_TYPE);

...

private

type STACK_TYPE is ...;

...

end STACK_PKG;

We can then write in our program

use STACK_PKG;

and have access to the entities defined in the package specification without

knowing or wanting to know howSTACK_TYPE is defined in the package

body. Since the program using the package works independently of the im-

plementation of the package, we might wonder what typeSTACK_TYPE

stands for in the program. An informal answer is, “some new type that is dif-

ferent from any other type in the program.”
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Existential quantification is a formalization of the notion of abstract

types; it is described in [CW85] and further explored in [MP88]. By stating

that an expression  has existential type , we mean that for some fixed,

unknown type ,  has type .  can thus be viewed as a pair consist-

ing of a type component  and a value component of type . The com-

ponents are accessed through anelimination construct of the form

In , the type  stands for the hidden representation type of , such that

can be used in  with type . To guarantee static typing, the type of

 must not contain .

Values of existential type are created using the construct

where  may occur free in . The type of this expression is , and at his

point we no longer know that the expression we packed originally had type

.

A different formulation of existential quantification called thedot nota-

tion, closer to actual programming languages, is described in [CL90].

2.3 Type Reconstruction

In this section, we describe the Damas-Milner approach to type reconstruc-

tion in ML [Mil78] [DM82] [Dam85] and its application to type reconstruc-

tion in Haskell [NS91].

2.3.1 Type Reconstruction for ML

Before we present the type inference system and the type reconstruction al-

gorithm for the ML core, we need to define the following terms:

• A substitution is a finite mapping from type variables to types. It is of-

e α.∃ τ

τ̂ e τ τ̂ α⁄[ ] e

τ̂ τ τ̂ α⁄[ ]

open e as t x,〈 〉 in e'

e' t e x

e' τ t α⁄[ ]

e' t

pack α τ̂= e : τ,〈 〉

α τ α.∃ τ

τ τ̂ α⁄[ ]
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ten written in the form  and applied as a postfix op-

erator; it can also be given a name, for example, , and applied as pre-

fix operator. If  is a type scheme, then  is the type

scheme obtained from  by replacing each free occurrence of  in

by , renaming the bound variables of  if necessary. Let  denote

the identity substitution .

• Type  is aprincipal type of expression  under assumption set  if

 and whenever  then there is a substitution  such

that ,

We now give a type inference system that describes the type system of

the implicitly typed first-order polymorphicλ-calculus underlying the ML

core. This type system is deterministic in that there is exactly one rule for

each kind of expression. It was shown in [CDDK86] to be equivalent to the

original nondeterministic system from [DM82].

(TAUT)

(APP)

(ABS)

(LET)

The following auxiliary definitions are needed:

• In the generic instantiation of a type scheme to a type, eachgeneric

τ1 α1⁄ … τn αn⁄, ,[ ]

S

σ β1…βm.∀ τ= Sσ

σ αi σ

τi σ Id

[ ]

τ e A

A |− e : τ A |− e : τ' S

Sτ τ'=

A x( ) τ≥
A |− x : τ
----------------------

A |− e : τ' τ→ A |− e' : τ'
A |− e e'( ) : τ

---------------------------------------------------------------------------

A τ' x⁄[ ] |− e : τ
A |− λx.e : τ' τ→
--------------------------------------------

A |− e : τ A gen A τ,( ) x⁄[ ] |− e' : τ'
A |− let x e= in e' : τ'

--------------------------------------------------------------------------------------------------
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(universally quantified) type variable is replaced by a type.

iff there are types such that

• The generalization of a type  under an assumption set is the type

scheme obtained from  by universally quantifying over those type

variables that are free in  but not in the assumption set .

=

For instance,  but not , and

.

Now we have a type inference system that defines what is a valid typing

judgment in the ML core. However, we are actually interested in an algo-

rithm that tells us whether a given (implicitly typed) core-ML expression is

type correct, and if so, what its principal type is. Given an assumption set

and an expression , it returns , where is  a substitution

and  a type. We want this algorithm to besyntactically soundand complete:

• Syntactic soundness: If , then  is a valid

typing judgment, that is, we can prove it in the inference system.

• Syntactic completeness andprincipal typing: Whenever ,

then  terminates and  is a principal type for  un-

der .

The following algorithm from [DM82] has the desired properties, as proved

in [Dam85].  replaces each occurrence of  in  with a

fresh type variable, and  is defined as in the inference rules.

α1…αn.∀ τ τ'≥

τ' τ τ1 α1⁄ … τn αn⁄, ,[ ]=

τ

τ

τ A

gen A τ,( ) FV τ( ) \ FV A( )( ) .∀ τ

α.∀ α α→ int int→≥ α.∀ α α→ int real→≥

gen β x⁄[ ] α β→,( ) α.∀ α β→=

A

e W A e,( ) S τ,( )= S

τ

W A e,( ) S τ,( )= SA |− e : τ

A |− e : τ

W A e,( ) S τ',( )= τ' τ≥ e

A

inst∀ α1…αn∀ .τ( ) αi τ

gen

W A x,( ) =

Id inst∀ A x( )( ),( )
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The function  computes amost general unifier  for  and ,

which is a the most general substitution such that , if one exists,

otherwise  fails. The idea is that we substitute actual types for the fresh

type variables generated by applications of , and that

when the algorithm  terminates, we have constructed a proof in our infer-

ence system whose structure corresponds to the structure of the expression

itself.

2.3.2 Order-Sorted Unification for Haskell

In Haskell, we have a three-level world consisting of values, types, and type

classes. While types in core-ML are not classified1, Haskell type classes

classify types into partially orderedsorts. This is in contrast to those type

1Actually, in Standard ML types are classified in types with and without an equal-
ity operation defined for them.

W A e e',( ) =

let S τ,( ) = W A e,( )

S' τ',( ) = W SA e',( )

β be a fresh type variable

U = mgu S'τ τ' β→,( )

in US'S Uβ,( )

W A λx.e,( ) =

let β be a fresh type variable

S τ,( ) = W A β x⁄[ ] e,( )

in S Sβ( ) τ→,( )

W A let x = e in e',( ) =

let S τ,( ) = W A e,( )

S' τ',( ) = W SA( ) gen SAτ,( ) x⁄[ ] e',( )

in S'S τ',( )

mguτ1 τ2,( ) U τ1 τ2

Uτ1 Uτ2=

mgu

inst∀ α1…αn∀ .τ( )

W
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systems where types themselves are partially ordered, for example the one

of OBJ [FGJM85].Order-sorted unification [MGS89] can be used to obtain

a type reconstruction algorithm in an order-sorted type system such as

Haskell’s; this is described in [NS91].

An order-sorted signature  consists of three parts, a set ofsort symbols,

a sort hierarchy, and a set ofarity declarations. The sort hierarchy is simply

an partial order on the sorts. Arity declarations are of the form

, where  is a type constructor and  are sorts. The

set oforder-sorted type expressions is the least set satisfying the following

two conditions:

• If  has sort  and  in the sort hierarchy, then  also has sort .

• If the type expressions  have sorts , respectively, and

 is in the set of arity declarations, then the application

 of the type constructor has sort .

Substitutions are defined as in Section 2.3.1, but in addition, they must be

sort-correct: If type variable  has sort , expressed by writing , then

 must also have sort .

The following example of a sort hierarchy shows the Haskell numeric

class hierarchy:

C

χ : γ1 … γn, ,( ) γ χ γ γ1 … γn, , ,

τ γ' γ' γ≤ τ γ

τ1 … τn, , γ1 … γn, ,

χ : γ1 … γn, ,( ) γ

χ τ1 … τn, ,( ) γ

α γ αγ

S α( ) γ

Ω

Eq

Ord Num

Real

Integral RealFrac

Fractional

Floating

RealFloat



32 Chapter 2 Preliminaries

As an example for a set of arity declarations, consider the following decla-

rations for the type constructors  and :

Given a set  of equations over type expressions constructed from , a

unifier of  is a substitution  such that  for all equations

 in . An order-sorted signature is calledunitary if for all such equa-

tion sets  there is a complete set of unifiers containing at most one element.

Since unitary signatures guarantee principal types, we give the following

conditions from [SS85] to guarantee that afinite signature is unitary:

• Regularity: Each type has a least sort.

• Downward completeness: Any two sorts have either no lower bound or

an infimum.

• Injectivity:  and  imply  for all

.

• Subsort reflection:  and  imply

for some .

Haskell imposes context conditions to guarantee that the signatures that

arise in Haskell programs are unitary; this is further discussed in Chapter 5.

pair list

pair : Ω Ω,( ) Ω

pair : Eq Eq,( ) Eq

pair : Ord Ord,( ) Ord

list : Ω( ) Ω

list : Eq( ) Eq

list : Ord( ) Ord

list : Num( ) Num

list : Ω( ) Ω

Γ C

Γ θ θ τ1( ) θ τ2( )=

τ1 τ2= Γ

Γ

χ : γ1 … γn, ,( ) γ χ : γ'1 … γ'n, ,( ) γ γi γ'i=

i 1 … n, ,=

χ : γ'1 … γ'n, ,( ) γ' γ' γ≤ χ : γ1 … γn, ,( ) γ

γ1 γ'1≥ … γn γ'n≥, ,
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2.4 Semantics

It is often convenient to use adenotational semantics to reason about the

evaluation ofλ-expressions. A denotational semantics is given in terms of

an evaluation function that mapssyntactic terms to semantic values in a se-

mantic domain. The evaluation function  interprets an expression

in theenvironment  and returns a value in thedomain . An evaluation en-

vironment is a finite mapping from identifiers to semantic values. A seman-

tic domain is an algebraic structure that allows us to represent (semantic)

values corresponding to the (syntactic) entities in our calculus.

2.4.1 Recursive Domains

The notion of domains goes back to [SS71]. To illustrate this notion, we re-

call that in the untypedλ-calculus we start out with the built-in constants

(integers, Booleans, etc.) and are able to define functions over the constants.

We can further define functions that range over these functions and so on.

This structure is reflected in the definition of the domain  that satisfies the

following isomorphism:

Here  stands for the coalesced sum, so that all types over  share the same

least element . In other words,  is isomorphic to the sum of the Boolean

values , the natural numbers , the continuous functions from  to , and

a value  representing runtime type errors.

Solutions of equations of this kind can be found in the class of continu-

ous functions over complete partial orders. Acomplete partial order (cpo)

consists of a set  and a partial order  on  such that

• there is a least element  in , and

• each increasing sequence  has a least upper bound

(lub) .

E [[ e]] ρ e

ρ V

V

V B N V V→( ) wrong{ } ⊥++ +≅

+ V

⊥ V

B N V V

wrong

D ≤ D

⊥ D

x0 … xn …≤ ≤ ≤

 n 0≥ xn
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A function  is continuous iff it preserves lubs of increasing sequences, that

is,

An element of a cpo is calledω-finite iff whenever it is less than the lub of

an increasing sequence it is less than some element in the sequence. Finally,

a domain is defined as a cpo satisfying the following conditions:

• Consistently complete: Any consistent subset of  has a least upper

bound, where  isconsistent if it has an upper bound in .

• ω-algebraic:  has countably manyω-finite elements, and given any

, the set ofω-finite elements less than  is directed and has  as

its least upper bound.

The ω-finite elements in any subset  of a cpo are denoted by .

Our domain  can be constructed via a limiting process described in

[Smy77].

2.4.2 Weak Ideals

Ideals [MPS86] capture the notion of sets of structurally similar values and

have proven to be a useful model for types. As a detailed treatment of the

ideal model goes beyond the scope of this dissertation, we confine ourselves

to a summary of the properties relevant to our work.

A subset  of a domain  is a(weak) ideal iff it satisfies the following

conditions:

• ,

• for all  and ,  implies , and

• for all increasing sequences ,  for all  implies .

Ideals have the pleasant property that they form a complete lattice with their

greatest lower bounds given by set-theoretic intersection and their least up-

f

f  n 0≥ xn( )  n 0≥ f xn( )=

V

X V⊆ V

V

x V∈ x x

X X°

V

I D

I ∅≠

y I∈ x D∈ x y≤ x I∈

xn〈 〉 xi I∈ i 0≥  xn I∈
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per bounds given by the following formula, stating that finite lubs are given

by set-theoretic union:

The ideals over domain  form acomplete metric space, on which a Ba-

nach fixed-point theorem holds. This allows us to model recursively defined

types as fixed points ofcontractive maps on ideals. The maps on ideals cor-

responding to the type constructors in our type model (see Section 3.6.3) are

contractive and consequently, our recursively defined algebraic data types1

have a well-defined semantics.

1Algebraic data types in our language are a restricted version of ML datatypes.


n

In( ) ° In°( )
n
∪=

V
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3 An Extension of ML with First-
Class Abstract Types

This chapter presents a semantic extension of ML, where the component

types of a datatype may be existentially quantified. We show how datatypes

over existential types add significant flexibility to the language without even

changing ML syntax. We then describe a deterministic Damas-Milner type

inference system [DM82] [CDDK86] for this language, which leads to a

syntactically sound and complete type reconstruction algorithm. Further-

more, the type system is shown to be semantically sound with respect to a

standard denotational semantics.

3.1 Introduction

In ML, datatype declarations are of the form

datatype  =  of  | … |  of

where the ’s are value constructors and the optional prefix argument

is used for formal type parameters, which may appear free in the component

types . The types of the value constructor functions are universally quan-

tified over these type parameters, and no other type variables may appear

free in the ’s.

arg[ ] T K1 τ1 Kn τn

K arg

τi

τi
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An example for an ML datatype declaration is

datatype ’a Mytype = mycons of ’a * (’a -> int)

Without altering the syntax of the datatype declaration, we now give a

meaning to type variables that appear free in the component types, but do

not occur in the type parameter list. We interpret such type variables as ex-

istentially quantified.

For example,

datatype Key = key of ’a * (’a -> int)

describes a datatype with one value constructor whose arguments are pairs

of a value of type’a  and a function from type’a  to int . The question is

what we can say about’a . The answer is, nothing, except that the value is

of the same type’a  as the function domain. To illustrate this further, the

type of the expression

key(3,fn x => 5)

is Key, as is the type of the expression

key([1,2,3],length)

wherelength  is the built-in function on lists. Note that no argument types

appear in the result type of the expression. On the other hand,

key(3,length)

is not type-correct, since the type of3 is different from the domain type of

length .

We recognize thatKey is an abstract type comprised by a value of some

type and an operation on that type yielding anint . It is important to note

that values of typeKey are first-class; they may be created dynamically and

passed around freely as function parameters. The two different values of

type Key in the previous examples may be viewed as two different imple-

mentations of the same abstract type.
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Besides constructing values of datatypes with existential component

types, we can decompose them using thelet  construct. We impose the re-

striction that no type variable that is existentially quantified in alet  expres-

sion appears in the result type of this expression or in the type of a global

identifier. Analogous restrictions hold for the correspondingopen  andab-

stype  constructs described in [CW85] [MP88].

For example, assumingx  is of typeKey, then

let val key(v,f) = x in

f v

end

has a well-defined meaning, namely theint  result of f  applied tov. We

know that this application is type-safe because the pattern matching suc-

ceeds, sincex  was constructed using constructorkey , and at that time it was

enforced thatf  can safely be applied tov. On the other hand,

let val key(v,f) = x in

v

end

is not type-correct, since we do not know the type ofv  statically and, con-

sequently, cannot assign a type to the whole expression.

Our extension to ML allows us to deal with existential types as described

in [CW85] [MP88], with the further improvement that decomposed values

of existential type arelet -bound and may be instantiated polymorphically.

This is illustrated by the following example,

datatype ’a t = k of (’a -> ’b) * (’b -> int)

let val k(f1,f2) = k(fn x => x,fn x => 3) in

(f2(f1 7),f2(f1 true))

end

which results in(3,3) . In most previous work, the value on the right-hand

side of the binding would have to be bound and decomposed twice.
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3.2 Some Motivating Examples

3.2.1 Minimum over a Heterogeneous List

Extending on the previous example, we first show how we construct heter-

ogeneous lists over different implementations of the same abstract type and

define functions that operate uniformly on such heterogeneous lists. A het-

erogeneous list of values of typeKey could be defined as follows:

val hetlist = [key(3,fn x => x),

key([1,2,3,4],length),

key(7,fn x => 0),

key(true,fn x => if x then 1 else 0),

key(12,fn x => 3)]

The type ofhetlist  is Key list ; it is a homogeneous list of elements each

of which could be a different implementation of typeKey. We define the

functionmin , which finds the minimum of a list ofKey ’s with respect to the

integer value obtained by applying the second component (the function) to

the first component (the value).

fun min [x] = x

| min ((key(v1,f1))::xs) =

let val key(v2,f2) = min xs in

if f1 v1 <= f2 v2 then

key(v1,f1)

else

key(v2,f2)

end

Thenmin hetlist  returnskey(7,fn x => 0) , the third element of the

list.

3.2.2 Stacks Parametrized by Element Type

The preceding example involves a datatype with existential types but with-

out polymorphic type parameters. As a practical example involving both ex-
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istential and universal quantification, we show an abstract stack parame-

trized by element type.

datatype ’a Stack =

stack of {value : ’b,

empty : ’b,

push : ’a -> ’b -> ’b

pop : ’b -> ’b

top : ’b -> ’a,

isempty : ’b -> bool}

An on-the-fly implementation of anint Stack  in terms of the built-in type

list  can be given as

stack{value = [1,2,3], empty = [],

push = fn x => fn xs => x :: xs,

pop = tl, top = hd, isempty = null}

An alternative implementation ofStack  could be given, among others,

based on arrays. We provide a constructor for each implementation:

fun makeListStack xs = stack{value = xs, empty = [],

push = fn x => fn xs => x :: xs, pop = tl,

top = hd, isempty = null}

fun makeArrayStack xs = stack{...}

To achieve dynamic dispatching, one can provide stack operations that work

uniformly across implementations. These “outer” wrappers work by opening

the stack, applying the intended “inner” operations, and encapsulating the

stack again, for example:

fun push a (stack{value = v, push = pu, empty = e,

pop = po, top = t, isempty = i}) =

stack{value = pu a v, push = pu,

empty = e, pop = po,

top = t, isempty = i}
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Different implementations could then be combined in a list of stacks, and we

can uniformly apply the wrapperpush  to each element of the list:

map (push 8) [makeListStack [2,4,6],

makeArrayStack [3,5,7]]

3.2.3 Squaring a Heterogeneous List of Numbers

The next example shows that datatypes with existential component types

provide high extensibility. The following type describes an abstract data

type consisting of a number and a multiplication function that can be used

on the number:

datatype Mult = mult of ’a * (’a * ’a -> ’a)

We define a function that squares an abstract number:

fun square(mult(x,f)) = mult(f(x,x),f)

Now we can square each element of a heterogeneous list of numbers in the

following fashion:

map square

[mult(3, op * : int * int -> int),

mult(7.5, op + : real * real -> real)]

New functions using the abstract typeMult  can be added easily without

modifying the previous definitions. This provides high extensibility in com-

parison with the closure approach; see also the example in Section 2.1.2. For

example, we can add a functioncube  and raise each element of a list to its

cube:

fun cube(mult(x,f)) = mult(f(x,f(x,x)),f)

map cube [mult(8, op * : int * int -> int),

mult([1,2,3], op @)]
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3.2.4 Abstract Binary Trees with Equality

This example shows that abstract data types with binary operations can be

modeled conveniently and naturally using existential types. This is in con-

trast to the tree example in Section 2.1.2. We start with the following

datatype declaration:

datatype Tree = tree of {value : ’b,

empty : ’b

eq : ’b * ’b -> bool,

left : ’b -> ’b,

right : ’b -> ’b,

join : ’b * ’b -> ’b}

Assuming thatt  has typeTree , we can now check whether the left and right

subtrees oft  are equal:

let val tree{value=v,left=l,right=r,eq=eq,...} = t

in

eq(l v,r v)

end

As opposed to the closure approach, where we would have to convert both

subtrees to a common representation, we can take advantage of the fact that

two subtrees of a tree already have the same representation.

3.3 Syntax

3.3.1 Language Syntax

Identifiers

Constructors

Expressions ::=  |  |  |  |

 |

 |  |  |

x

K

e x e1 e2,( ) e e' λx.e

let x = e in e'

data α1…αn.∀ χ in e K is K
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In addition to the usual constructs (identifiers, applications,λ-abstractions,

and let  expressions), we introduce desugared versions of the ML con-

structs that deal with datatypes. Adata  declaration defines a new datatype;

values of this type are created by applying a constructor , their tags can be

inspected using anis  expression, and they can be decomposed by a pattern-

matchinglet  expression. Further, we require each identifier bound by a

or  expression to be unique1.

The following example shows a desugared definition of ML’s list type

and the associated length function;  introduces a recursive type as de-

scribed below.

data  in

let length = fix length. xs.

if (is Nil xs)

0

(let Cons ab = xs in

+ (length(snd ab)) 1)

in

length(Cons(3,Cons(7,Nil())))

3.3.2 Type Syntax

Type variables

Skolem functions

Types ::=  |  |  |  |  |

 |

Recursive types ::=  where  for

1Of course, one would use a static, block-structured scoping discipline in practice.

let K x = e in e'

K

λ

let

µ

α.∀ µβ.Nil unit Cons α β×+( )
λ λ

α

κ

τ unit bool α τ1 τ2× τ τ'→

κ τ1 … τn, ,( ) χ

χ µβ.K1η1 … Kmηm+ + Ki Kj≠
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Existential types ::=  |

Type schemes ::=  |

Assumptions ::=  |

Our type syntax includes recursive types  and Skolem type constructors ;

the latter are used to type identifiers bound by a pattern-matchinglet

whose type is existentially quantified. Explicit existential types arise only

as domain types of value constructors. Assumption sets serve two purposes:

they map identifiers to type schemes and constructors to the recursive type

schemes they belong to. Thus, when we write , we mean the  such

that . Further, let  stand for sum type

contexts such as , where  and  for some .

3.4 Type Inference

3.4.1 Instantiation and Generalization of Type Schemes

iff there are types  such that

iff there are types  such that

=

i j≠

η α.η∃ τ

σ α.σ∀ τ

a σ x⁄ α1…αn.∀ χ K⁄

χ κ

A K( ) σ

σ α1…αn.∀ … Kη …+ += Σ Kη[ ]

K1η1 … Kmηm+ + Ki K= ηi η= i

α1…αn.τ∀ τ'≥ τ1 …τn,

τ' τ τ1 α1⁄ … τn αn⁄, ,[ ]=

α1…αn.τ∃ τ'≤ τ1 …τn,

τ' τ τ1 α1⁄ … τn αn⁄, ,[ ]=

gen A τ,( ) FV τ( ) \ FV A( )( ) .τ∀
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 =  where  are new

Skolem type constructors such that

, and

The first three auxiliary functions are standard. The function  replac-

es each existentially quantified variable in a type by a unique type construc-

tor whose actual arguments are those free variables of the type that are not

free in the assumption set; this reflects the “maximal” knowledge we have

about the type represented by an existentially quantified type variable. In

addition to , the set of free type variables in a type scheme or assumption

set, we use , the set of Skolem type constructors that occur in a type

scheme or assumption set.

3.4.2 Inference Rules for Expressions

The first five typing rules are essentially the same as in [CDDK86].

(VAR)

(PAIR)

(APPL)

(ABS)

(LET)

skolem A γ1…γn.τ∃,( ) τ κi α1 …αk,( ) γi⁄[ ] κ1…κn

κ1 … κn, ,{ } FS A( )∩ ∅=

α1 … αk, ,{ } FV γ1…γn.τ∃( ) \ FV A( )=

skolem

FV

FS

A x( ) τ≥
A |− x : τ
----------------------

A |− e1 : τ1 A |− e2 : τ2

A |− e1 e2,( ) : τ1 τ2×
-----------------------------------------------------------------------

A |− e : τ' → τ A |− e' : τ'
A |− e e' : τ

----------------------------------------------------------------------------

A τ' x⁄[ ] |− e : τ
A |− λx.e : τ' τ→
--------------------------------------------

A |− e : τ A gen A τ,( ) x⁄[ ] |− e' : τ'
A |− let x = e in e' : τ'

------------------------------------------------------------------------------------------------------
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The new rules DATA, CONS, TEST, and PAT are used to type datatype dec-

larations, value constructors,is  expressions, and pattern-matchinglet  ex-

pressions, respectively.

(DATA)

The DATA rule elaborates a declaration of a recursive datatype. It checks

that the type scheme is closed and types the expression under the assumption

set extended with assumptions about the constructors.

(CONS)

The CONS rule observes the fact that existential quantification in argument

position means universal quantification over the whole function type; this is

expressed by the second premise.

(TEST)

The TEST rule ensures that  is applied only to arguments whose type

is the same as the result type of constructor .

(PAT)

The last rule, PAT, governs the typing of pattern-matchinglet  expressions.

It requires that the expression  be of the same type as the result type of the

σ α1…αn.∀ µβ.K1η1 … Kmηm+ +=

FV σ( ) ∅= A σ K1⁄ … σ Km⁄, ,[ ] |− e : τ
A |− data σ in e : τ

-----------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥ η µβ.Σ Kη[ ] β⁄[ ] τ≤
A |− K : τ µβ.Σ Kη[ ]→

-----------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥
A |− is K : µβ.Σ Kη[ ]( ) bool→
--------------------------------------------------------------------------------------

is K

K

A |− e : µβ.Σ Kη[ ] FS τ'( ) FS A( )⊆
A gen A skolem Aη µβ.Σ Kη[ ] β⁄[ ],( ),( ) x⁄[ ] |− e' : τ'

A |− let K x = e in e' : τ'
------------------------------------------------------------------------------------------------------------------------------------------

e
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constructor . The body  is typed under the assumption set extended with

an assumption about the bound identifier . By definition of the function

, the new Skolem type constructors do not appear in ; this ensures

that they do not appear in the type of any identifier free in  other than .

It is also guaranteed that the Skolem constructors do not appear in the result

type .

3.4.3 Relation to the ML Type Inference System

We compare our system with Mini-ML’, an extension of Mini-ML with re-

cursive datatypes, but without existential quantification. Mini-ML’ has the

same syntax as our language. The type inference system of Mini-ML’ con-

sists of the rules VAR, PAIR, APPL, ABS, and LET, and the following mod-

ified versions of the remaining rules1:

(DATA’)

(CONS’)

(TEST’)

(PAT’)

1Theoretically, it is sufficient to modify only the DATA rule to preclude that exis-
tential quantifiers arise in the inference system; however, it is more illustrative
to present modified versions of the CONS, TEST, and PAT rules as well.

K e'

x

skolem A

e' x

τ'

σ α1…αn.∀ µβ.K1τ1 … Kmτm+ +=

FV σ( ) ∅= A σ K1⁄ … σ Km⁄, ,[ ] |− e : τ
A |− data σ in e : τ

-----------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kτ[ ]≥
A |− K : τ µβ.Σ Kτ[ ]→
------------------------------------------------------------

A K( ) µβ.Σ Kτ[ ]≥
A |− is K : µβ.Σ Kτ[ ]( ) bool→
-------------------------------------------------------------------------------------

A |− e : µβ.Σ Kτ[ ]
A gen A τ µβ.Σ Kτ[ ] β⁄[ ],( ) x⁄[ ] |− e' : τ'

A |− let K x = e in e' : τ'
---------------------------------------------------------------------------------------------------------
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Theorem 3.1[Conservative extension] For any Mini-ML’ expression ,

 iff .

Proof: By structural induction on .

Corollary 3.2 [Conservative extension] Our type system is a conservative

extension of the Mini-ML type system described in [CDDK86], in the fol-

lowing sense: For any Mini-ML expression ,  iff

.

Proof: Follows immediately from Theorem 3.1.

3.5 Type Reconstruction

The type reconstruction algorithm is a straightforward translation from the

deterministic typing rules, using a standard unification algorithm [Rob65]

[MM82]. We conjecture that its complexity is the same as that of algorithm

.

3.5.1 Auxiliary Functions

In our algorithm, we need to instantiate universally quantified types and

generalize existentially quantified types. Both are handled in the same way.

 =  where  are fresh

type variables

 =  where  are fresh

type variables

The functions  and  are the same as in the inference rules, with

the additional detail that  always creates fresh Skolem type construc-

tors.

e

A |− e : τ A |−Mini-ML' e : τ

e

e A |− e : τ

A |−Mini-ML e : τ

W

inst∀ α1…αn.∀ τ( ) τ β1 α1⁄ … βn αn⁄, ,[ ] β1 … βn, ,

inst∃ α1…αn.∃ τ( ) τ β1 α1⁄ … βn αn⁄, ,[ ] β1 … βn, ,

skolem gen

skolem
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3.5.2 Algorithm

Our type reconstruction function takes an assumption set and an expression,

and it returns a substitution and a type expression. There is one case for each

typing rule.

TC A x,( ) =

Id inst∀ A x( )( ),( )

TC A e1 e2,( ),( ) =

let S1 τ1,( ) = TC A e, 1( )

S2 τ2,( ) = TC S1A e,
2 

 

in S2S1 S2τ1 τ2×,( )

TC A e e',( ) =

let S τ,( ) = TC A e,( )
S' τ',( ) = TC SA e',( )

β be a fresh type variable

U = mgu S'τ τ' β→,( )
in US'S Uβ,( )

TC A λx.e,( ) =

let β be a fresh type variable

S τ,( ) = TC A β x⁄[ ] e,( )
in S Sβ τ→,( )

TC A let x = e in e',( ) =

let S τ,( ) = TC A e,( )
S' τ',( ) = TC SA gen SAτ,( ) x⁄[ ] e',( )

in S'S τ',( )
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3.5.3 Syntactic Soundness and Completeness of Type

Reconstruction

Since any two type schemes that differ only by renaming of bound variables

instantiate to the same set of types, it is convenient to treat them as equiva-

lent. This expressed by the following lemma:

TC A data σ in e,( ) =

let α1…αn.∀ µβ.K1η1 … Kmηm+ + σ= in

if FV σ( ) ∅= then

TC A σ K1⁄ … σ Km⁄, ,[ ] e,( )

TC A K,( ) =

let τ inst∀ A K( )( )=

µβ.… Kη …+ + τ=

in Id inst∃ η τ β⁄[ ]( )( ) τ→,( )

TC A is K,( ) =

let τ inst∀ A K( )( )=

in Id τ bool→,( )

TC A let K x = e in e',( ) =

let S τ,( ) = TC A e,( )

U mguτ inst∀ A K( )( ),( )=

µβ.… Kη …+ + Uτ=

τκ skolem USAη Uτ β⁄[ ],( )=

S' τ',( ) = TC USA gen USAτκ,( ) x⁄[ ] e',( )

in

if FS τ'( ) FS S'USA( )⊆ ∧
FS τκ( ) \ FS η Uτ β⁄[ ]( )( ) FS S'USA( )∩ ∅=

then S'US τ',( )
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Lemma 3.3 [Equivalence under renaming] Let  and

. Then  iff  for any type

.

Proof: Follows immediately from the definition of instantiation.

Lemma 3.4 [Stability of ] If , then .

Proof: By definition,  and  for

some types . Since the ’s may be renamed consistently, we

assume that . Consequently,

, by definition

of .

Lemma 3.5 [Stability of ] .

Proof: Follows from the definition of , assuming that

.

Lemma 3.6 [Stability of ] .

Proof: Similar, using the definition of  and an appropriate renaming.

Lemma 3.7 [Stability of ] If  and  is a substitution, then

 also holds. Moreover, if there is a proof tree for  of

height , then there is also a proof tree for  of height less or

equal to .

Proof: By induction on the height  of the proof tree for . We have

one case for each type inference rule, but include only the nonstandard

cases.

σ1 α1…αn.∀ τ0=

σ2 β1…βn.∀ τ β1 α1⁄ … βn αn⁄, ,[ ]( )= σ1 τ≥ σ2 τ≥

τ

≥ σ τ≥ Sσ Sτ≥

σ α1…αn.∀ τ0= τ τ0 τ1 α1⁄ … τn αn⁄, ,[ ]=

τ1 … τn, , αi

α1 … αn, ,{ } DomS FVRngS( )∪( )∩ ∅=

Sσ α1…αn.∀ Sτ0 Sτ0( ) Sτ1 α1⁄ … Sτn αn⁄, ,[ ]≥ Sτ= =

≥

gen Sgen Aτ,( ) gen SA Sτ,( )=

gen

FV τ( ) \ FV A( )( ) DomS FVRngS( )∪( )∩ ∅=

skolem Sskolem Aη,( ) skolem SA Sη,( )=

skolem

|− A |− e : τ S

SA |− e : Sτ A |− e : τ

n SA |− e : Sτ

n

n A |− e : τ
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The premise is , where

. Since , we have

. By the inductive assumption,

, where

. Finally, we apply

the DATA rule and obtain .

 and

The claim follows from stability of  under substitution.

Assuming that , we have

 and

.

We apply the inductive assumption to the first premise, obtaining

, and to the last premise, obtaining

. Further,

, using

Lemma 3.5 and Lemma 3.6.

Finally, we observe that  implies , and

the claim follows by applying the PAT rule.

■

A |− data α1…αn.∀ µβ.K1η1 … Kmηm+ + in e : τ

A σ K1⁄ … σ Kn⁄, ,[ ] |− e : τ

σ α1…αn.∀ µβ.K1η1 … Kmηm+ += FV σ( ) ∅=

Sσ σ=

S A σ K1⁄ … σ Kn⁄, ,[ ]( ) |− e : Sτ

S A σ K1⁄ … σ Kn⁄, ,[ ]( ) SA( ) σ K1⁄ … σ Kn⁄, ,[ ]=

SA |− data σ in e : Sτ

A |− K : τ µβ.Σ Kη[ ]→

A |− is K : µβ.Σ Kη[ ]( ) bool→

≥

A |− let K x = e in e' : τ'

β DomS FVRngS( )∪∉

S µβ.Σ Kη[ ]( ) µβ.Σ K Sη( )[ ]=

S η µβ.Σ Kη[ ] β⁄[ ]( ) Sη( ) µβ.Σ K Sη( )[ ] β⁄[ ]=

SA |− e : µβ.Σ K Sη( )[ ]

S A gen A skolem Aη µβ.Σ Kη[ ] β⁄[ ],( ),( ) x⁄[ ]( ) |− e' : Sτ'

S A gen A skolem Aη µβ.Σ Kη[ ] β⁄[ ],( ),( ) x⁄[ ]( ) =

SA( ) Sgen A skolem Aη µβ.Σ Kη[ ] β⁄[ ],( ),( ) x⁄[ ] =

SA( ) gen SA skolem SA Sη( ) µβ.Σ K Sη( )[ ] β⁄[ ],( ),( ) x⁄[ ]

FS τ'( ) FS A( )⊆ FS Sτ'( ) FS SA( )⊆



Section 3.5 Type Reconstruction 53

Theorem 3.8[Syntactic soundness] If , then .

Proof: A straightforward application of Lemma 3.7. We show the only

tricky case:

By applying the inductive assumption to the first recursive call to ,

we have . Since  succeeds with , we

know that , whence  is of the form . By

Lemma 3.7, . We now apply the inductive assump-

tion to the second recursive call and get

.

We use Lemma 3.5 and Lemma 3.6 to obtain

,

where . The subsequent  state-

ment ensures that none of the fresh Skolem constructors escape the

scope of the  expression. Hence, the PAT rule applies and our

claim is proved.

■

Definition 3.1 [Principal type]  is a principal type of expression  under

assumption set  if  and whenever  then there is a sub-

stitution  such that .

Theorem 3.9[Syntactic completeness] If , then  suc-

ceeds with  and there is a substitution  such that

 and .

Proof: Analogous to the completeness proof given in [Dam85]. We show

only the new cases:

TC A e,( ) S τ,( )= SA |− e : τ

TC A let K x = e in e',( ) S'U τ',( )=

TC

SA |− e : τ mguτ inst∀ A K( )( ),( ) U

A K( ) Uτ≥ Uτ µβ.Σ Kη[ ]

S'USA |− e : S'Uτ

S' USA gen USA skolem USAη Uτ β⁄[ ],( ),( ) x⁄[ ]( ) |− e' : τ'

S'USA( ) gen S'USA skolem S'USA S' η Uτ β⁄[ ]( ),( ),( ) x⁄[ ] |− e' : τ'

S' η Uτ( ) β⁄[ ]( ) S'η( ) S'Uτ β⁄[ ]= if

let

τ e

A A |− e : τ A |− e : τ'

S Sτ τ'=

ŜA |− e : τ̂ TC A e,( )

TC A e,( ) S τ,( )= R

ŜA RSA= τ̂ Rτ=
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Let . Since , we have .

The other premise is , where .

By the inductive assumption, , where there is a sub-

stitution  such that  and . Hence

succeeds with . Since ,  also holds,

whence  is our desired substitution.

It is clear from the premises that  is of the form ,

where ; further, , since  must

have been declared in a surrounding  expression. Therefore,

, and the instantiations  and  succeed, such

that , where the  and  are fresh type

variables. By definition of  and , there are types  and

 such that .

Finally, by choosing , we have

 and , since

 and

.

This case is analogous to the preceding one.

ŜA |− data α1…αn.∀ µβ.K1η1 … Kmηm+ + in e : τ̂

σ α1…αn.∀ µβ.K1η1 …+= FV σ( ) ∅= Ŝσ σ=

ŜA' |− e : τ̂ A' A σ K1⁄ … σ Kn⁄, ,[ ]=

TC A' e,( ) S τ,( )=

R ŜA' RSA'= τ̂ Rτ= TC A data …,( )

S τ,( ) ŜA' RSA'= ŜA RSA=

R

ŜA |− K : τ̂ µβ.Σ Kη̂[ ]→

ŜA K( ) σ α1…αn.∀ ρ=

ρ µβ.Σ K β1…βk.∃ τ0[ ]= FV σ( ) ∅= σ

data

ŜA K( ) A K( )= inst∀ inst∃

τ τ0 ρ→( ) α'i αi⁄ β'j βj⁄,[ ]= α'i β'i

≥ ≤ τ1 … τn, ,

τ'1 … τ'k, , τ̂ µβ.Σ Kη̂[ ]→ τ0 ρ→( ) τi αi⁄ τ'j βj⁄,[ ]=

R Ŝ τi α'i⁄ τ'j β'j⁄,[ ]+=

Rτ τ̂ µβ.Σ Kη̂[ ]→= RIdA ŜA=

FV τ( ) α'1 … α'n β'1 … β'k, , , , ,{ }⊆

FV A( ) α'1 … α'n β'1 … β'k, , , , ,{ }∩ ∅=

ŜA |− is K : µβ.Σ Kη̂[ ]( ) bool→

ŜA |− let K x = e in e' : τ'ˆ
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Again,  must be of the form , where

. Therefore, , where the  are

new variables. We apply the inductive assumption to the first premise,

, whence  and there is an  such

that  and .

In the first case, , thus . Further,

 succeeds with  and , there-

fore  and . Consequently,

 and .

In the second case, , where . Therefore,

 succeeds with . Since the  occur only in ,

we have  and . Further,

and .

In either case, we can apply Lemma 3.7 to the last premise, obtaining

.

By applying Lemma 3.5 and Lemma 3.6, we get

.

Next, the inductive hypothesis gives us , where

, and an  such that

 and . Then

also holds.

Finally,  implies

. This, together with the definition of  guar-

ŜA K( ) A K( )= σ α1…αn.∀ ρ=

ρ µβ.Σ Kη0[ ]= inst∀ σ( ) ρ α'i αi⁄[ ]= α'i

ŜA |− e : µβ.Σ Kη̂[ ] TC A e,( ) S τ,( )= R

ŜA RSA= Rτ µβ.Σ Kη̂[ ] µβ.Σ K η0 τ̂i αi⁄[ ]( )[ ]= =

τ α= R µβ.Σ K η0 τ̂i αi⁄[ ]( )[ ] α⁄[ ]=

mgu U ρ α'i αi⁄[ ] α⁄[ ]= R τ̂i α'i⁄[ ] U=

RU R= η η0 α'i αi⁄[ ]=

ŜA RSA RUSA= = η̂ µβ.Σ Kη̂[ ] β⁄[ ] R η Uτ β⁄[ ]( )=

τ µβ.Σ K η0 τi αi⁄[ ]( )[ ]= Rτi τ̂i=

mgu U τi α'i⁄[ ]= α'i inst∀ σ( )

Uτ τ= η η0 τi αi⁄[ ]= ŜA RSA RUSA= =

η̂ µβ.Σ Kη̂[ ] β⁄[ ] R η Uτ β⁄[ ]( )=

RUSA( ) gen RUSA skolem, RUSA R η Uτ β⁄[ ]( ),( )( ) x⁄[ ]( ) |− e' : τ'ˆ

R USA( ) gen USA skolem, USA η Uτ β⁄[ ],( )( ) x⁄[ ]( ) |− e' : τ'ˆ

TC A' e',( ) S' τ',( )=

A' USA gen USA skolem, USA η Uτ β⁄[ ],( )( ) x⁄[ ]= R'

RA' R'S'A'= τ'ˆ R'τ'= R'S'USA RUSA RSA Sˆ A= = =

FS τ'ˆ( ) FS R'τ'( )= FS ŜA( ) FS R'S'USA( )=⊆

FS τ'( ) FS S'USA( )⊆ skolem
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antees that the  statement succeeds. Consequently,

succeeds with , and  is the desired substitution.

■

Corollary 3.10 [Principal type] If , then  is a principal

type for  under .

3.6 Semantics

We give a standard denotational semantics. The evaluation function  maps

an expression  to some semantic value , in the context of an eval-

uation environment . An evaluation environment is a partial map-

ping from identifiers to semantic values. Runtime type errors are represent-

ed by the special value . Tagged values are used to capture the seman-

tics of algebraic data types.

We distinguish between the three error situations, runtime type errors

( ), nontermination, and a mismatch when an attempt is made to de-

compose a tagged value whose tag does not match the tag of the destructor.

Both nontermination and mismatch are expressed by .

Our type inference system is sound with respect to the evaluation func-

tion; a well-typed program never evaluates to . The formal proof for

semantic soundness is given below.

It should be noted that we do not commit ourselves to a strict or non-

strict evaluation function. Therefore, our treatment of existential types ap-

plies to languages with both strict and non-strict semantics. In either case,

appropriate conditions would have to be added to the definition of the eval-

uation function for pair expressions, function applications,let  expressions,

and pattern-matchinglet  expressions: the strict evaluation function returns

 whenever a subexpression evaluates to , while the non-strict evaluation

function retains  as the value of that subexpression.

if TC A let …,( )

S'US τ',( ) R'

TC A e,( ) S τ,( )= τ

e A

E

e Exp∈ v

ρ Env∈

wrong

wrong

⊥

wrong

⊥ ⊥

⊥
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3.6.1 Semantic Domain

Unit value

Boolean values

Constructor tags

Semantic domain

In the latter definition of ,  stands for the coalesced sum, so that all types

over  share the same .

3.6.2 Semantics of Expressions

The semantic function for expressions,

,

is defined as follows:

=

=

=

=

 =

U unit{ } ⊥=

B false true,{ } ⊥=

C

V U B V V→( ) V V×( ) C V×( ) wrong{ } ⊥+ + ++ +≅

V +

V ⊥

E : Exp Env V→ →

E [[ x ]] ρ ρ x( )

E [[ e1 e2,( ) ]] ρ E [[ e1]] ρ E [[ e2]] ρ,〈 〉

E [[ e e']] ρ

if E [[ e]] ρ V V→∈ then

E [[ e]] ρ( ) E [[ e']] ρ( )
else wrong

E [[λ x.e]] ρ λv V∈ .E [[ e]] ρ v x⁄[ ]( )

E [[ let x = e in e' ]] ρ

E [[ e']] ρ E [[ e]] ρ x⁄[ ]( )
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 =

=

=

 =

3.6.3 Semantics of Types

Following [MPS86], we identify types withweak ideals over the semantic

domain . A type environment  is a partial mapping from type

variables to ideals and from Skolem type constructors to functions between

ideals. The semantic interpretation of types,

is defined as follows.

=

=

=

=

=

 =

E [[ data σ in e]] ρ

E [[ e]] ρ

E [[ K ]] ρ λv V∈ . K v,〈 〉

E [[ is K ]] ρ λv V∈ .if v K{ } V×∈ then true else false

E [[ let K x = e in e' ]] ρ

E [[ e']] (ρ[if E [[ e]] ρ K{ } V×∈ then

snd E [[ e]] ρ( )
else ⊥ x⁄ ])

V ψ TEnv∈

T : TExp TEnv ℑ V( )→ →

T [[ unit ]] ψ U

T [[ bool]] ψ B

T [[ α ]] ψ ψ α( )

T [[τ 1 τ2× ]] ψ T [[ τ 1]] ψ T [[τ 2]] ψ×

T [[τ τ'→ ]] ψ T [[ τ ]] ψ T [[ τ']] ψ→

T [[ κ τ1 … τn, ,( ) ]] ψ

ψ κ( )( ) T [[ τ 1]] ψ … T [[ τ n]] ψ, ,( )
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 =

=

=

The universal and existential quantifications range over the set

of all ideals that do not contain . Note that the sum in the definition

of recursive types is actually a union, since the constructor tags are assumed

to be distinct. It should also be noted that our interpretation does not handle

ML’s nonregular, mutually recursive datatypes. An adequate model can be

given by extending the semantics described in [MPS86] to handle full ML

datatypes [Aba92]; the machinery for this model is given in [Plo83]. An ad-

equate semantics can also be found in the PER model described in [BM92].

Theorem 3.11The semantic function for types is well-defined.

Proof: As in [MPS86]. We observe that

 is always contractive, since

cartesian product and sum of ideals are contractive; therefore, the fixed

point of such a function exists.

Lemma 3.12Let  be a type environment such that for every ,

. Then for every type scheme , .

Proof: By structural induction on .

Lemma 3.13[Substitution]

.

Proof: Again, by structural induction on .

T [[ µβ. Kiηi∑ ]] ψ µ λI ℑ V( )∈ . Ki{ } T [[ η i]] ψ I β⁄[ ]( )×∑ 
 

T [[ α .σ∀ ]] ψ λI ℑ V( )∈ .T [[ σ ]] ψ I α⁄[ ]( )
I ℜ∈
∩

T [[ α.η∃ ]] ψ 
I ℜ∈

λI ℑ V( )∈ .T [[ η ]] ψ I α⁄[ ]( )

ℜ ℑ V( )⊆

wrong

λI ℑ V( )∈ . Ki{ } T [[ ηi]] ψ I α⁄[ ]( )×∑

ψ α Domψ∈

wrong ψ a( )∉ σ wrong T [[ σ ]] ψ∉

σ

T [[σ σ' α⁄[ ] ]] ψ T [[ σ ]] ψ T [[ σ']] ψ α⁄[ ]( )=

σ
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Definition 3.2 [Semantic type judgment] Let  be an assumption set,  an

expression, and  a type scheme. We define  as meaning that

 and for every , ; further, we

say  iff  implies ; and finally,

 means that for all  and  we have .

Theorem 3.14[Semantic soundness] If  then .

Proof: By induction on the size of the proof tree for . We need to

consider each of the cases given by the type inference rules. Applying

the inductive assumption and the typing judgments from the preceding

steps in the type derivation, we use the semantics of the types of the

partial results of the evaluation. In each of the cases below, choose

and  arbitrarily, such that . We include only the nonstandard

cases. Lemma 3.13 will be used with frequency.

The premise in the type derivation is ,

where . Since by definition,

, we can use the inductive assumption to ob-

tain .

The last premise in the type derivation is , where

. By definition of instantiation of existential types,

A e

σ |=ρ ψ, A

DomA Domρ⊆ x DomA∈ ρ x( ) T [[ A x( ) ]] ψ∈

A |=ρ ψ, e : σ |=ρ ψ, A E [[ e]] ρ T [[ σ ]] ψ∈

A |= e : σ ρ Env∈ ψ TEnv∈ A |=ρ ψ, e : σ

A |− e : τ A |= e : τ

A |− e : τ

ψ

ρ |=ρ ψ, A

A |− data α1…αn.∀ µβ.K1η1 … Kmηm+ + in e : τ

A σ K1⁄ … σ Km⁄, ,[ ] |− e : τ

σ α1…αn.∀ µβ.K1η1 … Kmηm+ +=

|=ρ ψ, A σ K1⁄ … σ Km⁄, ,[ ]

E [[ data α1…αn.∀ χ in e]] ρ E [[ e]] ρ= T [[ τ ]] ψ∈

A |− K : τ µβ.Σ Kη[ ]→

η µβ.Σ Kη[ ] β⁄[ ] τ≤

η γ1…γn.∃ τ̂=
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 for some types .

First, choose an arbitrary  and a finite . Now,

=

⊆

=

= .

Hence, , by

closure of ideals under limits. Consequently,

⊆

=

= .

Hence .

Choose an arbitrary . Clearly,

, whence

.

We follow the proofs in [Dam85] and [MPS86]. The first premise in the

type derivation is , where  and

. Let . Then, for arbi-

τ τ̂ τj γj⁄ µβ.Σ Kη[ ] β⁄,[ ]= τ1 … τn, ,

v T [[ τ ]] ψ∈ a v≤

a ∈ T [[ τ̂ τj γj⁄ µβ.Σ Kη[ ] β⁄,[ ] ]] ψ( ) °

T [[ τ̂ µβ.Σ Kη[ ] β⁄[ ] ]] ψ T [[ τ j]] ψ γj⁄[ ]( )( ) °

T [[ τ̂ µβ.Σ Kη[ ] β⁄[ ] ]] ψ Jj γj⁄[ ]( )( ) °
J1 … Jn, , ℜ∈

∪


J1 … Jn, , ℜ∈

T [[ τ̂ µβ.Σ Kη[ ] β⁄[ ] ]] ψ Jj γj⁄[ ]( )
 
  °

T [[ η µβ.Σ Kη[ ] β⁄[ ] ]] ψ( ) °

v  a a finite anda v≤{ } T [[ η µβ.Σ Kη[ ] β⁄[ ] ]] ψ∈=

K v,〈 〉 ∈ K{ } T [[ η µβ.Σ Kη[ ] β⁄[ ] ]] ψ×

… K{ } T [[ η µβ.Σ Kη[ ] β⁄[ ] ]] ψ× …+ +

… K{ } T [[ η ]] ψ T [[ µβ.Σ Kη[ ] ]] ψ β⁄[ ]( )× …+ +

T [[ µβ.Σ Kη[ ] ]] ψ

E [[ K ]] ρ T [[ τ µβ.Σ Kη[ ]→ ]] ψ∈

A |− is K : µβ.Σ Kη[ ]( ) bool→

v T [[ µβ.Σ Kη[ ] ]] ψ∈

E [[ is K ]] ρ( ) v B∈

E [[ is K ]] ρ T [[ µβ.Σ Kη[ ]( ) bool→ ]] ψ∈

A |− let K x = e in e' : τ'

A |− e : τ τ µβ.Σ Kη[ ]=

η γ1…γn.∃ τ̂= α1 … αk, ,{ } FV τ( ) \ FV A( )=
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trary ,  holds, since none of the ’s

are free in .

Let ; by the inductive assumption,

. Consequently,

=

=

.

First, consider the more interesting case, . Then

Let , , be those variables among  that are free

in .

We now choose a finite  such that , thus

.

I1 … Ik ℜ∈, , |=ρ ψ I i αi⁄ i = 1…k[ ], A αi

A

v E [[ e]] ρ=

v T [[ τ ]] ψ I i αi⁄[ ]( )∈

v ∈ T [[ τ ]] ψ I i αi⁄[ ]( )
I1 … Ik, , ℜ∈

∩

T [[ µβ.Σ Kη[ ] ]] ψ I i αi⁄[ ]( )
I1 … Ik, , ℜ∈

∩

… +

K{ } T [[ η ]] ψ I i αi⁄ T [[ τ ]] ψ I i αi⁄[ ]( ) β⁄,[ ]( )
I1 … Ik, , ℜ∈

∩×

…+

fst v( ) = K

snd v( ) 
J1 … Jn, , ℜ∈I1 … Ik, , ℜ∈

∩∈

T [[ τ̂]] ψ I i αi⁄ Jj γj⁄ T [[ τ ]] ψ I i αi⁄[ ]( ) β⁄, ,[ ]( )

α1 … αh, , h k≤ α1 … αk, ,

τ̂ τ β⁄[ ]

a a snd v( )≤

a T [[ τ̂ τ β⁄[ ] ]] ψ I i αi⁄ Jj γj⁄,[ ]( )( ) °
J1 … Jn, , ℜ∈

∪
I1 … Ih, , ℜ∈

∩∈
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By definition of set union and intersection, there exist functions

,

such that

⊆

=

=

= ,

assuming that the ’s are the ones generated by .

Since by definition of , none of the ’s are free in ,

 holds and we can extend  and , obtaining

.

We now apply the inductive assumption to the last premise,

,

and obtain

,

since . Finally,

=

= ,

by the continuity of . The latter expression is in  by the clo-

sure of ideals under limits.

f1 … fn ℑ V( ) h ℑ V( )→∈, ,

a ∈ T [[ τ̂ τ β⁄[ ] ]] ψ I i αi⁄ fj I1 … Ih, ,( ) γj⁄,[ ]( )( ) °
I1 … Ih, , ℜ∈

∩

T [[ τ̂ τ β⁄[ ] ]] ψ I i αi⁄ fj I1 … Ih, ,( ) γj⁄,[ ]( )
I1 … Ih, , ℜ∈

∩

T [[ τ̂ κj α1 … αh, ,( ) γj⁄ τ β⁄,[ ] ]] ψ I i αi⁄ fj κj⁄,[ ]( )
I1 … Ih, , ℜ∈

∩

T [[ α 1…αh∀ .τ̂ κj α1 … αh, ,( ) γj⁄ τ β⁄,[ ] ]] ψ fj κj⁄[ ]( )

T [[ gen A skolem Aη τ β⁄[ ],( ),( ) ]] ψ fj κj⁄[ ]( )

κj skolem Aη τ β⁄[ ],( )

skolem κj A

|=ρ ψ fj κj⁄[ ], A A ρ

|=ρ a x⁄[ ] ψ fj κj⁄[ ], A gen A skolem Aη τ β⁄[ ],( ),( ) x⁄[ ]

A gen A skolem Aη τ β⁄[ ],( ),( ) x⁄[ ] |− e' : τ'

E [[ e']] ρ a x⁄[ ]( ) T [[ τ']] ψ fj κj⁄[ ]( )∈ T [[ τ']] ψ=

FS τ'( ) FS A( )⊆

E [[ let K x = e in e' ]] ρ

E [[ e']] ρ snd E [[ e]] ρ( ) x⁄[ ]( )

 E [[ e']] ρ a x⁄[ ]( ) a finite anda snd E [[ e]] ρ( )≤{ }

E T [[ τ']] ψ
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In the second case, . For any functions

we have . Again,

since none of the ’s are free in ,  holds and we can

extend  and , obtaining

.

By applying the inductive assumption to the last premise,

,

we obtain

.

This concludes our proof of semantic soundness.

■

Corollary 3.15 [Semantic soundness] Let  be a type environment such

that for every , . If  and , then

.

Proof: We apply Lemma 3.12 to Theorem 3.14.

fst v( ) K≠ f1 … fn, , ℑ V( )
h ℑ V( )→∈

⊥ T [[ gen A skolem Aη τ β⁄[ ],( ),( ) ]] ψ fj κj⁄[ ]( )∈

κj A |=ρ ψ fj κj⁄[ ], A

A ρ

|=ρ ⊥ x⁄[ ] ψ fj κj⁄[ ], A gen A skolem Aη τ β⁄[ ],( ),( ) x⁄[ ]

A gen A skolem Aη τ β⁄[ ],( ),( ) x⁄[ ] |− e' : τ'

E [[ e']] ρ ⊥ x⁄[ ]( ) T [[ τ']] ψ fj κj⁄[ ]( )∈ T [[ τ']] ψ=

ψ

α Domψ∈ wrong ψ a( )∉ A |− e : τ |=ρ ψ, A

E [[ e]] ρ wrong≠
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4 An Extension of ML with a
Dotless Dot Notation

In this chapter, we describe a extension of our language that allows more

flexible use of existential types. Following notations used in actual pro-

gramming languages, this extension assumes the same representation type

each time a value of existential type is accessed, provided that each access

is through the same identifier. We give a type reconstruction algorithm and

show semantic soundness by translating into the language from Chapter 3.

4.1 Introduction

MacQueen [Mac86] observes that the use of existential types in connection

with an elimination construct (open , abstype , or our let ) is impractical

in certain programming situations; often, the scope of the elimination con-

struct has to be made so large that some of the benefits of abstraction are

lost. In particular, the lowest-level entities have to be opened at the outer-

most level; these are the traditional disadvantages of block-structured lan-

guages.

We present an extension of ML that provides the same flexibility as the

dot notation described in [CL90]. In this extension, abstract types are again

modeled by ML datatypes with existentially quantified component types.

Values of abstract type are created by applying a datatype constructor to a
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value, and they are decomposed in a pattern-matchinglet  expression.

However, we allow existentially quantified type variables to escape the

scope of the identifier in whose type they appear, as long as the expression

decomposed is an identifier and the existentially quantified type variables do

not escape the scope of that identifier. Each decomposition of an identifier,

using the same constructor, produces identical existentially quantified type

variables. We call our notation a “dotless” dot notation, since it uses decom-

position by pattern-matching instead of record component selection.

4.2 Some Motivating Examples

We assume the type declaration

datatype Key = key of ’a * (’a -> int)

in the following examples. In the first example,

let val x = key(3,fn x => x + 2) in

(let val key(_,f) = x in f end)

(let val key(v,_) = x in v end)

end

the existential type variable in the type off  is the same as the one in the type

of v, and the function application produces a result of typeint . This follows

from the fact that bothf  and v  are bound by decomposition of the same1

identifier,x . Consequently, they must hold the same value and the whole ex-

pression is type-correct.

1We assume the ML scoping discipline, which useslet  statements as scope
boundaries; alternatively, one could require each bound identifier to be unique.
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In a language with the traditional dot notation, for example Ada, abstract

types can be modeled as packages, and an example corresponding to the pre-

vious one would look as follows:

package KEY_PKG is

type KEY is private;

X : constant KEY;

function F(X : KEY) return INTEGER;

private

type KEY is INTEGER;

X : constant KEY := 3;

end KEY_PKG;

package body KEY_PKG is

function F(X : KEY) return INTEGER is

begin

return X + 2;

end;

end KEY_PKG;

var Z : INTEGER;

...

Z := KEY_PKG.F(KEY_PKG.X);

The components of the abstract typeKEY_PKG are selected using the dot no-

tation.

The following are examples of incorrect programs. For instance,

let val x = key(3,fn x => x + 2) in

let val key(_,f) = x in

f

end

end
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is not type-correct, since the existential type variable in the type off  es-

capes the scope ofx . Neither is the following program,

let val x = key(3,fn x => x + 2)

val y = x

in

(let val key(_,f) = x in f end)

(let val key(v,_) = y in v end)

end

since different identifiers produce different existential type variables, al-

though they hold the same values in this case. As the latter cannot be deter-

mined statically, we must assume that the values have different types. Sim-

ilarly,

val z = (3,fn x => x + 2)

let val key(_,f) = key z in

let val key(v,_) = key z in

f v

end

end

is not type-correct. Since the expressions that are decomposed are not even

identifiers, we cannot assume statically thatf  can be applied tov.

4.3 Syntax

4.3.1 Language Syntax

Syntactically, our underlying formal language is almost unchanged, except

that pattern-matchinglet  expressions only allow an identifier to be decom-

posed, not a general expression. This is not a significant restriction, since

we can always bind the expression in an enclosinglet  before decomposing

it. Again, we assume that each identifier bound by a  or  expression is

unique.

Identifiers

λ let

x
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Constructors

Type constructors

Expressions ::=  |  |  |

 |  |  |  |

 |

 |  |  |

4.3.2 Type Syntax

Type variables

Skolem functions

Types ::=  |  |  |  |  |

 |

Recursive types ::=  where  for

Existential types ::=  |

Type schemes ::=  |

Assumptions ::=  |

Our type syntax is almost unchanged. However, Skolem type constructors

are now uniquely associated with an identifier  by using the symbol , in-

dexed by , the constructor  used in the decomposition, and the index  of

the existentially quantified variable  to be replaced.

K

T

e () true false

x e1 e2,( ) e e' λx.e

let x = e in e'

data α1…αn.∀ χ in e K is K

let K x x'= in e'

α

κ

τ unit bool α τ1 τ2× τ τ'→

κx K i, , τ1 … τn, ,( ) χ

χ µβ.K1η1 … Kmηm+ + Ki Kj≠

i j≠

η α.η∃ τ

σ α.σ∀ τ

a σ x⁄ α1…αn.∀ χ

x κ

x K i

γi
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4.4 Type Inference

4.4.1 Instantiation and Generalization of Type Schemes

iff there are types  such that

iff there are types  such that

=

 =

 where

Instantiation and generalization are unchanged. The modified function

 replaces each existentially quantified variable in a type by a unique

type constructor whose actual arguments are those free variables of the type

that are not free in the assumption set. Since identifiers are unique, we ob-

tain Skolem constructors uniquely associated with an identifier  by using

the symbol , indexed by , the constructor  used in the decomposition,

and the index  of the existentially quantified variable  to be replaced. In

addition to , the set of free type variables in a type scheme or assumption

set, we use , the set of those Skolem type constructors that occur in a

type scheme or assumption set and are associated with identifier .

4.4.2 Inference Rules for Expressions

The first three typing rules are the same as in the original system.

α1…αn.τ∀ τ'≥ τ1 …τn,

τ' τ τ1 α1⁄ … τn αn⁄, ,[ ]=

α1…αn.τ∃ τ'≤ τ1 …τn,

τ' τ τ1 α1⁄ … τn αn⁄, ,[ ]=

gen A τ,( ) FV τ( ) \ FV A( )( ) .τ∀

skolem
.
A x K γ1…γn.τ∃, , ,( )

τ κx K i, , α1 …αk,( ) γi⁄[ ]

α1 … αk, ,{ } FV γ1…γn.τ∃( ) \ FV A( )=

skolem
.

x

κ x K

i γi

FV

FSx

x
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(VAR .)

(PAIR.)

(APPL.)

The ABS. and LET. rules are modified to prevent Skolem constructors asso-

ciated with a bound variable to escape the scope of that variable.

(ABS.)

(LET.)

The rules DATA., CONS., TEST. remain unchanged.

(DATA .)

(CONS.)

A x( ) τ≥

A |−
.
x : τ

----------------------

A |−
.
e1 : τ1 A |−

.
e2 : τ2

A |−
.

e1 e2,( ) : τ1 τ2×
-----------------------------------------------------------------------

A |−
.
e : τ' → τ A |−

.
e' : τ'

A |−
.
e e' : τ

----------------------------------------------------------------------------

A τ' x⁄[ ] |−
.
e : τ FSx A( ) FSx τ( )∪ ∅=

A |−
.
λx.e : τ' τ→

--------------------------------------------------------------------------------------------------------------

A |−
.
e : τ

A gen A τ,( ) x⁄[ ] |−
.
e' : τ' FSx A( ) FSx τ'( )∪ ∅=

A |−
.
let x = e in e' : τ'

-----------------------------------------------------------------------------------------------------------------------------------

σ α1…αn.∀ µβ.K1η1 … Kmηm+ +=

FV σ( ) ∅= A σ K1⁄ … σ Km⁄, ,[ ] |−
.
e : τ

A |−
.
data σ in e : τ

-----------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥ η µβ.Σ Kη[ ] β⁄[ ] τ≤

A |−
.
K : τ µβ.Σ Kη[ ]→

--------------------------------------------------------------------------------------------------------------------
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(TEST.)

(PAT.)

The new PAT. rule does not enforce any restriction on occurrence of Skolem

constructors. It only requires that the variable  be of the same type as the

result type of the constructor . The body  is typed under the assumption

set extended with an assumption about the bound identifier .

4.5 Type Reconstruction

Again, the type reconstruction algorithm is a straightforward translation

from the deterministic typing rules.

4.5.1 Auxiliary Functions

While  and  are as in the preceding chapter, the other auxiliary

functions are the same as in the inference rules.

4.5.2 Algorithm

Our type reconstruction function takes an assumption set and an expression,

and it returns a substitution and a type expression. There is one case for each

typing rule.

A K( ) µβ.Σ Kη[ ]≥

A |−
.
is K : µβ.Σ Kη[ ]( ) bool→

--------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥ A x( ) µβ.Σ Kη[ ]≥

A gen A skolem
.
A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( ),( ) x'⁄ |−

.
e : τ

A |−
.
let K x' = x in e : τ

------------------------------------------------------------------------------------------------------------------------------------------------

x

K e

x'

inst∀ inst∃

TC
.
A x,( ) =

Id inst∀ A x( )( ),( )
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TC
.
A e1 e2,( ),( ) =

let S1 τ1,( ) = TC
.
A e, 1( )

S2 τ2,( ) = TC
.
S1A e,

2
( )

in S2S1 S2τ1 τ2×,( )

TC
.
A e e',( ) =

let S τ,( ) = TC
.
A e,( )

S' τ',( ) = TC
.
SA e',( )

β be a fresh type variable

U = mgu S'τ τ' β→,( )
in US'S Uβ,( )

TC
.
A λx.e,( ) =

let β be a fresh type variable

S τ,( ) = TC
.
A β x⁄[ ] e,( )

in

if FSx SA( ) FSx τ( )∪ ∅= then

S Sβ τ→,( )

TC
.
A let x = e in e',( ) =

let S τ,( ) = TC
.
A e,( )

S' τ',( ) = TC
.
SA gen SAτ,( ) x⁄[ ] e',( )

in

if FSx S'SA( ) FSx τ'( )∪ ∅= then

S'S τ',( )
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TC
.
A data σ in e,( ) =

let α1…αn.∀ µβ.K1η1 … Kmηm+ + σ= in

if FV σ( ) ∅= then

TC
.
A σ K1⁄ … σ Km⁄, ,[ ] e,( )

TC
.
A K,( ) =

let τ inst∀ A K( )( )=

µβ.… Kη …+ + τ=

in Id inst∃ η τ β⁄[ ]( )( ) τ→,( )

TC
.
A is K,( ) =

let τ inst∀ A K( )( )=

in Id τ bool→,( )

TC
.
A let K x' = x in e',( ) =

let τ = inst∀ A x( )( )

U mguτ inst∀ A K( )( ),( )=

µβ.… Kη …+ + Uτ=

τκ skolem
.
UA x K η Uτ β⁄[ ]( ), , ,( )=

S τ',( ) = TC
.
UA gen UA τκ,( ) x'⁄[ ] e',( )

in

SU τ',( )
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4.5.3 Syntactic Soundness and Completeness of Type

Reconstruction

Lemma 4.1 [Stability of ] If  and  is a substitution, then

 also holds. Moreover, if there is a proof tree for  of

height , then there is also a proof tree for  of height less or

equal to .

Theorem 4.2[Syntactic soundness] If , then .

Definition 4.1 [Principal Type]  is a principal type of expression  under

assumption set  if  and whenever  then there is a sub-

stitution  such that .

Theorem 4.3[Syntactic completeness] If , then

 and there is a substitution  such that  and

.

Corollary 4.4 [Principal type] If , then  is a principal

type for  under .

Proof: We modify the proofs given in Chapter 3.

4.6 A Translation Semantics

We retain our original semantic interpretation . Following [CL90], we

prove semantic soundness by giving a type- and semantics-preserving trans-

lation to our original language. The idea is that we can enclose an expression

 with subexpressions of the form  by an outer expres-

|−
.

A |−
.
e : τ S

SA |−
.
e : Sτ A |−

.
e : τ

n SA |−
.
e : Sτ

n

TC
.
A e,( ) S τ,( )= SA |−

.
e : τ

τ e

A A |−
.
e : τ A |−

.
e : τ'

S Sτ τ'=

ŜA |−
.
e : τ̂

TC
.
A e,( ) S τ,( )= R ŜA RSA=

τ̂ Rτ=

TC
.
A e,( ) S τ,( )= τ

e A

E [[ ]]

e let K x' = x in e'
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sion that defines  and replace  by . That is, we re-

place  by

We chose the enclosinglet  expression defining  large enough so that no

existentially quantified type variables arising through the innerlet  expres-

sions escape this outer definition. Since the ABS. and LET. rules guarantee

that no existentially quantified variables emerging from the decomposition

of  escape the scope of , it is safe to enclose the whole body of the  or

let  expression.

However, we must be careful, since the outer decomposition in the trans-

lation might fail, while the inner decomposition in the original expression

might not necessarily have been reached; this is possible if the value held by

 does not have the constructor tag . Therefore, we need to replace  by

an if  expression with branches for each constructor tag in the datatype that

 has. This is reflected in the definition of the auxiliary translation function

 below.

4.6.1 Modified Original Language

Type judgments in a modified version of the original language are of the

form . We modify the  function and the PAT rule of our

original language:

 =  where

Unique Skolem type constructors can be generated by using the symbol ,

indexed by the unique name  of the bound identifier and the index  of the

existentially quantified type variable  to be replaced.

x' let K x' = x in e' e'

e

let K xK = x in e e' xK x'⁄[ ] let K x' = x in e'⁄[ ]

x'

x x λ

x K e

x

A |−° e : τ skolem

skolem° A x γ1…γn.τ∃, ,( ) τ κx i, α1 …αk,( ) γi⁄[ ]

α1 … αk, ,{ } FV γ1…γn.τ∃( ) \ FV A( )=

κ

x i

γi
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(PAT )

Using this modified  function, the PAT  rule can enforce that newly

generated Skolem constructors escape their scope by the condition

, which expresses that no Skolem constructor associ-

ated with  may escape the scope of .

It is easy to see that this language has the same properties as the original

one, in particular, semantic soundness.

4.6.2 Auxiliary Translation Function

The bodies of  and  expressions are translated by the auxiliary func-

tion given below. It moves all pattern-matching  expressions that de-

compose the variable bound by the enclosing  or  expression to the

outermost level possible.

We use aconformity check in form of a nestedif  expression withis  ex-

pressions to determine the constructor tag of the value held by . This re-

quires us to evaluate1 ; consequently, the resulting expression is always

strict in . Therefore, this translation is not semantics-preserving if the orig-

inal expression was non-strict in . We need to distinguish between the

translation of the strict and the non-strict version of our language:

• In the strict language, the expression bound to  is already evaluated

at binding time, and evaluating it again leaves the semantics un-

changed.

• In the non-strict language, the expression bound to  might not be eval-

1It actually suffices to evaluate the argument toweak head normal form, so that
the top-level constructor of the argument can be inspected; see [PJ87] for details.
Nevertheless, the resulting translation is not semantics-preserving.

°

A |−° e : µβ.Σ Kη[ ] FSx A( ) FSx τ'( )∪ ∅=

A gen A skolem° A x η µβ.Σ Kη[ ] β⁄[ ], ,( ),( ) x'⁄[ ] |−° e' : τ'
A |−° let K x = e in e' : τ'

----------------------------------------------------------------------------------------------------------------------------------------------

skolem° °

FSx A( ) FSx τ'( )∪ ∅=

x x

λ let

let

λ let

x

x

x

x

x

x
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uated at all; to be semantics-preserving, the translation must not intro-

duce additional evaluations of .

As described in [PJ87], the only patterns for which a conformity check can

be omitted safely are theirrefutable patterns involving datatypes with a sin-

gle constructor. We therefore restrict thenon-strict version of our language

in the following way:

Existentially quantified type variables may occur only in the compo-

nent types of datatypes with a single constructor.

The auxiliary translation function for the strict version of the language

is defined as follows:

 =

In the non-strict case, there can be only a single constructor with an existen-

tial component type, and the auxiliary translation function reduces to:

x

e x K1η1 … Knηn+ +,

if is K1 x then

let K1 xK1
x= in e

e' xK1
x'⁄ let K1 x' x= in e'⁄

fail let Ki 1≠ x' x= in e'⁄

else if is K2 x then

…
else if is Kn x then

let Kn xKn
x= in e

e' xKn
x'⁄ let Kn x' x= in e'⁄

fail let Ki n≠ x' x= in e'⁄

else

e fail let Ki x' x= in e'⁄[ ]

e x Kη, let K xK x= in e e' xK x'⁄[ ] let K x' x= in e'⁄[ ]=

e x K1τ1 … Knτn+ +, e=
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4.6.3 Inference-guided Translation

We give a translation guided by the type inference rules, along the lines of

[NS91]. Let  be a closed, well-typed term. The translation is defined along

with the type inference rules for each subterm of .

(VAR .)

(PAIR.)

(APPL.)

(ABS.)

(ABS.’)

(LET.)

e0

e0

A x( ) τ≥

A |−
.
x : τ x⇒

----------------------------------

A |−
.
e1 : τ1 ẽ1⇒ A |−

.
e2 : τ2 ẽ2⇒

A |−
.

e1 e2,( ) : τ1 τ2× ẽ1 ẽ2,( )⇒
----------------------------------------------------------------------------------------------------

A |−
.
e : τ' → τ ẽ⇒ A |−

.
e' : τ' e'˜⇒

A |−
.
e e' : τ ẽ e'˜⇒

----------------------------------------------------------------------------------------------------

A τ' x⁄[ ] |−
.
e : τ ẽ⇒ τ' µβ.Σ Kη[ ]≠

A |−
.
λx.e : τ' τ→ λx.ẽ⇒

---------------------------------------------------------------------------------------------------------

A µβ.Σ Kη[ ] x⁄[ ] |−
.
e : τ FSx A( ) FSx τ( )∪ ∅=

A µβ.Σ Kη[ ] x⁄[ ] |−
.

e x Σ Kη[ ], : τ ẽ⇒

A |−
.
λx.e : µβ.Σ Kη[ ]( ) τ→ λx.ẽ⇒

--------------------------------------------------------------------------------------------------------------------------------------

A |−
.
e : τ ẽ⇒ τ µβ.Σ Kη[ ]≠

A gen A τ,( ) x⁄[ ] |−
.
e' : τ' e'˜⇒

A |−
.
let x = e in e' : τ' let x = ẽ in e'˜⇒

--------------------------------------------------------------------------------------------------------------------------
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(LET.’)

(DATA .)

(CONS.)

(TEST.)

(PAT.)

4.6.4 Translation of Type Schemes and Assumption Sets

After applying  to the body of a  or  expression, the only pattern-

matching  expressions left in the body are of the form

. In the following translation, the Skolem constructors

associated with  become associated with . This is reflected by the fol-

lowing translations:

=

A |−
.
e : µβ.Σ Kη[ ] ẽ⇒ FSx A( ) FSx τ'( )∪ ∅=

A gen A µβ.Σ Kη[ ],( ) x⁄[ ] |−
.
e' : τ'

A gen A µβ.Σ Kη[ ],( ) x⁄[ ] |−
.

e' x Σ Kη[ ], : τ' e'˜⇒

A |−
.
let x = e in e' : τ' let x = ẽ in e'˜⇒

----------------------------------------------------------------------------------------------------------------------------------

σ α1…αn.∀ µβ.K1η1 … Kmηm+ +=

FV σ( ) ∅= A σ K1⁄ … σ Km⁄, ,[ ] |−
.
e : τ ẽ⇒

A |−
.
data σ in e : τ data σ in ẽ⇒

-----------------------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥ η µβ.Σ Kη[ ] β⁄[ ] τ≤

A |−
.
K : τ µβ.Σ Kη[ ]→ K⇒

-----------------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥

A |−
.
is K : µβ.Σ Kη[ ]( ) bool→ is K⇒

--------------------------------------------------------------------------------------------------------------

A K( ) µβ.Σ Kη[ ]≥ A x( ) µβ.Σ Kη[ ]≥

A gen A skolem
.
A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( ),( ) x'⁄ |−

.
e :τ

ẽ⇒

A |−
.
let K x' = x in e : τ let K x' = x in ẽ⇒

-----------------------------------------------------------------------------------------------------------------------------------------------

λ let

let

let K xK x= in e

x xK

σ σ κxK i, κx K i, ,⁄
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=

4.6.5 Properties of the Translation

Lemma 4.5Let . If ,

then .

Proof: In the strict case, let  be arbitrary. We are free to extend ,

assuming that  is not free in , hence

.

Then, any subexpression  of  is well-typed and

we have a subproof for , where

. A premise of this judgment is

. Therefore,

, since we may drop the assumption about  after

substituting  for it.

By replacing the proof tree for the  subexpression by this latter one

and by observing that  has any type, we can prove

.

Thus,

A σ x⁄ A x( ) σ=[ ]

A A α1…αk.∀ µβ.K1η1 … Knηn+ + x⁄[ ]= A |−
.
e : τ

A |−
.

e x K1η1 … Knηn+ +, : τ

1 i n≤ ≤ A

xKi
A

A gen A skolem
.
A x Ki ηi, , ,( ),( ) xKi

⁄ |−
.
e : τ

let Ki x' x= in e' e

A' |−
.
let Ki x' x= in e' : τ'

A' xKi
( ) gen A skolem

.
A x Ki ηi, , ,( ),( )=

A' gen A' skolem
.
A' x Ki ηi, , ,( ),( ) xKi

⁄ |−
.
e' : τ'

A' |−
.
e' xKi

x'⁄ : τ' x'

xKi

let

fail

A gen A skolem
+

A x Ki ηi, , ,( ),( ) xKi
⁄ |−

.

e
e' xKi

x'⁄ let Ki x' x= in e'⁄

fail let Kj i≠ x' x= in e'⁄
: τ

A |−
.
let Ki xKi

x= in e
e' xKi

x'⁄ let Ki x' x= in e'⁄

fail let Kj i≠ x' x= in e'⁄
: τ
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Using a suitable typing for the  expressions, we conclude that

.

The claim for the non-strict case follows analogously.

■

Theorem 4.6[Type preservation] If , then .

Proof: By structural induction on . We show the only interesting case, all

others are straightforward.

Since our expression is a subexpression of a well-typed expression,

is bound either in a  or in a  expression. Thus, it must be a sub-

expression of an expression of the form , where

 and

 for some  and . By definition of , the

only subexpressions of  of the form

are the branches of the  expression, each of the form

, where

 and

; therefore  and  in the subproof.

As a premise, we have

;

by the inductive assumption,

,

if

A |−
.

e x K1η1 … Knηn+ +, : τ

A |−
.
e : τ ẽ⇒ A |−° ẽ : τ

e

A |−
.
let K x' = x in e : τ let K x' = x in ẽ⇒

x

λ let

e' x Σ Kη[ ],

A' α1…αk.∀ µβ.Σ Kη[ ] x⁄[ ] |−
.

e' x Σ Kη[ ], : τ'

FSx A'( ) FSx τ'( )∪ ∅= A' τ'

e' x Σ Kη[ ], let K x' = x in e

if

let K xK = x in e

A' α1…αk.∀ µβ.Σ Kη[ ] x⁄[ ] |−
.
let K xK x= in e : τ'

FSx A'( ) FSx τ'( )∪ ∅= τ τ'= A A'=

A gen A skolem
.
A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( ),( ) xK⁄ |−

.
e : τ ẽ⇒

A gen A skolem
.
A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( ),( ) xK⁄ |−° ẽ : τ
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hence

.

Since

=

we have

.

We translate the other two premises and obtain

and . We further observe that

 and , thus

.

Finally, we can apply the PAT  rule and conclude that

.

■

Lemma 4.7  for arbitrary  defined

for .

Proof: By definition of , any subexpression of  is evaluated in an envi-

ronment , whence . We identify two cases:

 for some . Then, in the strict case only,

and in both cases,

A gen A skolem
+

A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( ),( ) xK⁄ |−° ẽ : τ

skolem
.
A x K η µβ.Σ Kη[ ] β⁄[ ], , ,( )

skolem° A xK η µβ.Σ Kη[ ] β⁄[ ], ,( )

A gen A skolem° A xK η µβ.Σ Kη[ ] β⁄[ ], ,( ),( ) xK⁄[ ] |−° ẽ : τ

A K( ) µβ.Σ Kη[ ]≥

A x( ) µβ.Σ Kη[ ]≥

FSx A( ) FSxK
A( )= FSx τ( ) FSxK

τ( )=

FSxK
A( ) FSxK

τ( )∪ ∅=

°

A |−° let K xK = x in ẽ : τ

E [[ e]] ρ E [[ e x K1η1 … Knηn+ +, ]] ρ= ρ

x

E e

ρ' ρ⊇ ρ' x( ) ρ x( )=

ρ x( ) Ki{ } V×∈ i

E [[ let Kj i≠ x' x= in e' ]] ρ' ⊥=

E [[ let Ki x' x= in e' ]] ρ' E [[ e' xKi
x'⁄ ]] ρ' snd ρ x( )( ) xKi

⁄
 
 =
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Consequently, in the strict case,

=

=

= ,

since the  branch for  gets selected.

In the non-strict case for ,

=

=

= ,

and for ,

.

 for any .

Then, in the strict case, , whence

=

= ,

since the last  branch gets selected.

In the non-strict case for ,

E [[ e]] ρ

E [[ e
e' xKi

x'⁄ let Ki x' x= in e'⁄

fail let Kj i≠ x' x= in e'⁄
]] ρ snd ρ x( )( ) xKi

⁄
 
 

E [[ let Ki xKi
x= in e

e' xKi
x'⁄ let Ki x' x= in e'⁄

fail let Kj i≠ x' x= in e'⁄
]] ρ

E [[ e x K1η1 … Knηn+ +, ]] ρ

if i

i 1=

E [[ e]] ρ

E [[ e e' xK x'⁄[ ] let K x' x= in e'⁄[ ] ]] ρ snd ρ x( )( ) xK⁄[ ]( )

E [[ let K xK x= in e e' xK x'⁄[ ] let K x' x= in e'⁄[ ] ]] ρ

E [[ e x Kη, ]] ρ

i 1>

E [[ e]] ρ E [[ e x K1τ1 … Knτn+ +, ]] ρ=

ρ x( ) Ki{ } V×∉ i

E [[ let Ki x' x= in e' ]] ρ' ⊥=

E [[ e]] ρ

E [[ e fail let Ki x' x= in e'⁄[ ] ]] ρ

E [[ e x K1η1 … Knηn+ +, ]] ρ

else

i 1=

E [[ let K x' x= in e' ]] ρ'
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=

= .

Therefore,

=

= .

■

Theorem 4.8[Preservation of semantics] If , then

 for arbitrary .

Proof: By structural induction on .

Corollary 4.9 [Semantic soundness] If  is a closed term,  and

 as defined previously, then .

Proof: Follows immediately from the two theorems, observing that

and , since neither  nor  contain any ’s.

■

E [[ e']] ρ' ⊥ x'⁄[ ]( )

E [[ e' xK x'⁄[ ] ]] ρ' ⊥ xK⁄[ ]( )

E [[ e]] ρ

E [[ e e' xK x'⁄[ ] let K x' x= in e'⁄[ ] ]] ρ ⊥ xK⁄[ ]( )

E [[ e x Kη, ]] ρ

A |−
.
e : τ ẽ⇒

E [[ e]] ρ E [[ ẽ]] ρ= ρ

e

e A |−
.
e : τ

|=ρ ψ, A E [[ e]] ρ T [[ τ ]] ψ∈

τ τ=

A A= τ A κ
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5 An Extension of Haskell with
First-Class Abstract Types

This chapter introduces an extension of the functional language Haskell

with existential types. Existential types combine well with the systematic

overloading polymorphism provided by Haskell type classes. Briefly, we ex-

tend Haskell’sdata  declaration in a similar way as the ML datatype decla-

ration above. In Haskell, it is possible to specify what type class a (univer-

sally quantified) type variable belongs to. In our extension, we can do the

same for existentially quantified type variables. This lets us use type classes

as signatures of abstract data types; we can then construct heterogeneous ag-

gregates over a given type class. A type reconstruction algorithm is given,

and semantic soundness is shown by translating into an extension of the lan-

guage from Chapter 3.

5.1 Introduction

Haskell [HPJW+92] uses type classes as a systematic approach to ad-hoc

polymorphism, otherwise known as overloading. Type classes capture com-

mon sets of operations. A particular type may be an instance of a type class,

and has an operation corresponding to each operation defined in the type

class. Type classes may be arranged hierarchically.
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In [WB89], Wadler and Blott called for a closer exploration of the rela-

tionship between type classes and abstract data types. After an initial explo-

ration described in [LO91], we now present an extension of Haskell with

datatypes whose component types may be existentially quantified.

In Haskell, an algebraic datatype declaration is of the form

data  = | |

It introduces a new type constructor  with value constructors .

The optional context  specifies of which type classes the type variables

 are instances. The constructors are used in two ways: as functions

to construct values, and in patterns to decompose values already construct-

ed. The types of the constructors are universally quantified over the type

variables ; no other type variable may appear free in the component

types .

We describe an extension of Haskell analogous to the extension of ML

described above. Type variables that appear free in the component types are

interpreted as existentially quantified. In addition to the “global” context for

the universally quantified parameters of the type constructor, we introduce

“local” contexts for each value constructor. The local context specifies of

which type classes the existentially quantified type variables in the compo-

nent types are instances. The extended datatype declaration is of the form

data =

|

|

When constructing a value using a constructor with an existentially quanti-

fied component type, the existential type variables instantiate to the actual

types of the corresponding function arguments, and we lose any information

on the actual types. However, we know that these types are instances of the

same type classes as the corresponding existential type variables. This

c ⇒[ ] T a1…an K1 t11…t1k1
… Km tm1…tmkm

T K1 … Km, ,

c

a1 … an, ,

a1 … an, ,

tij

c ⇒[ ] T a1…an c1 ⇒[ ] K1 t11…t1k1

…
cm ⇒[ ] Km tm1…tmkm
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means that we have types whose identity is unknown but which support the

operations specified by their type classes. Therefore we regard type classes

as signatures of abstract types.

5.2 Some Motivating Examples

5.2.1 Minimum over a Heterogeneous List

This example is the extended Haskell version of the example given in Sec-

tion 3.2.1. We first define a type classKey defining the operationwhatkey

needed to obtain an integer value from the value to be compared.

class Key a where

whatkey :: a -> Int

We now define a datatypeKEY with a single constructorkey . The component

type of key  is the type variablea, which is existentially quantified and is

required to be an instance of type classKey.

data KEY = (Key a) => key a

We further define several instances ofKey along with their implementations

of the functionwhatkey .

instance Key Int where whatkey = id

instance Key Float where whatkey = round

instance Key [a] where whatkey = length

instance Key Bool where whatkey =

\x -> if x then 1 else 0

A heterogeneous list of values of typeKEY could be defined as follows:

hetlist = [key 3,key [1,2,3,4],key 7,

key True,key 12]
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The min  function finds the minimum over a list ofKEY’s by decomposing

the elements of the list and comparing their corresponding integer values

obtained by applyingwhatkey .

min [x] = x

min ((key v1):xs) =

case min xs of

key v2 ->

if whatkey v1 <= whatkey v2 then

key v1

else

key v2

Thenmin hetlist  evaluates tokey True , as this is the element for which

whatkey  returns the smallest number.

5.2.2 Abstract Stack with Multiple Implementations

We also give the extended Haskell version of the stack example from Sec-

tion 3.2.2. However, these stacks have a fixed element type, since Haskell

type classes cannot be parameterized. An extension of Haskell with param-

eterized type classes is found in [CHO92]; it could in turn be extended with

existential types, which would allow us to have polymorphic abstract stacks.

An integer stack is described by the following type class:

class Stack a where

empty :: a

push :: Int -> a -> a

pop :: a -> a

top :: a -> Int

isempty :: a -> Bool

To achieve abstraction, we define the corresponding datatype of “encapsu-

lated” stacks:

data STACK = (Stack a) => Stack a
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We define two stack implementations, one based on a list of integers:

instance Stack [Int] where

empty = []

push = (:)

pop = tail

top = head

isempty = null

and one based on an integer array:

maxIndex :: Int

maxIndex = 100

data FixedArray = Fixarr Int (Array Int Int)

instance Stack FixedArray where

empty = Fixarr 0 (listArray(1,maxIndex)[])

push a (Fixarr i s) =

if i >= maxIndex then

error "stack size exceeded"

else

Fixarr(i+1)(s // [(i+1) := a])

pop(Fixarr i s) =

if i <= 0 then

error "stack empty"

else

Fixarr(i-1) s

top(Fixarr i s) =

if i <= 0 then

error "stack empty"

else

s!i

isempty(Fixarr i s) = i <= 0

arrayStack xs = Stack(Fixarr(length xs)

(listArray(1,maxIndex) xs)
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As we saw in Section 3.2.2, it is convenient to define wrapper functions that

apply the functions operating on instances of the type classStack  to an en-

capsulated value of typeSTACK; these “outer” wrappers open the encapsu-

lated stack, apply the corresponding “inner” operations, and close the stack

again. This provides dynamic dispatching of operations across different im-

plementations ofSTACK. The wrapperwpush is defined as follows:

wpush a (Stack s) = Stack(push a s)

We can define the following list, which is a homogeneous list of two differ-

ent implementations ofSTACK:

stackList = [Stack([1,2,3] :: [Int]),

arrayStack([5,6,7] :: [Int])]

Using the wrapperwpush  and the built-in functionmap, we can uniformly

push an integer onto each element of the list:

map (wpush 8) stackList

5.3 Syntax

The formal treatment of our extension of Haskell builds on the article

[NS91] by Nipkow and Snelting, who are the first to give an accurate treat-

ment of type inference in Haskell. Our language is an extension of theirs

with algebraic data types.

5.3.1 Language Syntax

Identifiers

Constructors

Type constructors

Expressions ::=  |  |  |

 |  |  |  |

x

K

t

e () true false

x e1 e2,( ) e e' λx.e
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 |

 |  |

Declarations ::=  |

 |

Programs ::=

5.3.2 Type Syntax

Type variables

Skolem functions

Type constructors

Types ::=  |  |  |  |  |

 |  |

Recursive types ::=  where  for

Existential types ::=  |

Type schemes ::=  |  |

Assumptions ::=  |

Our type syntax includes recursive types  and Skolem type constructors ;

the latter are used to type identifiers bound by a pattern-matchinglet

let x = e in e'

K is K let K x e= in e'

d data t αγ1
…αγn

.∀ χ= in e

class γ γ1 … γn, ,≤ where

x1 : αγ.∀ τ1 … xk : αγ.∀ τk, ,

inst t : γ1 … γn, ,( ) γ where

x1 e1= … xk ek=, ,

p d1…dne

α

κ

t

τ unit bool αγ τ1 τ2× τ τ'→

κ t τ1 … τn, ,( ) χ

χ µβ.K1η1 … Kmηm+ + Ki Kj≠

i j≠

η αγ.η∃ τ

σ αγ.σ∀ η τ→ τ

a σ x⁄ σ K⁄

χ κ
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whose type is existentially quantified. Explicit existential types arise only

as domain types of value constructors. Further, let  stand for sum

type contexts such as , where  and  for

some . Our type syntax also includes explicit type constructors ; this

makes it possible to extend the order-sorted signature with arities for user-

defined type constructors.

5.4 Type Inference

5.4.1 Instantiation and Generalization of Type Schemes

iff there are types  of sorts , re-

spectively, such that

iff there are types  of sorts , re-

spectively, such that

In addition to , the set of free type variables in a type scheme or assump-

tion set, we use , the set of those Skolem type constructors that occur in

a type scheme or assumption set, and , the set of defined type construc-

tors in a type scheme.

5.4.2 Inference Rules for Expressions

The first five typing rules are the same as in the system described in [NS91].

(VAR+)

Σ Kη[ ]

K1η1 … Kmηm+ + Ki K= ηi η=

i t

αγ1
…αγn

.τ∀ ≥Cτ' τ1 …τn, γ1 … γn, ,

τ' τ τ1 αγ1
⁄ … τn αγn

⁄, ,=

αγ1
…αγn

.τ∃ ≥Cτ' τ1 …τn, γ1 … γn, ,

τ' τ τ1 αγ1
⁄ … τn αγn

⁄, ,=

FV

FS

FT

A x( ) ≥C τ

A C,( ) |−+ x : τ
--------------------------------------
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(PAIR+)

(APPL+)

(ABS+)

(LET+)

The new rules CONS+, TEST+, and PAT+ are used to type value construc-

tors, is  expressions, and pattern-matchinglet  expressions, respectively.

(CONS+)

The CONS+ rule observes the fact that existential quantification in argument

position means universal quantification over the whole function type; this is

expressed by the second premise.

(TEST+)

The TEST+ rule ensures that  is applied only to arguments whose type

is the same as the result type of constructor .

A C,( ) |−+ e1 : τ1 A C,( ) |−+ e2 : τ2

A C,( ) |−+ e1 e2,( ) : τ1 τ2×
------------------------------------------------------------------------------------------------------

A C,( ) |−+ e : τ' → τ A C,( ) |−+ e' : τ'

A C,( ) |−+ e e' : τ
-----------------------------------------------------------------------------------------------------------

A τ' x⁄[ ] C,( ) |−+ e : τ

A C,( ) |−+ λx.e : τ' τ→
-----------------------------------------------------------

FV τ( ) \ FV A( ) αγ1
… αγn

, ,{ }=

A C,( ) |−+ e : τ A αγn
.∀ τ x⁄ C, 

  |−+ e' : τ'

A C,( ) |−+ let x = e in e' : τ'
-----------------------------------------------------------------------------------------------------------------------------

A K( ) ≥C η t τn( )→ η ≤C τ

A C,( ) |−+ K : τ t τn( )→
------------------------------------------------------------------------------

A K( ) ≥C η t τn( )→

A C,( ) |−+ is K : t τn( ) bool→
-----------------------------------------------------------------------------

is K

K
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(PAT+)

The last rule, PAT+, governs the typing of pattern-matchinglet  expres-

sions. It requires that the expression  be of the same type as the result type

of the constructor . The body  is typed under the assumption set extended

with an assumption about the bound identifier . The new Skolem type con-

structors must not appear in ; this ensures that they do not appear in the

type of any identifier free in  other than . It is also guaranteed that the

Skolem type constructors do not appear in the result type . The Skolem

type constructors  replace the existentially quantified type vari-

ables of sorts . Thus the body of thelet  expression is typed under

the extended signature containing appropriate arities for . The pat-

tern-matchinglet  expression is monomorphic in the sense that the type of

the bound variable  is not generalized. This restriction is sufficient to guar-

antee a type-preserving translation into a target language (see Section

5.6.5). Thecase  expression in Haskell syntax corresponds to a nestedif

with an is  and a pattern-matchinglet  expression for each case.

5.4.3 Inference Rules for Declarations and Programs

The rules for class and instance declarations, and programs are the same as

in [NS91]. We add the DATA+ rule to elaborate a recursive datatype decla-

ration.

A K( ) ≥C βδk
.∃ τ  t τn( )→ A C,( ) |− e : t τn( )

κ1 … κk, ,{ } FS τ'( ) FS A( )∪( )∩ ∅=

A τ κi βδi
⁄ i 1…k= x⁄

C κi : δi i 1…k=[ ] 
 
 
 

|−+ e' : τ'

A C,( ) |−+ let K x = e in e' : τ'
-------------------------------------------------------------------------------------------------------------------------------

e

K e'

x

A

e' x

τ'

κ1 … κk, ,

δ1 … δk, ,

κ1 … κk, ,

x
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(CLASS+)

(INST+)

(PROG+)

(DATA +)

The DATA+ rule adds assumptions about the value constructors to the as-

sumption set, and extends the signature with an appropriate arity for the new

type constructor. Whereas recursive datatypes were anonymous in the two

preceding chapters, they are now represented by named type constructors.

This is necessary since the order-sorted signature  may contain arity dec-

larations for user-defined type constructors. We avoid using a separate type

FT τ1( ) … FT τk( )∪ ∪ Dom C( )⊆

A C,( ) |−+ class γ γ1 … γn, ,≤ where

x1 : αγ.∀ τ1 … xk : αγ.∀ τk, , :

A αγ.∀ τi xi⁄ i 1…k=[ ] C γ γ1 … γn, ,≤[ ],( )

----------------------------------------------------------------------------------------------------------------

t Dom C( )∈ A xi( ) αγ.∀ τi=

A C,( ) |−+ ei : τi t αγn
( ) αγ⁄ i 1…k=

A C,( ) |−+ inst t : γn 
  γ where x1 e1= … xk ek=, , :

A C t : γn 
  γ, 

 

--------------------------------------------------------------------------------------------------------------------------------------------------

Ai 1– Ci 1–,( ) |−+ di : Ai Ci,( ) i 1…n=

An Cn,( ) |−+ e : τ

A0 C0,( ) |−+ d1…dne : τ
-------------------------------------------------------------------------------------------------------------------

σ αγn
.∀ µβ.K1η1 … Kmηm+ +=

FT σ( ) Dom C( )⊆ t Dom C( )∉

A C,( ) |−+ data t σ= :

A αγn
.∀ ηi t αγn

( ) β⁄ t αγn
( )→ Ki⁄ i 1…m=

C t : γn 
  Ω 

 
 
 

----------------------------------------------------------------------------------------------------------------------------

C
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constructor environment; therefore, in an assumption  about a value

constructor,  now is the type scheme for  when regarded as a function, as

opposed to the type scheme describing the entire recursive datatype  be-

longs to.

5.4.4 Relation to the Haskell Type Inference System

Theorem 5.1[Conservative extension] Let Mini-Haskell’ be an extension

of Mini-Haskell with recursive datatypes and a monomorphic pattern-

matchinglet  expression, but without existential quantification. Then, for

any Mini-Haskell’ program ,  iff .

Proof: By structural induction on .

Corollary 5.2 [Conservative extension] Our type system is a conservative

extension of the Mini-Haskell type system described in [NS91], in the fol-

lowing sense: For any Mini-Haskell program ,  iff

.

Proof: Follows immediately from Theorem 5.1.

5.5 Type Reconstruction

The type reconstruction algorithm is a translation from the deterministic

typing rules, using order-sorted unification [SS85][MGS89] instead of stan-

dard unification.

5.5.1 Unitary Signatures for Principal Types

The article [NS91] describes several conditions necessary to guarantee uni-

tary signatures, which are sufficient to guarantee principal types. First, to

make a signature  regular and downward compete, we perform the follow-

ing two steps to obtain a new signature :

σ K⁄

σ K

K

p A C,( ) |−+ p : τ A C,( ) |−MH' p : τ

p

p A C,( ) |−+ p : τ

A C,( ) |−MH p : τ

C

CR
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• For any two incomparable classes , we introduce a new

class declaration  with an empty  part combin-

ing the operations of  and .

• Then, for each type constructor with instance declarations

introduce another instance declaration of the form

where  is simply the additionally declared class if  and  are in-

comparable, or otherwise the lower one in the class hierarchy.

Note that Haskell uses multiple class assertions for type variables to express

this conjunction of classes.

Since regular signatures alone do not guarantee the existence of principal

types, we impose the following two conditions on , which are also

present in Haskell:

• Injectivity: A type constructor may not be declared as an instance of a

particular class more than once in the same scope

• Subsort reflection: If  are the immediate superclasses of , a

declaration  must be preceded by declara-

tions  such that  is a subclass of  for

al  and .

As discussed in [NS91], a Haskell signature that satisfies these conditions is

unitary.

γ1 γ2, Dom C( )∈

class γ γ1 γ2,≤ where

γ1 γ2

inst t : γ1n 
  γ1 where …

inst t : γ2n 
  γ2 where …

inst t : γ11 γ21∧ … γ1n γ2n∧, ,( ) γ1 γ2∧( )

γ δ∧ γ δ

CR

γ1 … γm, , δ

inst t : δn 
  δ where …

inst t : γn
i

 
 

γi where … δj γj
i

i 1…m= j 1…n=



Section 5.5 Type Reconstruction 99

5.5.2 Auxiliary Functions

In our algorithm, we need to instantiate universally quantified types and

generalize existentially quantified types. Both are handled in the same way.

 where  are

fresh type variables

 where  are

fresh type variables

the most general unifier of  and  under order-

sorted signature

5.5.3 Algorithm

Our type reconstruction function takes an assumption set, an order-sorted

signature, and an expression, and it returns a substitution and a type expres-

sion. There is one case for each typing rule.

inst∀ αγ1
…αγn

.∀ τ( ) τ βγ1
αγ1

⁄ … βγn
αγn

⁄, ,= βγn
… βγn

, ,

inst∃ αγ1
…αγn

.∃ τ( ) τ βγ1
αγ1

⁄ … βγn
αγn

⁄, ,= βγn
… βγn

, ,

osuC τ τ',( ) τ τ'

C

TE A C x, ,( ) =

Id inst∀ A x( )( ),( )

TE A C e1 e2,( ), ,( ) =

let S1 τ1,( ) = TE A C e1, ,( )

S2 τ2,( ) = TE S1A C e2, ,( )

in S2S1 S2τ1 τ2×,( )
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TE A C ee', ,( ) =

let S τ,( ) = TE A C e, ,( )

S' τ',( ) = TE SA C e', ,( )

β be a fresh type variable

U = osuC S'τ τ' β→,( )

in US'S Uβ,( )

TE A C λx.e, ,( ) =

let β be a fresh type variable

S τ,( ) = TE A β x⁄[ ] C e, ,( )

in

S Sβ τ→,( )

TE A C let x = e in e', ,( ) =

let S τ,( ) = TE A C e, ,( )

S' τ',( ) = TE SA gen SAτ,( ) x⁄[ ] C e', ,( )

in

S'S τ',( )

TE A C K, ,( ) =

let η τ→ inst∀ A K( )( )=

in Id inst∃ η( )( ) τ→,( )

TE A C is K, ,( ) =

let η τ→ inst∀ A K( )( )=

in Id τ bool→,( )
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TE A C let K x = e in e', ,( ) =
let S τ,( ) = TE A C e, ,( )

βδk
.∃ τ0 

  t αγn
( )→ = inst∀ A K( )( )

U osuC τ t αγn
( ),( )=

κ1 … κk, , fresh type constructors

τκ Uτ0( ) κi βδi
⁄ i 1…k==

C' C κi : δi i 1…k=[ ]=

S' τ',( ) = TE USA τκ x⁄[ ] C' e', ,( )

in

if κ1 … κk, ,{ } FS S'USA( ) FS τ'( )∪( )∩ ∅= then

S'US τ',( )

TD A C data t σ=, ,( ) =

let αγ1
…αγn

.∀ µβ.K1η1 … Kmηm+ + σ= in

if FV σ( ) ∅= ∧
t Dom C( )∉ FT σ( ) Dom C( )⊆∧

then

A αγn
.∀ ηi t αγn

( ) β⁄ t αγn
( )→ Ki⁄ i 1…m=

C t : γn 
  Ω 

 
 
 

TD A C class γ γ1 … γn, ,≤ where x1 : αγ.∀ τ1 … xk : αγ.∀ τk, ,, ,( ) =

A αγ.∀ τi xi⁄ i 1…k=[ ] C γ γ1 … γn, ,≤[ ],( )

TD A C inst t : γn 
  γ where x1 e1= … xk ek=, ,, ,( ) =

A C t : γn 
  γ, 

 
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5.5.4 Syntactic Soundness and Completeness of Type

Reconstruction

Lemma 5.3 [Stability of ] If  and  is a substitution,

then  also holds. Moreover, if there is a proof tree for

 of height , then there is also a proof tree for

 of height less or equal to .

Theorem 5.4[Syntactic soundness] If , then

.

Definition 5.1 [Principal type]  is a principal type of expression  under

assumption set  and signature  if  and whenever

 then there is a substitution  such that .

Theorem 5.5[Syntactic completeness] If , then

 and there is a substitution  such that  and

.

Proof: We extend Nipkow’s recent work on type classes and order-sorted

unification and extend it with existential types.

TD A C d1…dn, ,( ) =

let A' C',( ) TD A C d1, ,( )= in

TD A C' d2…dn, ,( )

TP A C d1…dne, ,( ) =

let A' C',( ) TD A C d1…dn, ,( )= in

TE A' C' e, ,( )

|−+ A C,( ) |−+ e : τ S

SA C,( ) |−+ e : Sτ

A C,( ) |−+ e : τ n

SA C,( ) |−+ e : Sτ n

TC A C e, ,( ) S τ,( )=

SA C,( ) |−+ e : τ

τ e

A C A C,( ) |−+ e : τ

A C,( ) |−+ e : τ' S Sτ τ'=

ŜA C,( ) |− e : τ̂

TC A C e, ,( ) S τ,( )= R ŜA RSA=

τ̂ Rτ=
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We assume that the signature built from the globalclass  and inst

declarations is unitary. Clearly, the extended signature used to type the

body of a pattern-matchinglet  expression is also unitary, since the

Skolem type constructors  are unique, and each  appears in only

one arity declaration. The latter trivially guarantees injectivity and

subsort reflection.

■

5.6 Semantics

As in [NS91] [WB89], we give an inference-guided translation to the target

language, an enhanced version of our extension of ML with existential types

described in Chapter 3. Type classes and instances are replaced by(method)

dictionaries, which contain all the operations associated with a particular in-

stance of a type class. The translation rules are of the form

 and mean “in the context ,  is assigned type

and translates to .”

5.6.1 Target Language

Our extension of Mini-Haskell is translated into an extended version of the

language presented in Chapter 3. As a generalization of pair types, the lan-

guage contains all -ary product types  with expressions

 and projection functions  of type . The

PAIR rule is superseded by the TUPLE rule:

(TUPLE)

Semantically, expressions of the form

κi κi

A C,( ) |−+ e : τ ẽ⇒ A C,( ) e τ

ẽ

n α1 … αn××

e1 … en, ,( ) πi
n α1 … αn×× αi→

A |− e1 : τ1 … A |− en : τn

A |− e1 … en, ,( ) : τ1 … τn××
-----------------------------------------------------------------------------------------

let K x1 … xn, ,( ) = e in e'
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are regarded as short forms for nestedlet  expressions of the form

and are typed by following PAT’’ rule:

(PAT’’)

This rule is semantically sound, since the translation of the short form to the

full form is type-preserving: an application of the PAT’’ rule is replaced by

an application of the PAT rule followed by  successive applications of the

LET rule, using appropriate typings for the tuple projections.

5.6.2 Dictionaries and Translation of Types

We call the translated types “ML-types” to distinguish them from the origi-

nal ones. ML-types introduce a method dictionary for each sorted type vari-

able in the original type; each sorted type variable is then replaced by an or-

dinary type variable.

A class declaration

introduces a new ML-type for method dictionaries of this class,

let K z = e in

let x1 π1
n
z= … xn πn

n
z=, , in e'

A |− e : µβ.Σ Kη[ ] η β1…βk.∃ τ1 … τn××=

τ'1 … τ'n×× skolem Aη,( )= FS τ'( ) FS A( )⊆

σ1 gen A τ'1,( )= … σn gen A τ'n,( )=

A σ1 x1⁄ … σn xn⁄, ,[ ] |−+ e' : τ'

A |− let K x1 … xn, ,( ) = e in e' : τ'
--------------------------------------------------------------------------------------------------------------------------------

n

A C,( ) |−+ class γ γ1 … γn, ,≤ where x1 : αγ.∀ τ1 … xk : αγ.∀ τk, ,

γ α( ) τ1 α αγ⁄[ ] … τk α αγ⁄[ ] γ1 α( ) … γn α( )×××××=
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where the type parameter  stands for the type of the instance. The first

components of  are the operations corresponding to class . The next

components are the dictionaries for all immediate superclasses  of

. Note that the dictionary  for the top of the class hierarchy is the emp-

ty product type.

Instead of defining  directly, the dictionary type is defined in terms

of access functions  to extract operations from a dictionary, and ac-

cess functions  to extract the dictionaries for the immediate super-

classes from a dictionary.

Coercion functions are needed to convert a dictionary  of a class  into

a dictionary of a superclass of ; they are defined the same way as in [NS91]:

If there is more than one path from  to  with respect to ,  chooses

an arbitrary fixed path. The immediate superclasses of a class  are defined

as:

The method dictionary for an instance  of a class  within the signature

is defined as

=

=  if according

to ,  is sort-correct with resulting

sort

α k

γ α( ) γ n

γ1 … γn, ,

γ Ω α( )

γ α( )

x1 … xk, ,

γ1γ
… γnγ

, ,

αγ γ

γ

castC αγ γ',( )
αγ

γ'δ castC αγ δ,( )( )

if γ γ'=

if γ δ≤ γ' superC δ( )∈∧



=

γ γ' ≥C castC

γ

superC γ( ) γ' γ γ'< δ.∃ γ δ γ'< <¬∧{ }=

τ γ C

dictC αγ' γ,( ) castC αγ' γ,( )

dictC t τ1 … τn, ,( ) γ,( ) γt dictC τ1 γ1,( )( ) … dictC τn γn,( )( )

C t τ1 … τn, ,( )

γ
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Note that on the left hand side,  is a type variable, and on the right hand

side, an identifier that stands for a dictionary of class . As we will see be-

low, the function  is the dictionary defined for the type constructor  in the

translation of the corresponding instance declaration. Its arguments are the

dictionaries for the actual type parameters in an application of .

We define the translation function for type schemes as follows:

where each  uniquely maps to an . For existential component types of

user-defined datatypes, the corresponding ML-types need to include the dic-

tionaries for the existentially quantified type variables. This reflects the way

operations on existential types are explicitly included in the datatype com-

ponents in Chapter 3.

The resulting translation function for user-defined recursive type schemes is

Note that the dictionaries for the universally quantified type variables are

not included in the component types, as they are determined by the actual

instance types substituted for the type variables. Since user-defined

datatypes are anonymous in the target language, the translation function for

the type of a value constructor  is given by the entire recursive type

scheme to which  belongs:

 where

The function  extends to assumption sets as follows:

αγ'

γ'

γt t

t

ML αγn
.∀ τ( ) αn∀ .γ1 α1( ) … γn αn( ) τ α1 αγ1

⁄ … αn αγn
⁄, ,→ → →=

αγi
αi

ML βδk
∃ .τ( ) βk∃ .τ β1 βδ1

⁄ … βk βδk
⁄, , δ1 β1( ) … δk βk( )×××=

ML αγn
.∀ µβ.Σ Kη[ ]( ) αn.∀ µβ.Σ K ML η( )[ ] α1 αγ1

⁄ … αn αγn
⁄, ,=

K

K

ML A K( )( ) ML αγn
.∀ µβ.Σ Kη[ ]( )= A K( ) αγn

.∀ η τ→=

ML
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5.6.3 Translation Rules for Declarations and Programs

The first three translation rules concern class declarations, instance declara-

tions, and programs. They are the same as in [NS91]. Declarations translate

to  expressions without bodies.

(CLASS+)

(INST+)

(PROG+)

ML A( ) ML A x( )( ) x⁄ x DomA∈{ }=

let

FT τ1( ) … FT τk( )∪ ∪ Dom C( )⊆

A C,( ) |−+ class γ γ1 … γn, ,≤ where

x1 : αγ.∀ τ1 … xk : αγ.∀ τk, , :

A αγ.∀ τi xi⁄ i 1…k=[ ] C γ γ1 … γn, ,≤[ ],( ) ⇒

let x1 π1
k n+

= … xk πk
k n+

= γ1γ
πk 1+

k n+
= … γnγ

πk n+
k n+

=, ,, , ,

------------------------------------------------------------------------------------------------------------------------------------------------------

superC γ( ) γ1 … γs, ,{ }=

t Dom C( )∈ A xi( ) αγ.∀ τi=

A C,( ) |−+ ei : τi t αγn
( ) αγ⁄ ẽi⇒ i 1…k=

A C,( ) |−+ inst t : γn 
  γ where x1 e1= … xk ek=, , :

A C t : γn 
  γ, 

  ⇒

let γt λαγn
.(ẽ1 … ẽk, , ,=

γt
1
castC αγ1

γ1
1,( )…castC αγn

γn
1,( ) 

  ,

…

γt
s
castC αγ γ1

s,( )…castC αγ γn
s,( ) 

  )

--------------------------------------------------------------------------------------------------------------------------------------------------

Ai 1– Ci 1–,( ) |−+ di : Ai Ci,( ) d̃i⇒ i 1…n=

An Cn,( ) |−+ e : τ ẽ⇒

A0 C0,( ) |−+ d1…dne : τ d̃1 in … in d̃n in ẽ⇒
----------------------------------------------------------------------------------------------------------------------------------------
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(DATA +)

The DATA+ rule translates adata  declaration with order-sorted type vari-

ables to adata  declaration in the target language. The component types of

the translated datatype consist of the original component types together with

the dictionaries for the existentially quantified type variables. This is re-

flected in the CONS+ and PAT+ rules below.

5.6.4 Translation Rules for Expressions

The first five translation rules are identical to the ones in [NS91].

(VAR+)

σ αγn
.∀ µβ.K1 βδ1k1

.∃ τ1 … Km βδmk
m

.∃ τm+ +=

FT σ( ) Dom C( )⊆ t Dom C( )∉

A C,( ) |−+ data t σ= :

A αγn
.∀ βδik

i

.∃ τ1 t αγn
( ) β⁄

 
  t αγn

( )→ Ki⁄ i 1…m=

C t : γn 
  Ω 

 
 
 
 

data αn.∀ µβ.⇒

K1 β1k1
.∃ τ1 αi αγi

⁄ β1j βδ1j
⁄, ×

δ11 β11( ) …× δ1k1
β1k1

( )×

…+ +

Km βmkm
.∃ τm αi αγi

⁄ βmj βδmj
⁄, ×

δm1 βm1( ) …× δmkm
βmkm

( )×

---------------------------------------------------------------------------------------------------------------------------------------------------

A x( ) αγn
.∀ τ=

A C,( ) |−+ x : τ τ1 αγ1
⁄ … τn αγn

⁄, , ⇒

x dictC τ1 γ1,( )…dictC τn γn,( )( )

--------------------------------------------------------------------------------------------------------
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(PAIR+)

(APPL+)

(ABS+)

(LET+)

In the LET+ rule, the translation  of the expression to be bound to  may

contain free dictionary variables corresponding to the generic type variables

in ; -bindings for those dictionaries need to be provided.

New translation rules are added for value constructors,is  expressions,

and pattern-matchinglet  expressions.

(CONS+)

The translation of a value constructor is again a value constructor; this trans-

lated constructor packs dictionaries for the types substituted for the existen-

tially quantified type variables together with the value.

A C,( ) |−+ e1 : τ1 ẽ1⇒ A C,( ) |−+ e2 : τ2 ẽ2⇒

A C,( ) |−+ e1 e2,( ) : τ1 τ2× ẽ1 ẽ2,( )⇒
-----------------------------------------------------------------------------------------------------------------------------------

A C,( ) |−+ e : τ' → τ ẽ⇒ A C,( ) |−+ e' : τ' e'˜⇒

A C,( ) |−+ e e' : τ ẽ e'˜⇒
-----------------------------------------------------------------------------------------------------------------------------------

A τ' x⁄[ ] C,( ) |−+ e : τ ẽ⇒

A C,( ) |−+ λx.e : τ' τ→ λx.ẽ⇒
-------------------------------------------------------------------------------

A C,( ) |−+ e : τ ẽ⇒ FV τ( ) \ FV A( ) αγ1
… αγn

, ,{ }=

A αγn
.∀ τ x⁄ C, 

  |−+ e' : τ' e'˜⇒

A C,( ) |−+ let x = e in e' : τ' ⇒

let x = λαγn
.ẽ in e'˜

---------------------------------------------------------------------------------------------------------------------------------------------------

ẽ x

τ λ

A K( ) αγn
.∀ βδk

.∃ τ 
  t αγn

( )→=

A C,( ) |−+ K : τ t αγn
( )→ 

  τi αγi
⁄ τ̂j βδj

⁄, ⇒

λx.K x dictC τ̂1 δ1,( ) … dictC τ̂k δk,( ), ,,( )( )

--------------------------------------------------------------------------------------------------------------------------
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(TEST+)

The  expression is needed to examine the constructor tag and trans-

lates to itself.

(PAT+)

To translate a pattern-matchinglet  expression, we need to look at the way

value constructors are translated. We need to provide a binding for the orig-

inal bound variable , which corresponds to the first component of the en-

capsulated value; we further need to retrieve the dictionaries for the Skolem

type constructors from the remaining  components of the encapsulated val-

ue and bind them to variables . Any of these bound variables may

occur in , the translation of the body of thelet  expression.

Since , the translation of the expression to be bound, is used monomor-

phically, no -bindings for potentially free dictionary variables need to be

provided.

A K( ) ≥C η t τn( )→

A C,( ) |−+ is K : t τn( ) bool→ is K⇒
------------------------------------------------------------------------------------------------------

is K

C δk  n

A C,( ) |−+ e : t τn( ) ẽ⇒

κ1 … κk, ,{ } FS τ'( ) FS A( )∪( )∩ ∅=

A τ κi βδi
⁄ i 1…k= x⁄

C κi : δi i 1…k=[ ] 
 
 
 

|−+ e' : τ' e'˜⇒

A C,( ) |−+ let K x = e in e' : τ' ⇒
let K x δκ1

… δκk
, , ,

 
  = ẽ in e'˜

-------------------------------------------------------------------------------------------------------------

x

k

δκ1
… δκk

, ,

e'˜

ẽ

λ
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5.6.5 Properties of the Translation

As in [NS91], the correctness of our translation scheme depends on the con-

dition that each instance declaration lists exactly the same operations

 as the corresponding class declaration, and in the same order. This

scheme prohibits redefinition of operations listed in superclasses.

Furthermore, when translating a program , we require the signa-

ture resulting from elaborating  to satisfy the injectivity and subsort

reflection conditions stated in Section 5.5.1.

The next lemma says that the translation can onlyintroduce free dictio-

nary variables in an expression and is needed in the main theorem.

Lemma 5.6 [Free variables] If , then ,

and  contains only dictionary variables.

Proof: By structural induction on . Free dictionary variables are explicitly

generated in the VAR+ and CONS+ rules. The variables that are bound

in the LET+ rule are also dictionary variables and, by definition, are not

free in the original expression.

Lemma 5.7 [Free variables] If  and

, then

.

Proof: Using Lemma 5.6 and the fact that  and  do not contain

any dictionary variables.

x1 … xn, ,

d1…dne

d1…dn

A C,( ) |−+ e : τ ẽ⇒ FV ẽ( ) FV e( )⊇

FV ẽ( ) \ FV e( )

e

A C,( ) |−+ e : τ ẽ⇒

A' C',( ) |−+ e' : τ e'˜⇒

FV ẽ( ) FV e'˜( )∪( ) \ FV e( ) FV e'( )∪( ) FV ẽ( ) \ FV e( )( ) FV e'˜( ) \ FV e'( )( )∪=

FV e( ) FV e'( )
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Lemma 5.8 [Types of dictionaries] Let  be a program with transla-

tion . Let  be the unitary signature obtained by

elaborating , and  a superset of the assumption set obtained by elab-

orating . The following type judgments hold for occurrences

of  and  in :

Proof:  is a nestedlet  expression without body; it re-

sults in assumptions for superclass dictionary access functions  and

instance dictionaries of  for  and its superclasses. The claim follows

from the definitions of  and  and the conditions on .

The following, main theorem of this section states that a well-typed ex-

pression in the original type system translates to an expression that is well

typed in the type system of the target language.

Theorem 5.9[Type preservation] If  and

, then

, where

.

Proof: We first observe that the translation rules from Section 5.6.3 exactly

implement the type translation scheme from Section 5.6.2 by produc-

ing the corresponding  expressions without bodies. We then con-

tinue by structural induction on the expression , going through each

case in turn:

d1…dne

d̃1 in …in d̃n in ẽ C

d1…dn A

d̃1 in …in d̃n

cast dict ẽ

A γ α( ) αγ⁄[ ] |− castC αγ γ',( ) : γ' α( )

A γi αi( ) αγi
⁄ i 1…n= |− dictC τ γ,( ) : γ τ αi αγi

⁄ i 1…n=( )

d̃1 in …in d̃n in

γiγ

t γ

cast dict C

A C,( ) |−+ e : τ ẽ⇒

FV ẽ( ) \ FV e( )( ) FV τ( ) \ FV A( )( )∪ αγ1
… αγn

, ,{ }=

ML A( ) γ1 α1( ) αγ1
⁄ … γn αn( ) αγn

⁄, , |− ẽ : τ α1 αγ1
⁄ … αn αγn

⁄, ,

α1 … αn, ,{ } FV ML A( )( )∩ ∅=

let

e
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The premise of this judgment is , whence

.

Observing that , let

.

By Lemma 5.8 and extending the assumption set with assumptions for

all of the  where necessary, we have for

By extending the assumption set again and using the TAUT rule, we

also have

We apply the APPL rule  times and obtain

The premises of this judgment according to the translation rules are

 and . Let

.

A C,( ) |−+ x : τ τ1 αγ1
⁄ … τn αγn

⁄, , x dictC τ1 γ1,( )…dictC τn γn,( )( )⇒

A x( ) αγn
.∀ τ=

ML A( )( ) x( ) αn.∀ γ1 α1( ) … γn αn( ) τ α1 αγ1
⁄ … αn αγn

⁄, ,→ → →=

FV dictC τi γi,( )( ) FV τi( )=

α'γ1
… α'γm

, ,{ } FV τ1( ) … FV τn( )∪ ∪ FV x dictC τ1 γ1,( )…( )= =

α'γj
1 i n≤ ≤

ML A( ) γ'i α'i( ) α'γi
⁄ i 1…m= |− dictC τi γi,( ) :

γi τi α'1 α'γ1
⁄ i 1…m=( )

ML A( ) γ'i α'i( ) α'γi
⁄ i 1…m= |− x :

γ1 αγ1
( ) … γn αγn

( ) τ→ → →
 
  τi α'1 α'γ1

⁄ i 1…m= αγi
⁄

n

ML A( ) γ'i α'i( ) α'γi
⁄ i 1…m= |− x dictC τ1 γ1,( )…dictC τn γn,( )( ) :

τ τ1 αγ1
⁄ … τn αγn

⁄, ,
 
  α'1 α'γ1

⁄ i 1…m=

A C,( ) |−+ e e' : τ ẽ e'˜⇒

A C,( ) |−+ e : τ τ'→ ẽ⇒ A C,( ) |−+ e' : τ' e'˜⇒

FV ẽ e'˜( ) \ FV e e'( )( ) FV τ( ) FV τ'( )∪( ) \ FV A( )( )∪ αγ1
… αγm

, ,{ }=
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Using Lemma 5.7, we choosing a suitable numbering such that

 and

, where .

By the induction assumption, the following two judgments hold:

.

Since we can extend the assumption sets and substitutions in both judg-

ments for variables that do not occur free, we obtain:

.

Our claim follows by applying the APPL rule and eliminating the su-

perfluous variables

 from the

assumption set.

These two cases are handled in a similar way as the previous one.

Let

.

Using Lemma 5.7, we choosing a suitable numbering such that

FV ẽ( ) \ FV e( )( ) FV τ' τ→( ) \ FV A( )( )∪ αγ1
… αγl

, ,{ }=

FV e'˜( ) \ FV e'( )( ) FV τ'( ) \ FV A( )( )∪ αγh 1+
… αγm

, ,{ }= h l≤

ML A( ) γi αi( ) αγi
⁄ i 1…l= |− ẽ : τ' τ→( ) αi αγi

⁄ i 1…l=

ML A( ) γi αi( ) αγi
⁄ i h 1…m+= |− e'˜ : τ' αi αγi

⁄ i h 1…m+=

ML A( ) γi αi( ) αγi
⁄ i 1…m= |− ẽ : τ' τ→( ) αi αγi

⁄ i 1…m=

ML A( ) γi αi( ) αγi
⁄ i 1…m= |− e'˜ : τ' αi αγi

⁄ i 1…m=

αγ1
… αγm

, ,{ } \ FV ẽ e'˜( ) \ FV e e'( )( ) FV τ( ) \ FV A( )( )∪( )

A C,( ) |−+ e1 e2,( ) : τ1 τ2× ẽ1 ẽ2,( )⇒

A C,( ) |−+ λx.e : τ' τ→ λx.ẽ⇒

A C,( ) |−+ let x = e in e' : τ' let x = λαγn
.ẽ in e'˜⇒

FV ẽ e'˜( ) \ FV e e'( )( ) FV τ( ) FV τ'( )∪( ) \ FV A( )( )∪ αγ1
… αγm

, ,{ }=
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 and

, where

. By the inductive assumption,

, and after  ap-

plications of the ABS rule, we obtain

We apply the inductive assumption to the last premise, observing that

:

Finally, we extend the assumption sets of this and the preceding judg-

ment to include  and are ready to apply the LET rule.

Let , where

, and let

.

FV ẽ( ) \ FV e( )( ) FV τ( ) \ FV A( )( )∪ αγ1
… αγl

, ,{ }=

FV e'˜( ) \ FV e'( )( ) FV τ'( ) \ FV A( )( )∪ αγh 1+
… αγm

, ,{ }=

n h l m≤ ≤ ≤

ML A( ) γi αi( ) αγi
⁄ i 1…l= |− ẽ : τ αi αγi

⁄ i 1…l= n

ML A( ) γi αi( ) αγi
⁄ i n 1…l+=

|− λαγn
.ẽ : γ1 α1( ) … γn αn( ) τ αi αγi

⁄ i n 1…l+=→ → →

FV A( ) FV A αγn
.∀ τ x⁄( )=

ML A αγn
.∀ τ x⁄( ) γi αi( ) αγi

⁄ i h 1+ …m=

|− e'˜ : τ' αi αγi
⁄ i h 1…m+=

αγn 1+
… αγm

, ,

A C,( ) |−+ K : τ t αγn
( )→ 

  τi αγi
⁄ τ̂j βδj

⁄, ⇒

λx.K x dictC τ̂1 δ1,( ) … dictC τ̂k δk,( ), ,,( )( )

ML A K( )( ) αn.∀ µβ.Σ Kη[ ] αn.∀ χ= =

η βk∃ .τ αi αγi
⁄ βj βδj

⁄, δ1 β1( ) … δk βk( )×××=

FV τ1( ) … FV τn( ) FV∪ ∪ ∪ τ̂1( ) … FV τ̂k( )∪ ∪ α'γ1
… α'γm

, ,{ }=
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Furthermore, let .

We first apply the CONS rule to derive

and the TUPLE rule together with Lemma 5.7 to derive

for the argument supplied to . We then use the APPL rule to derive

and finally the ABS rule, which gives us

This case is a straightforward application of the TEST rule in the target

language.

Let

τ' τ τi αγi
⁄ τ̂j βδj

⁄,=

ML A( ) γ'1 α'1( ) α'γ1
⁄ … γ'm α'm( ) α'γm

⁄ τ' α'i α'γi
⁄ x⁄, , , |− K :

τ' δ1 τ̂1( ) … δk τ̂k( )××× χ τi αi⁄[ ]→( ) α'i α'γi
⁄

ML A( ) γ'1 α'1( ) α'γ1
⁄ … γ'm α'm( ) α'γm

⁄ τ' α'i α'γi
⁄ x⁄, , ,

|− x dictC τ̂1 δ1,( ) … dictC τ̂k δk,( ), ,,( ) :

τ' δ× 1 τ̂1( ) … δk τ̂k( )××( ) α'i α'γi
⁄

K

ML A( ) γ'1 α'1( ) α'γ1
⁄ … γ'm α'm( ) α'γm

⁄ τ' α'i α'γi
⁄ x⁄, , ,

|− K x dictC τ̂1 δ1,( ) … dictC τ̂k δk,( ), ,,( ) : χ τj αj⁄[ ]( ) α'i α'γi
⁄

ML A( ) γ'1 α'1( ) α'γ1
⁄ … γ'm α'm( ) α'γm

⁄, ,

|− λx.K x dictC τ̂1 δ1,( ) … dictC τ̂k δk,( ), ,,( )( ) :

τ' χ τj αj⁄[ ]→( ) α'i α'γi
⁄

A C,( ) |−+ is K : t τn( ) bool→ is K⇒

A C,( ) |−+ let K x = e in e' : τ' let K x δκ1
… δκk

, , ,
 
  = ẽ in e'˜⇒

FV ẽ e'˜( ) \ FV e e'( )( ) FV t τn( )( ) FV τ'( )∪ 
  \ FV A( ) 

 ∪ αγ1
… αγm

, ,{ }=
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choosing a suitable numbering such that

 and

, where

.

Let , where

.

By the induction assumption,

, where

. We further apply the in-

duction assumption to the last premise to obtain

Note that  in . We now extend the assumption sets

of this and the preceding judgment to include , and apply

the PAT’’ rule. Our claim follows after restricting the final assumption

set to .

■

The following corollary is a deterministic version of the type preserva-

tion theorem in [NS91]. It covers the case of unambiguous resulting expres-

sions, that is, expressions whose translations do not contain free dictionary

variables not free in their types.

FV ẽ( ) \ FV e( )( ) FV t τn( )( ) \ FV A( ) 
 ∪ αγ1

… αγl
, ,{ }=

FV e'˜( ) \ FV e'( )( ) FV τ'( ) \ FV A( )( )∪ αγh 1+
… αγm

, ,{ }=

h l m≤ ≤

α'n.∀ µβ.Σ K βk.∃ τ̃ ML σ( )=

τ̃ τ β1 βδ1
⁄ … βk βδk

⁄, , δ1 β1( ) … δk βk( )×××=

ML A( ) γi αi( ) αγi
⁄ i 1…l= |− ẽ : t̃ αi αγi

⁄ i 1…l=

t̃ µβ.Σ K βk.∃ τ̃ 
  τ1 α'γ1

⁄ … τn α'γn
⁄, ,=

ML A( )

γi αi( ) αγi
⁄ i h 1…m+=

τ κj βδj
⁄ x⁄ δ1 κ1( ) δκ1

⁄ … δk κk( ) δκk
⁄, , ,

|− e'˜ : τ' αi αγi
⁄ i h 1…m+=

dictC' κj δj,( ) δκj
= e'˜

αγ1
… αγm

, ,

FV ẽ e'˜( ) \ FV e e'( )( ) FV τ'( ) \ FV A( )( )∪
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Corollary 5.10 [Type preservation] Let all types in the range of  be closed.

If  and , then

, where

.

Proof: We use the preceding theorem and apply the ABS rule from

Chapter 3  successive times.

Corollary 5.11 [Semantic soundness] Let all types in the range of  be

closed, and let  be a type environment such that for every ,

. If  and , then

.

Proof: By type preservation and semantic soundness of the target language.

A

A C,( ) |−+ e : τ ẽ⇒ FV ẽ( ) \ FV e( ) FV τ( )⊆

ML A( ) |− λαγn
.ẽ : γ1 α1( ) … γn αn( ) τ α1 αγ1

⁄ … αn αγn
⁄, ,→ → →

α1 … αn, ,{ } FV ML A( )( )∩ ∅=

n

A

ψ α Domψ∈

wrong ψ α( )∉ A C,( ) |−+ e : τ ẽ⇒ |=ρ ψ, ML A( )

E [[ ẽ]] ρ wrong≠
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6 Related Work, Future Work, and
Conclusions

6.1 Related Work

The following table compares our work with other programming languages

with similar features or objectives. The design criteria used as a basis for

our comparison are taken from Section 1.1:

1. Strong and static typing,

2. type reconstruction,

3. higher-order functions,

4. parametric polymorphism,

5. extensible abstract types with multiple implementations, and

6. first-class abstract types.

In the table,✔ means the feature is supported,❍ means it is not fully sup-

ported, and a blank entry means it is not supported at all.
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6.1.1 SOL

SOL is based on the full second-order polymorphicλ-calculus. It is not

known whether there is a type reconstruction algorithm for this language.

6.1.2 Hope+C

The only other work known to us that deals with Damas-Milner-style type

reconstruction for existential types is [Per90]. However, the typing rules

given there are not sufficient to guarantee the absence of runtime type errors,

even though the Hope+C compiler seems to impose sufficient restrictions.

The following unsafe program, here given in ML syntax, is well-typed ac-

cording to the typing rules, but rejected by the compiler:

datatype T = K of ’’a

fun f x = let val K z = x in z end

f(K 1) = f(K true)

Design Criterion

Language 1. 2. 3. 4. 5. 6.

Our work ✔ ✔ ✔ ✔ ✔ ✔

ML/Haskell ✔ ✔ ✔ ✔ ❍ ❍

SOL ✔ ✔ ✔ ✔ ✔

Hope+C ❍ ✔ ✔ ❍ ❍ ✔

XML+ ✔ ✔ ✔ ✔ ✔

Dynamics ❍ ✔ ✔ ✔ ❍ ❍

OOL ❍ ❍ ❍ ✔
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In addition, an identifier bound in a pattern-matchinglet  expression is not

polymorphic according to the typing rules. This restriction does not apply to

our work.

6.1.3 XML+

The possibility of making ML structures first-class by implicitly hiding their

type components is discussed in [MMM91] without addressing the issue of

type inference. By hiding the type components of a structure, its type is im-

plicitly coerced from a strong sum type to an existential type. Detailed dis-

cussions of sum types can be found in [Mac86] [MH88].

6.1.4 Dynamics in ML

An extension of ML with objects that carry dynamic type information is de-

scribed in [LM91]. A dynamic is a pair consisting of a value and the type of

the value. Such an object is constructed from a value by applying the con-

structordynamic . The object can then be dynamically coerced by pattern

matching on both the value and the runtime type. Existential types are used

to match dynamic values against dynamic patterns with incomplete type in-

formation. Dynamics are useful for typing functions such aseval . Howev-

er, they do not provide type abstraction, since they give access to the type

of an object at runtime. It seems possible to combine their system with ours,

extending their existential patterns to existential types. We are currently in-

vestigating this point.

6.1.5 Object-Oriented Languages

Most statically typed object-oriented languages identify subclassing with

subtyping (C++ [Str86], Modula-3 [CDG+89]) at the expense of severely re-

stricting the expressive power of the language. Due to thecontravariance

rule for function subtyping, not even simple algebraic structures can be de-

scribed in C++; this is discussed in detail in [CHC90] [HL91].
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Recognizing and attempting to overcome this restriction, other languag-

es sacrifice static typing (Eiffel [Mey92], Ada 9X [dod91]) and rely on run

time checks to guarantee compatibility of function arguments.

Furthermore, most object-oriented languages do not support type recon-

struction; a recent advance in type reconstruction for a Smalltalk-like lan-

guage is presented in [PS91].

6.2 Current State of Implementation

We have implemented a Standard ML prototype of an interpreter with type

reconstruction for our core language, Mini-ML [CDDK86] extended with

recursive datatypes over existentially quantified component types. The ML-

style examples from this thesis have been developed and tested using our in-

terpreter.

Technically, the interpreter consists of the following components:

• Lexer and parser were built using the tools ML-Lex [AMT89] and ML-

Yacc [TA91], respectively.

• The type reconstruction phase is based on [Han87].

• The evaluator directly implements the denotational semantics present-

ed in Section 3.6.2.

We plan further to develop this prototype towards an interpreter of a full lan-

guage based on our extension of SML.

The latest releases of the Lazy ML [AJ92] and Haskell B. [Aug92] sys-

tems feature datatypes with existentially quantified component types. Both

systems were developed at the Chalmers University of Technology; they

provide full compilers and interpreters capable of dealing with larger pro-

grams. The Haskell examples from this thesis have been tested using the

Chalmers Haskell B. interpreter.

6.3 Conclusions

The question we had set out to answer in this dissertation was:
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Is it feasible to design a high-level programming language that satis-

fies criteria1. through6.?

We showed that such a design is feasible from a type-theoretic, a language

design, and an implementation perspective:

• Type-theoretic view: Static typing and semantic soundness of the type

systems hold for all three languages presented. Furthermore, we ex-

tended the Damas-Milner type reconstruction algorithm used in ML to

cope with our languages.

• Language design view: Our examples demonstrated that we gain con-

siderable expressiveness and flexibility by adding first-class abstract

types to ML and Haskell while retaining the syntactic and semantic

“look and feel” of the original languages.

• Implementation view: Our prototype implementation shows that our

languages can be implemented using standard techniques as the ones

described in [Han87] or used in the Standard ML of New Jersey imple-

mentation [AM92]. The Chalmers LML and HBC systems demonstrate

that it is feasible to implement our extensions in practical compilers

and interpreters.

6.4 Future Work

Our work leads off to a number of future research directions, some of which

are discussed below.

6.4.1 Combination of Modules and Existential Quantification

in ML

We demonstrated in Chapter 5 how Haskell type classes can be used as sig-

natures of abstract data types. The ML module system also provides signa-

tures, which are strong sum types. One could imagine using these signatures

to describe interfaces of abstract types. First-class abstract types could then
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be achieved by applying an injection that makes the type components of the

signature existentially quantified, along the lines of [MMM91].

6.4.2 A Polymorphic Pattern-Matching let  Expression

An identifier bound using the pattern-matching  expression from

Chapter 5 is monomorphic, whereas an identifier bound by the correspond-

ing expression from Chapter 3 can be used polymorphically. It would be de-

sirable to overcome this restriction by exploring an extended target lan-

guage, where a function depending on some method dictionaries can be de-

composed before being applied to any arguments. While unsound in the

general case, we conjecture that this is sound in our case, since the argu-

ments are the same whenever the bound identifier is used with the same type.

6.4.3 Combination of Parameterized Type Classes and

Existential Types in Haskell

Type classes in Haskell are not parameterized, thus we cannot model ab-

stract container classes. This shortcoming was discussed in [LO91] and is

also present in our extension of Haskell described in Chapter 5; thus the

stack example from Section 5.2.2 is not polymorphic. An extension of

Haskell with parameterized type classes was recently presented in [CHO92];

it would be desirable to apply the same extension to our language. We con-

jecture that parameterized type classes are an orthogonal extension and

combine well with existential quantification.

Another interesting extension of Haskell is one with a dotless dot nota-

tion analogous to the ML extension from Chapter 4; it appears that such a

language could be translated into the language described in Chapter 5.

6.4.4 Existential Types and Mutable State

Since the full ML language also provides polymorphic references, an exten-

sion of this language with existential types would depend on the coexistence

of existential types and polymorphic references. Similar considerations hold

for other forms of mutable state such as linear types [Ode91] [Wad90].

let
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6.4.5 Full Implementation

Whereas implementations of Lazy ML and Haskell B. extended with exis-

tential types are now available, further implementation work could be envi-

sioned both at the ML level and at the Haskell level.

At the ML level, the language would be strict and include datatypes with

existentially quantified component types, polymorphic references, and pos-

sibly modules.

At the Haskell level, the language could be strict or non-strict and in-

clude existential quantification over parameterized type classes. Alternative

implementation strategies for Haskell or similar languages with type classes

could be explored; instead of translating to an ML-like language, type class-

es could be mapped to C++ templates [Ode92]. A possible starting point for

further exploration could be an explicitly typed version of Mini-Haskell in

the spirit of [MH88].
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