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Abstract

Many statically-typed programming languages providalastract data type
construct, such as the package in Ada, the cluster in CLU, and the module
in Modula2. However, in most of these languages, instances of abstract data
types are not first-class values. Thus they cannot be assigned to a variable,
passed as a function parameter, or returned as a function result.

The higher-order functional language ML has a strong and static type
system with parametric polymorphism. In addition, ML provides type recon-
struction and consequently does not require type declarations for identifiers.
Although the ML module system supports abstract data types, their instanc-
es cannot be used as first-class values for type-theoretic reasons.

In this dissertation, we describe a family of extensions of ML. While re-
taining ML’s static type discipline, type reconstruction, and most of its syn-
tax, we add significant expressive power to the language by incorporating
first-class abstract types as an extension of ML's free algebraic datatypes. In
particular, we are now able to express

* multiple implementations of a given abstract type,

» heterogeneous aggregates of different implementations of the same ab-
stract type, and

* dynamic dispatching of operations with respect to the implementation
type.
Following Mitchell and Plotkin, we formalize abstract types in terms of ex-
istentially quantified types. We prove that our type system is semantically
sound with respect to a standard denotational semantics.

We then present an extension of Haskell, a non-strict functional language
that uses type classes to capture systematic overloading. This language re-
sults from incorporating existentially quantified types into Haskell and
gives us first-class abstract types with type classes as their interfaces. We
can now express heterogeneous structures over type classes. The language
is statically typed and offers comparable flexibility to object-oriented lan-
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guages. Its semantics is defined through a type-preserving translation to a
modified version of our ML extension.

We have implemented a prototype of an interpreter for our language, in-
cluding the type reconstruction algorithm, in Standard ML.



Vii

In memory of my grandfather.



viii




Acknowledgments

First and foremost, | would like to thank my advisors Ben Goldberg and
Martin Odersky. Without their careful guidance and conscientious reading,
this thesis would not have been possible. My work owes a great deal to the
insights and ideas Martin shared with me in numerous stimulating and pro-
ductive discussions. Special thanks go to Fritz Henglein, who introduced me
to the field of type theory and got me on the right track with my research.

| would also like to thank my other committee members, Robert Dewar,
Malcolm Harrison, and Ed Schonberg, for their support and helpful sugges-
tions; the students in the NYU Griffin group for stimulating discussions; and
Franco Gasperoni, Zvi Kedem, Bob Paige, Marco Pellegrini, Dennis Shasha,
John Turek, and Alexander Tuzhilin for valuable advice.

My work has greatly benefited from discussions with Martin Adabi, Ste-
fan Kaes, Tobias Nipkow, Ross Paterson, and Phil Wadler.

Lennart Augustsson promptly incorporated the extensions presented in
this thesis into his solid Haskell implementation. His work made it possible
for me to develop and test example programs.

| would sincerely like to thank all my friends in New York, who made
this city an interesting, inspiring, and enjoyable place to live and work. This
circle of special friends is the part of New York | will miss the most.

My sister Julia, my parents, my grandmother, and numerous friends came
to visit me from far away. Their visits always made me feel close to home,
as did sharing an apartment with my old friend Ingo during my last year in
New York.

Elena has given me great emotional support through her love, patience,
and understanding. She has kept my spirits up during critical phases at work
and elsewhere.

Finally, I would like to thank my parents, who have inspired me through
their own achievements, their commitment to education, their constant en-
couragement and support, and their confidence in me.



| dedicate this thesis to my grandfather, Heinrich Viesel. Although it has
now been eight years that he is no longer with me, | want to thank him for
giving me an enthusiasm to learn and for spending many wonderful times
with me.

This research was supported in part by the Defense Advanced Research
Project Agency under Office of Naval Research grants N00014-90-J1110
and N00014-91-5-1472.



Contents

1 Introduction 1
1.1 Objectives . . ... 1
1.2 Approach. ... ... ... . 2
1.3 Dissertation Outline. . ........ ... ... .. . . . . . 3
2 Preliminaries 7
2.1 The Languages ML and Haskell. .. ...................... 7
2.1.1 ML .. e 7
2.1.2 Shortcomings of Abstract Type Constructs in ML .. ... 11
2.1.3 Haskell .. ... ... . . 15
2.2 The Lambda Calculus, Polymorphism, and Existential Quantifica-
ON . 18
2.2.1 The Untyped-calculus. . ....................... 18
2.2.2 The Simply Typed-Calculus .. .................. 21
2.2.3 The Typed-Calculus withlet -Polymorphism....... 23
2.2.4 Higher-Order Typed-Calculi.................... 26
2.2.5 Existential Quantification ....................... 26
2.3 Type Reconstruction ... ......... ... .. 27
2.3.1 Type ReconstructionforML ..................... 27
2.3.2 Order-Sorted Unification for Haskell . .. ............ 30

Xi



Xii Contents
2.4 SemantiCsS . . ... . 33
2.4.1 Recursive Domains .. ............ ... 33
242 Weakldeals. .. ...... .. .. . 34
3 An Extension of ML with First-Class Abstract Types 36
3.1 Introduction. . . ... . ... .. 36
3.2 Some Motivating Examples .. ....... .. ... ... . L. 39
3.2.1 Minimum over a Heterogeneous List . .............. 39
3.2.2 Stacks Parametrized by Element Type . ............. 39
3.2.3 Squaring a Heterogeneous List of Numbers .......... 41
3.2.4 Abstract Binary Trees with Equality. . .............. 42
3.3 SYNtAX . . o 42
3.3.1 Language Syntax............ ... 42
3.3.2 Type SyntaxX. . . ... e 43
3.4 Typelnference. ... ... ... . . ... 44
3.4.1 Instantiation and Generalization of Type Schemes ... .. 44
3.4.2 Inference Rules for Expressions. . ................. 45
3.4.3 Relation to the ML Type Inference System........... 47
3.5 Type Reconstruction .............. . ... 48
3.5.1 Auxiliary Functions. . ............ ... . ... ... ... 48
3.5.2 Algorithm .. ... ... . 49
3.5.3 Syntactic Soundness and Completeness of Type Reconstruc-
ON . 50
3.6 SemantiCs .. ... ... 56
3.6.1 SemanticDomain ............ ... .. ... ... 57
3.6.2 Semantics of Expressions. . ...................... 57
3.6.3 Semanticsof Types .. ... .. .. . i 58
4 An Extension of ML with a Dotless Dot Notation 65

4.1 IntroducCtion. . .. ... .. .. .. 65



Contents Xiii
4.2 Some Motivating Examples . . ......... ... .. ... . .. 66
4.3 SYNtAX. . . o 68
4.3.1 Language Syntax. . ... ... ... 68
4.3.2 Type SyntaX . ... ... 69
4.4 Type Inference. ... ... ... 70
4.4.1 Instantiation and Generalization of Type Schemes . . . .. 70
4.4.2 Inference Rules for Expressions. . ................. 70
4.5 Type Reconstruction . ........... ..., 72
4.5.1 Auxiliary Functions. . ........... ... . .. . .. .. 72
4.5.2 Algorithm .. ... ... ... . . 72
4.5.3 Syntactic Soundness and Completeness of Type Reconstruc-
ON . 75
4.6 A Translation Semantics .. ........... . .. ... ... 75
4.6.1 Modified Original Language . .................... 76
4.6.2 Auxiliary Translation Function ... ................ 77
4.6.3 Inference-guided Translation..................... 79

4.6.4 Translation of Type Schemes and Assumption Sets . ... 80
4.6.5 Properties of the Translation .. ................... 81

5 An Extension of Haskell with First-Class Abstract Types

86
5.1 Introduction. . ... ... ... 86
5.2 Some Motivating Examples . . .. ... ... . oL 88
5.2.1 Minimum over a Heterogeneous List .. ............. 88
5.2.2 Abstract Stack with Multiple Implementations. ... .. .. 89
5.3 SYNtaAX. . .. 91
5.3.1 Language Syntax. ... ........ ... 91
5.3.2 Type Syntax .. .... . 92
5.4 Type lInference. ... ... ... .. .. . 93

5.4.1 Instantiation and Generalization of Type Schemes . . . .. 93



Contents

Xiv
5.4.2 Inference Rules for Expressions. . ................. 93
5.4.3 Inference Rules for Declarations and Programs . ...... 95
5.4.4 Relation to the Haskell Type Inference System........ 97
5.5 Type Reconstruction ............. ... .. 97
5.5.1 Unitary Signatures for Principal Types. ... .......... 97
5.5.2 Auxiliary Functions. . ........... . ... .. . .. .. 99
5.5.3 Algorithm . .. ... ... .. . 99
5.5.4 Syntactic Soundness and Completeness of Type Reconstruc-
ON . 102
5.6 SemantiCs ... ... ... 103
5.6.1 TargetLanguage ............ ... ... 103
5.6.2 Dictionaries and Translation of Types ............. 104
5.6.3 Translation Rules for Declarations and Programs . . . .. 107
5.6.4 Translation Rules for Expressions . ............... 108
5.6.5 Properties of the Translation .................... 111
6 Related Work, Future Work, and Conclusions 119
6.1 Related Work. . . ... . e 119
6.1.1 SOL ... ... 120
6.1.2 Hope+C. .. ... . 120
6.1.3 XML+ . ... . 121
6.1.4 Dynamicsin ML ........... .. .. .. .. . ... 121
6.1.5 Object-Oriented Languages ... .................. 121
6.2 Current State of Implementation. . ..................... 122
6.3 CONCIUSIONS . . . . ... 122
6.4 Future WOrk. . ... .. 123
6.4.1 Combination of Modules and Existential Quantification in
ML . e 123

6.4.2 A Polymorphic Pattern-Matchingt Expression .... 124



Contents XV

6.4.3 Combination of Parameterized Type Classes and Existential

TypesinHaskell . ....... .. ... .. .. . ... . ... ... 124
6.4.4 Existential Types and Mutable State .............. 124
6.4.5 Full Implementation . ......................... 125

Bibliography 127




XVi Contents




1 Introduction

Many statically-typed programming languages providalastract data type
construct, such as the package in Ada, the cluster in CLU, and the module
in Modula2. In these languages, an abstract data type consists of two parts,
interfaceandimplementation The implementation consists of one or more
representation typeand someperationson these types; the interface spec-
ifies thenamesandtypesof the operations accessible to the user of the ab-
stract data type. However, in most of these languages, instances of abstract
data types are not first-class values in the sense that they cannot be assigned
to a variable, passed to a function as a parameter or returned by a function
as a result. Besides, these languages require that types of identifiers be de-
clared explicitly.

1.1 Objectives

This dissertation seeks to answer the following question:

Is it feasible to design a high-level programming language that satis-
fies the following criteria

1. Strong and static typindf a program is type-correct, no type errors oc-

cur at runtime.

2. Type reconstructionPrograms need not contain any type declarations
for identifiers; rather, the typings are implicit in the program and can
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be reconstructed at compile time.

3. Higher-order functional programmingFunctions are first-class val-
ues; they may be passed as parameters or returned as results of a func-

tion, and an expression may evaluate to a function.

4. Parametric polymorphismAn expression can have different types de-
pending on the context in which it is used; the set of allowable contexts

is determined by the uniquaost general typef the expression.

5. Extensible abstract types with multiple implementatiofise specifi-
cation of an abstract type is separate from its (one or more) implemen-
tations; code written in terms of the specification of an abstract type
applies to any of its implementations; more implementations may be

added later in the program.

6. First-class abstract typesinstances of abstract types are also first-
class values; they can be combined to heterogeneous aggregates of dif-

ferent implementations of the same abstract type.

From a language design point of view, criterion 1 is important for pro-
gramming safety, criteria 2, 3, 4, and 6 are desirable for conciseness and
flexibility of programming, and criterion 5 is crucial for writing reusable li-
braries and extensible systems.

1.2 Approach

The functional language ML [MTH90] already satisfies criteria 1 through 4
fully, and criteria 5 and 6 in a limited, mutually exclusive way. For this rea-
son and for the extensive previous work on the type theory of ML and related
languages, we choose ML as a starting point for our own work.

In this dissertation, we describe a family of extensions of ML. While re-
taining ML’s static type discipline and most of its syntax, we add significant
expressive power to the language by incorporating first-class abstract types

as an extension of ML's free algebraic datatypdhe extensions described
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are independent of the evaluation strategy of the underlying language; they
apply equally to strict and non-strict languages. In particular, we are now
able to express

* multiple implementations of a given abstract type,

* heterogeneous aggregates of different implementations of the same ab-

stract type, and

» dynamic dispatching of operations with respect to the implementation

type.

Note that a limited form of heterogenicity may already be achieved in
ML by building aggregates over a free algebraic datatype. However, this ap-
proach is not satisfactory because all implementations, corresponding to the
alternatives of the datatype, have to be fixed when the datatype is defined.
Consequently, such a datatype is not extensible and hence useless for the
purpose of, for example, writing a library function that we expect to work
for any future implementation of an abstract type.

ML also features several constructs that provide some form of data ab-
straction. The limitations of these constructs are further discussed in
Chapter 2.

1.3 Dissertation Outline

The chapters in this dissertation are organized as follows:

» Chapter 2. Preliminaries. In this chapter, we review the preliminary
notions and concepts used in the course of the dissertation. First, we
give an overview of the functional languages ML and Haskell and dis-
cuss the shortcomings of data abstraction in ML. Then, we describe the
untyped and several typedcalculi and existentially quantified types
as a formal basis for our type-theoretic considerations. Further, we dis-
cuss standard and order-sorted unification algorithms, which are used

IML's version of a variant record in Pascal or Ada.
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in type reconstruction algorithms. Finally, we give a review of domains
and ideals, which we use as a semantic model for the languages we dis-

Cuss.

Chapter 3. An Extension of ML with First-Class Abstract Types.

This chapter presents a semantic extension of ML, where the compo-
nent types of a datatype may be existentially quantified. We show how
datatypes over existential types add significant flexibility to the lan-
guage without even changing ML syntax. We then describe a determin-
istic Damas-Milner type inference system [DM82] [CDDK86] for our
language, which leads to a syntactically sound and complete type re-
construction algorithm. Furthermore, the type system is shown to be
semantically sound with respect to a standard denotational semantics.

Chapter 4. An Extension of ML with a Dotless Dot NotationIn this
chapter, we describe a further extension of our language. The use of ex-
istential types in connection with an elimination constrwageq or
abstype ) is impractical in certain programming situations; this is dis-
cussed in [Mac86]. A formal treatment of the dot notation, an alterna-
tive used in actual programming languages, is found in [CL90]. This
notation assumes the same representation type each time a value of ex-
istential type is accessed, provided that each access is via the same
identifier. We describe an extension of ML with an analogous notation.

A type reconstruction algorithm is given, and semantic soundness is

shown by translating into the language from Chapter 3.

Chapter 5. An Extension of Haskell with First-Class Abstract
Types.This chapter introduces an extension of the functional language

Haskell [HPIW92] with existential types. Existential types combine
well with the systematic overloading polymorphism provided by
Haskell type classes [WB89]; this point is first discussed in [LO91].

Briefly, we extend Haskell’'slata declaration in a similar way as the
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ML datatype declaration above. In Haskell, it is possible to specify
what type class a (universally quantified) type variable belongs to. In
our extension, we can do the same for existentially quantified type
variables. This lets us use type classes as signatures of abstract data
types; we can then construct heterogeneous aggregates over a given
type class.

* Chapter 6. Related Work, Future Work, and Conclusions.This
chapter concludes with a comparison with related work. Most previous
work on existential types does not consider type reconstruction; other
work that includes type reconstruction seems to be semantically un-
sound. We apparently are the first to permit polymorphic instantiation
of variables of existential type in the body of the elimination construct.
In our system, such variables de¢ -bound and therefore polymor-
phic, whereas other work treats them monomorphically. We give an
outlook of future work, which includes further extensions with mutable

state and a practical implementation.

The figure below illustrates the relationship between ML, Haskell, the
languages introduced in this dissertation, and other possible extensions.
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2 Preliminaries

In this chapter, we review the preliminary notions and concepts used in the
course of the dissertation. First, we give an overview of the functional lan-
guages ML and Haskell and discuss in detail the shortcomings of data ab-
straction in ML. Then, we describe the untyped and several typeadculi

and existentially quantified types as a formal basis for our type-theoretic
work below. Further, we discuss standard and order-sorted unification algo-
rithms, which are used in type reconstruction algorithms for implicitly typed
languages. Finally, we give a brief review of domains and ideals, which we
use as a semantic model for the languages we discuss.

2.1 The Languages ML and Haskell

This section gives an overview of the functional languages ML and Haskell
and discusses the shortcomings of the data abstraction constructs provided
by ML. We assume some general background in programming languages;
prior exposure to a statically typed functional language is helpful.

2.1.1 ML

We present a few programming examples that illustrate the relevant core of
ML [MTH90] and its type system. For a full introduction, see [Har90]. The
syntax of core expressions is defined recursively as constants, identifiers,
and three constructs:
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Constants c ==0]1]..

Identifiers X =x|y]|..
Abstractions f u=fn x=> e
Applications a =e¢€

Bindings b ::=letval x =ire €

Expressions e =c x i 4 4

We also assume that a conditional constitictand a fixed-point operator
fix are predefined.
To bind an identifier, we can just write

val x = e

which corresponds to an implidét binding whose body encompasses the
rest of the program. For functions, we can write

funfx= e
instead of
valrecf=fnx=> e

If the function is not recursive, that ifs,is not called ire , the keywonec
may be omitted. The simplest polymorphic function is the identity function,
given by

fnx=>x

which simply returns its argument. Its semantics is clearly independent of
the type of its argument. The following is an example of a higher-order func-
tion definition:

fun compose f g = fn x => f(g(x))
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For the expressiof(g(x)) to be well-typed, the following assumptions

about the types df, g, andx must hold for some typea ,'b , and’c .

X:’'a
f:'"b->'c
g:'a->'b

Under these assumptionsgmpose has the type
compose : (b ->'c)-> (a->'b) ->(a->c¢)

where-> is the function type constructor. Since this assumption holds for
any typesa ,’b , and’c , we can think of this type as universally quantified
type schemever the type variables, written as

DoaOB0y. (B - y) - (a - B) - (a-y)

We can now define a function that composes another function with itself:
fun twice f = compose f f

The type inferred fotwice is
twice : (a->"a) -> (la->'a)

and we can applywice as follows:

funsuccx=x+1
(twice succ) 3
evaluating tdb. It is important to note that in the definition twfice , both
occurrences of the argumeitare required to have the same type. Conse-
quently,’a =’b =’c in this instance ofompose.
The parameters of a function abstraction, henceforth called -bound

identifiers, behave differently fromet -bound identifiers:

» All occurrences of & -bound identifier have to have the same type.

LML uses quoted letters to represent the Greek letters often used in type expres-
sions.



10 Chapter 2 Preliminaries

» Each occurrence of Bet-bound identifier may have a different type,
which has to be an instance of tim®st generabr principal typein-
ferred for that identifier.

Furthermore, ML has a built-in type constructor for (homogeneous) lists,
which is parameterized by the element type. Predefined constants and func-
tions on lists include:

nil : 'a list

J'a*’alist ->a list
hd :’alist->'a
tl :’'alist ->"a list
null: a list -> bool

Lists are written in the form

For instance,
(compose hd hd) [[1,2],[3,4,5]]

is type-correct and evaluatestpwhile
(twice hd) [[1,2],[3,4,5]]

is not type-correct, since the typelaf is not of the forma ->'a
Lastly, ML offers user-defined free algebraic datatypes. A datatype dec-
laration of the form

datatype [arg] * kof |ty | ..of K T

n n

declares a type (or a type constructor, if arguments are pregent) , where
K;’s are value constructor functions of typgs- (arg T) . Value construc-

tors can also lack the argument, in which case they are constants. The pre-
definedlist type can actually be written as a datatype:

datatype  tist = nil | cons of 'a * 'a list
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Values whose type is such a datatype can be constructed by applying a value
constructor to an argument of appropriate type. They can be deconstructed
by means of gattern-matchindet expression of the (simplified) form

let val KEx ine €

For example,
val cons(x,xs) =[1,2,3]

would decompose the list on the right-hand side, binding 1 andxs to
[2,3]

2.1.2 Shortcomings of Abstract Type Constructs in ML

ML already provides three distinct constructs that can be used to describe
abstract data types:
» Theabstype mechanism is used to declare an abstract data type with
a single implementation. It has been partially superseded by the mod-

ule system.

« The ML module system provides signatures, structures, and functors.
Signatures act as interfaces of abstract data types and structures as
their implementations; functors are essentially parametrized struc-
tures. Several structures may share the same signature, and a single
structure may satisfy several signatures. However, structures are not
first-class values in ML for type-theoretic reasons discussed in
[Mac86] [MH88]. This leads to considerable difficulties in a number of

practical programming situations. The following example illustrates
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how an abstract typ®TACKIis programmed in the ML module system:

signature ELEM = sig

end

type elem
val init : elem

signature STACK = sig

end

type elem

type stack

val empty . stack

val push . elem -> stack -> stack
val pop . stack -> stack

val top . stack -> elem

val isempty : stack -> bool

functor ListStack(Elem : ELEM) : STACK = struct

end

type elem = Elem.elem
type stack = elem list
val empty =[]

fun push x xs = x:xs
val pop =l

val top = hd

val isempty = null

functor ArrayStack(Elem : ELEM) : STACK = struct

type elem = Elem.elem
type stack = int ref * elem array
val maxElem = 100
val empty =
(ref 0,Array.array(maxElem,Elem.init))
fun push x (i,s) =
(inc i; Array.update(s,i,x); (i,s))
fun pop(i,s) = (dec i; (i,s))
fun top(i,s) = Array.sub(s,)
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fun isempty(i,s) = i = 0
end

structure IntElem = struct
type elem = int
val init = 0
end

structure IntListStack = ListStack(IntElem)

structure IntArrayStack = ArrayStack(IntElem)
Note that two different implementations 8TACKare given. However,
the typesintListStack.stack and IntArrayStack.stack are
different; thus we cannot construct, for example, the following list:

[IntListStack.empty,IntArrayStack.empty]

» Abstract data types can be implemented as a tuple (or record) of clo-
sures; the hidden bindings shared between the closures correspond to
the representation, and the closures themselves correspond to the oper-
ations. The type of the tuple corresponds to the interface. A discussion
of this approach is found in [Ode91]. The following example illustrates

a use of a heterogeneous listiaf Stack ’s.
datatype ’'a Stack =
stack of {empty . unit -> ’'a Stack,
push : 'a -> 'a Stack,
pop . unit -> 'a Stack,
top . unit -> ’a,

isempty : unit -> bool}

fun makeListStack xs =
stack{empty = fn() => makeListStack [],

push = fn x => makeListStack(x::xs),
pop = fn() => makeListStack(tl xs),
top = fn() => hd xs,

isempty= fn() => null xs}
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fun makeArrayStack xs = ...

fun empty (stack{empty=e,...}) = e()
fun push y (stack{push=pu,...}) = puy
fun pop (stack{pop=po,...}) = po()
fun top (stack{top=t,...}) = t()

fun isempty(stack{isempty=i,...}) = i()

map (push 8) [makeListStack [2,4,6],
makeArrayStack [3,5,7]]

The shortcoming of this approach is that the internal representation of
an instance of an abstract type is completely encapsulated; consequent-
ly, the extensibility of the abstract type is severely limited. The next
example of an abstract typdult supporting asquare operation il-
lustrates this limitation:

datatype Mult = mult of {square: unit -> Mult}

fun makeMult(i,f) =
mult{square = fn() => makeMult(f(i,i),f)}

fun square(mult{square=s}) = s()

map square
[makeMult(3, op *:int * int -> int),
makeMult(7.5, op *: real * real -> real)]
The problem arises when we want to define an additional operation on
Mult , saycube . In this case, we need to add another field to the record
component type oMult , and we even need to change the definitions
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of makeMult andsquare , although the latter was defined outside of
makeMult :

datatype Mult = mult of {square: unit -> Mult,
cube :unit -> Mult}

fun makeMult(i,f) =
mult{square = fn() => makeMult(f(i,i),f),
cube = fn() => makeMult(f(i,f(i,i)),N)}

fun square(mult{square=s,...}) = s()

It is possible to work around this limitation using nested records as de-
scribed in [Ode91].

Another, more serious limitation of the encapsulation imposed by the
closure approach becomes apparent when we model abstract types with
operations involving another argument of the same abstract type. Con-
sider the following attempt at describing an abstract fiee :

datatype Tree = tree of {eq : Tree -> bool,
right : unit-> Tree,
left : unit-> Tree,

2}

Theeq function could then be implemented by converting two trees to
a common representation and comparing them. Suppose now that we
want to compare two subtrees of the same tree. There is no obvious way
to take advantage of the knowledge that both subtrees have the same
representation; they still need to be converted before the comparison.

2.1.3 Haskell

The functional programming language Haskell [HP®2] has a polymor-

phic type discipline similar to ML’s. In addition, it usgge classesas a sys-
tematic approach to operator overloading. Type classes capture common sets
of operations, for example multiplication, which is common to atth and
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real types. A particular type may be an instance of a type class and has an
operation corresponding to each operation defined in the type class. Further,
type classes may be arranged in a class hierarchy, in the sense that a derived
type class captures all operations of its superclasses and may add new ones.
Type classes were first introduced in the article [WB89], which also gives
additional motivating examples and shows how Haskell programs are trans-
lated to ML programs.

The syntax of the Haskell core consists of essentially the same expres-
sions as the ML core, with the addition of class and instance declarations of
the following form:

class C avhere
op; i Ty
op,: T,

instance Cwthere

opl = el

op, = &,

To motivate the type class approach, consider the overloading of mathe-

matical operators in ML. Although*4 and4.7*4.7 are valid ML expres-
sions, we cannot define a function such as

fun square x = X * X

in ML, as the overloading of the operatbrcannot be resolved unambigu-
ously. In Haskell, we first declare a cldd$smto capture the operatiorist
andFloat have in common:

class Num a where
(-)a->a
(+):a->a->a
*)-a->a->a
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At this point, we can already type tequare function, although we cannot
use it yet, since we do not have any instancedurh The typing is

square :: Numa=>a->a

which reads, “for anya that is an instance oNum square has type
a -> a.” We then declare two instancesfim assuming the existence of
some predefined functions démt andFloat

instance Num Int where

(-) = intUMinus
(+) = intAdd
(*) = intMult

instance Num Float where
(-) = floatUminus
(+) = floatAdd
(*) = floatMult

When we now writesquare 4.0 , the type reconstructor finds out tia®
is of typeFloat , which in turn is an instance &fum The multiplication
used idloatMult  , as specified in the instance declarationFloat . Giv-
en a definition of the functiomap, we can write the function

squarelist xs = map square xs

which squares each element in a list. It has type
squarelist :: Num a => [a] -> [a]

where[a] is the Haskell version da list

Haskell also provides algebraic datatypes, which differ from the ones in
ML only in that the formal arguments of the type constructor can be speci-
fied to be instances of a certain type class.

It should also be mentioned that Haskell isuae, non-strictfunctional
language, whereas ML issdrict language and provides mutable state in the
form of references
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2.2 The Lambda Calculus, Polymorphism, and
Existential Quantification

In this section, we describe the untyped, the simply typed, and the first-order
polymorphicA-calculi, which constitute the type-theoretic basis for func-
tional languages such as ML and Haskell. We also give an introduction to
existentially quantified types, which provide a type-theoretic description of
abstract data types.

2.2.1 The UntypedA-calculus

The untyped\-calculus is a formal model of computation. While Meal-
culus is equivalent to Turing machines in computational power, its simple,
functional structure lends itself as a useful model for reasoning about pro-
grams, in particular, functional programs. We give a brief introduction to the
A-calculus; a comprehensive reference is [Bar84].

A-terms are defined as follows:

Constant$ C
Identifiers X
Terms e =c |x ]Ax.e |(e€)

In aA-abstractiona of the formx.e , wher is sokderm, the variable
X is said to béoundin a and is called &#ound variable Any variabley in
e other thanx that is not bound in\aabstraction inside is said to occur
freein a and is called dree variable We assume that no free variable is
identical to any bound variable withinAxaterm.

TheA-calculus provides severabnversion rulegor transforming ona-

term into an equivalent one. The conversion rules are defined as follows:

LConstants are not actually part of ghere A-calculus, but are a useful enrich-
ment.
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* 3-conversion
(Ax.e) € = e[ &/X]

This rule models function application. It states thai-abstraction
AXx.e is applied to a terng by replacing each free occurrence of in

e by a copy ofe' . In addition, bound variablesen have to be renamed
to avoid name conflict with variables that are fre€'ine[ €/X] stands

for this new term.

e 0-conversion
AX.e = Ay.e[y/ ¥ y O FV(e

This rule states that the bound variable of-abstraction may be re-

named, provided that the renamed variable does not occur fee in

* n-conversion
AX.(eX) = e x O FV(e

This rule can be used to eliminate a redundanabstraction, provided

that the bound variable does not occur freein

 d-conversion
The d6-rules define conversion of built-in constants and functions, for
example,

(times3 4) = 12

We view the set ok-terms as divided inta-equivalence classethis means
that any two\-terms that can be transformed into one anotheovi@anver-

sion are in the same equivalence class, and any one term is viewed as a rep-
resentant of itser-equivalence class.
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While conversion rules express that two terms are equivaledction
rulesare used to evaluate a term. There are two reduction fi+egiuction

andod-reduction; the most important rul@;reduction, is given by
(Ax.e) e [0 e[ e/X]

Semantically, a\-term is evaluated by repeatedly applying reduction rules
until no more reductions can be applied; the resulting term is said to be in
normal form A givenA-term may have several subterms to whigecheduc-

tion can be applied; such subterms are called reducible terres@xes An
evaluation strategy whefereduction is always applied to the leftmost out-
ermost redex first is called is callesbrmal orderevaluation. A strategy
where B-reduction is always applied to the leftmost innermost redex is
calledapplicative orderevaluation. In programming languages, normal or-
der evaluation is often implemented by lazy or call-by-name evaluation, and
applicative order evaluation is a special case of eager (call-by-value) eval-
uation. Normal order evaluation rormalizing which means that it termi-
nates for every term that has a normal form. Although applicative order
evaluation does not guarantee termination, it is sometimes preferred in prac-
tice for efficiency reasons.

In the A-calculus, recursion is expressed by the combinator, which is
defined by the equatiovif = f(Y) .The combinator can be defined by the

following A-abstraction:
Y = Ah. (AX. (h(xX))) (Ax. (h(xX))))

A recursive function can then be expressed &Rgexm containingy , for ex-
ample the factorial,

Y (Af.AN. (if (equal n0) 1 (times n( f{ minusrl)))))

assuming suitablé-rules for the built-in functions used.
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2.2.2 The Simply TypedA-Calculus

Typed A-calculi are like the untyped-calculus, except that every bound
identifier is given aype The simply typed\-calculus describes languages
that have a notion of type. Informally, types are subsets of the set of all val-
ues that share a certain common structure, for example all integers, or all
Booleans. An important difference between typed and untyped calculi is that
typed calculi introduce the notion of (stati)pe correctnes®f a term,
which one would like to check before trying to evaluate the term. The un-
typedA-calculus could be regarded as a typechlculus in which each iden-

tifier or constant has the same tygeneral and all terms are type-correct.
An comprehensive survey of typing in programming languages is [CW85].

As an example, consider the successor function, which we could define
as

succ= An:int.n+1
Assuming the typingt+ : int xint - int , we would obtain the typing
succ: int - int

where - is the function type constructor arnd the tuple type constructor

used for multiple function arguments. We could then define
twice = Af:int - int.AX : int.f (f X)

and the term
(twice suc¢ 4

would be type-correct and result@& . On the other hand,
twice 7

would not be type-correct, since the type7of ins rather tinan. int
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We would like to formalize the notion of type correctness. For example,
to guarantee that a function application is type-correct, it is enough to know
that the argument term is of the same type as the domain type of the function.
Then the type of the resulting term is the range type of the function. Such a
rule is formally expressed by anference ruleconsisting of zero or more
antecedentsand oneconclusion Each antecedent or conclusion isype
judgmentof the form A + e: 1 wheree is a well-formed term, weell-

formed type, andA a set of assumptions of the fornm stating that the
identifier or constank has type reads as “entails.” For example, the

rule governing function application is written as

Ate: 1T 51 Ate:T
Al (eéd):1

and is read as: “If assumption get entails type 1 for expression and
if A entails typet’ for expressiod , thex entails type for the applica-
tion (e &) .

The type system of a typedcalculus is described by a system of such in-
ference rules. Type-correct terms are those for which a type judgment can

be derived within the given inference system.
The following inference system describes the simply typedlculus:

(TAUT) At x:AX

Ate: 151 Ate:T
Al (eé) T

(APP)

Alt/x] Fe:t
AFAx:Te: T 51

(ABS)

LFor our purposes, types are well-formed iff they are composed from the basic
typesint ,bool , etc., by application of the type constructesrs  #®nd
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whereA[T1'/x] stands for the assumption get extended with the assump-
tion x: T.
One possible proof for the typingwice: (int - int) - (int - int)

looks as follows:

i A .
{_ _ J b x:int
int » int/f

int/
[. | .X }i—f:intaint
int - int/f
int/ x int/x } .
i i fx:int
[int - int/f—‘ Ff:int -~ int [int - int/f 2
int/ X

f(fx) :int

[int - int/f} F ()

[int - int/f] + Ax:int.f(f x) :int > int
O F (Af:int - int.Ax: int.f(f x)) : (int - int) - (int - int)

When designing a statically typed programming language, we generally
want type correctness to lbecidable That is, we would like to have an al-
gorithm that decides, given a type judgment, whether there is a proof for this
type judgment. We would also like the type system to be semantgmallyd
meaning that a type-correct program can be evaluated without, for example,
trying to apply an argument to a term that is not a function.

2.2.3 The TypedA-Calculus with let -Polymorphism

The typedA-calculus withlet -polymorphism is a formalization of the idea
that there are\-abstractions that have many different types depending on

their argument terms. It provides a type-theoretic model for the language
ML described in Section 2.1.1. As a motivating example, consider that the
result of the (untyped)-abstraction

id = AX.X

1The horizontal bars are read in top-down order.
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always has the same type as its argument. We can express this byidiving
the universally quantified type : Da.a - a , wheoe idyge variable
representing any well-formed type; this typing is read as: “for everydype
id has typea - a .” Whileo.a - a is not a well-formed type, it makes
sense to think oft as a type parameter, which can be instantiated to the type
of the argument passed tml . We therefore call constructs such as
Oa.o - a type schemesr polymorphic typeswhereas types that are not
universally quantified are calledonomorphic typedn our typed calculus,

we can think ofid as first parameterized by the argument type and then by
the argument itself. This is expressed b¥-abstraction enclosed by/&

abstraction, which denotes abstraction over a type argument:
id = Ad.AX: da.x

and its application to an argument has the form
id [int] 3,

where type arguments to/sabstraction are enclosed in square brackets.
Terms are called polymorphic or monomorphic depending on their type. In
the typed\-calculus withlet -polymorphism, we do not allow arguments of
A-abstractions to be polymorphic. Consequently-abstraction can only
occur at the outermost level of a term or on the right side of a special binding
construct that expresses the binding of a term to an identifier. This construct
is calledlet -expression and is of the forlet x=e in €

The following inference system describes the typedhlculus withlet -

polymorphism, whera 's stand for types amd s for type schemes.

(TAUT) At x:AX

Ate 1T 1 Ate:T

(APP) At (eé: T
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A[T/X] et
(ABS) AFAx:Te: T -1
Ate:o Alo/x] L €1
(LET) Atlet x=ein €:1
At e:la.o
(INST) At elt] :o[t/q]
(GEN) Ate:o o OFV(A

At Na.e:Ua.o

Note that the ABS rule requires the expression from which the abstraction
is constructed to be monomorphic, and the APP rule enforces that in an ap-
plication the function and its argument have to be monomorphic.

The following is a sample proof in this system:

[a/X] FXx:a
O FAX:a.Xx:a -0
O+ Aa.Ax:a.x:Oa.a - a

[Do.a - a/id] +id[int] :int - int
[Oa.a0 - a/id] + 3 :int
[Oa.o -~ a/id] t id[int] 3 :int
O flet id=Aa.Ax:a.x in id[int] 3 :int

The ML core language can be thought of as an implicitly typed version
of the typedA-calculus withlet -polymorphism; this is discussed in detail
in [MH88]. ML usestype reconstructioto compute the explicit type anno-
tations of an implicitly typed expression. The problem of polymorphic type
reconstruction was first discussed in [Mil78] and further developed in
[DM82] and [Dam85].
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2.2.4 Higher-Order Typed A-Calculi

A considerable amount of research has focused on the second-ordektyped
calculus and higher-order systems [REFS]. Since all languages presented in
this dissertation are extensions of the typedalculus withlet -polymor-
phism, we do not further discuss higher-order calculi here.

2.2.5 Existential Quantification

Existentially quantified types, or in short, existential types, are a type-theo-
retic formalization of the concept of abstract data types, which are featured
in different forms by various programming languages.

In Ada, abstract types are expressedprizatetypes. Consider as an ex-
ample the following package specification, which describes an stack of in-
tegers:

package STACK_PKG is
type STACK_TYPE is private;
procedure PUSH(in out S: STACK_TYPE;
A INTEGER);
procedure POP(in out S: STACK_TYPE);

private
type STACK _TYPE is ...;

end STACK_PKG;

We can then write in our program

use STACK_PKG;

and have access to the entities defined in the package specification without
knowing or wanting to know hoWwTACK_TYPEs defined in the package
body. Since the program using the package works independently of the im-
plementation of the package, we might wonder what t$p&CK_TYPE
stands for in the program. An informal answer is, “some new type that is dif-
ferent from any other type in the program.”



Section 2.3 Type Reconstruction 27

Existential quantification is a formalization of the notion of abstract
types; it is described in [CW85] and further explored in [MP88]. By stating
that an expressioa has existential tymet , we mean that for some fixed,
unknown typet e has type[i/a] e can thus be viewed as a pair consist-
ing of a type componerit and a value component of tyffi¢ a] . The com-

ponents are accessed throughedimination construcof the form

open e as [, xin ¢€

In €, the typet stands for the hidden representation type of , suck that

can be used i® with type[t/a] . To guarantee static typing, the type of

€ must not contain
Values of existential type are created using the construct

pack [ =1,e: 1l

wherea may occur free in . The type of this expressiomig , and at his
point we no longer know that the expression we packed originally had type
T1[1/0].

A different formulation of existential quantification called tihat nota-
tion, closer to actual programming languages, is described in [CL90].

2.3 Type Reconstruction

In this section, we describe the Damas-Milner approach to type reconstruc-
tion in ML [Mil78] [DM82] [Dam85] and its application to type reconstruc-
tion in Haskell [NS91].

2.3.1 Type Reconstruction for ML

Before we present the type inference system and the type reconstruction al-
gorithm for the ML core, we need to define the following terms:

» A substitutionis a finite mapping from type variables to types. It is of-



28 Chapter 2 Preliminaries

ten written in the form[t,/a,, ...,1,/0a ] and applied as a postfix op-

erator; it can also be given a name, for exam$le, , and applied as pre-

fix operator. Ifo = [B,...B,. T is a type scheme, th&a is the type
scheme obtained from by replacing each free occurrence of o in
by 1,, renaming the bound variables of if necessary.ltlet  denote

the identity substitutiorn] ]

* Type 1 is aprincipal typeof expressiore under assumption get if
At e:1 and whenevelA | e: 1 then there is a substitut®on  such

thatSt = 1',

We now give a type inference system that describes the type system of
the implicitly typed first-order polymorphit-calculus underlying the ML
core. This type system is deterministic in that there is exactly one rule for
each kind of expression. It was shown in [CDDK86] to be equivalent to the
original nondeterministic system from [DM82].

AX) =T
(TAUT) AFxT

Ate: 1T -1 Ate:T
(APP) Al (eé) 1
(ABS) A[T/X] te:t

ALFAxe: T T

Ate:t Algerl At)/x] Lt €: T
(LET) Atlet x=ein €:1

The following auxiliary definitions are needed:

* In the generic instantiationof a type scheme to a type, eagdéneric
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(universally quantified) type variable is replaced by a type.

Oa,...a .1>T1 iff there are types such that

1--9q

U =1[1/0y ..., 1/0]

* The generalizationof a typet under an assumption set is the type
scheme obtained from by universally quantifying over those type

variables that are free m but not in the assumptiorAset
genAT) = O(FV()\FV(A) .t

For instance,0o.a - a=int - int but notJa.a - a=int - real , and

gen[B/x],a - B) = Da.a - B.

Now we have a type inference system that defines what is a valid typing
judgment in the ML core. However, we are actually interested in an algo-
rithm that tells us whether a given (implicitly typed) core-ML expression is
type correct, and if so, what its principal type is. Given an assumptiok set

and an expressioa , it returhVgA € = (S 1) , whereSis a substitution

andt atype. We want this algorithm to $ytactically soun@andcomplete

» Syntactic soundness: M(A @ = (S1) , theBAt e:t is a valid

typing judgment, that is, we can prove it in the inference system.

* Syntactic completeness amgtincipal typing WheneverAf e: 1 ,
thenW(A 9 = (S 1) terminatesand=t is a principal type&r un-
derA.

The following algorithm from [DM82] has the desired properties, as proved

in [Dam83]. inst(Ua,...a.1) replaces each occurrencecef Ttin with a

fresh type variable, anden is defined as in the inference rules.

WA ¥ =
(Id, inst_ (A(X)))
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WA e § =
let  (ST) =W(A ¢
(S, 1) =W(SA §
B be a fresh type variab
U=mgu st 1 - f)
in  (USS UR)
W(A AX.e) =

let B be afresh type variab
(ST) =WA[B/X], €)
in (S(P) -1)
WAlet x=e in €)=
let  (ST) =W(A ¢
(S, ) =W((SA [gen(SAT)/X], €)
in (SST)

The functionmgut,, T,) computes most general unifiet) for 1, andt, ,
which is a the most general substitution such that = Ut, , iIf one exists,

otherwisemgu fails. The idea is that we substitute actual types for the fresh
type variables generated by applications inét (Ua,...a .T) , and that

when the algorithnW terminates, we have constructed a proof in our infer-
ence system whose structure corresponds to the structure of the expression
itself.

2.3.2 Order-Sorted Unification for Haskell

In Haskell, we have a three-level world consisting of values, types, and type

classes. While types in core-ML are not classffjedaskell type classes
classify types into partially orderesbrts This is in contrast to those type

LActually, in Standard ML types are classified in types with and without an equal-
ity operation defined for them.
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systems where types themselves are partially ordered, for example the one
of OBJ [FGJM85].0rder-sorted unificatiofMGS89] can be used to obtain
a type reconstruction algorithm in an order-sorted type system such as
Haskell's; this is described in [NS91].
An order-sorted signatur€ consists of three parts, a setsoft symbols
asort hierarchy and a set odrity declarations The sort hierarchy is simply
an partial order on the sorts. Arity declarations are of the form
X (Y - Y)Y, Wherex is a type constructor apd/,, ..., Y, are sorts. The

set oforder-sortedtype expressions is the least set satisfying the following
two conditions:

* If T has sorty and/<y in the sort hierarchy, then also hasysort
* If the type expressions,, ..., T, have soyts...,y, , respectively, and
X (Yy - Y)Y is in the set of arity declarations, then the application

X(ty ..., 1) of the type constructor has sgrt

Substitutions are defined as in Section 2.3.1, but in addition, they must be
sort-correct If type variablea has sony , expressed by Writkm\g , then

S(a) must also have soxt

The following example of a sort hierarchy shows the Haskell numeric
class hierarchy:

Q
_
/ \
Ord Num
Real Fractional
Integral RealFrac  Floating

RealFloat



32 Chapter 2 Preliminaries

As an example for a set of arity declarations, consider the following decla-
rations for the type constructopmir  ahst

pair : (Q,Q)Q

pair : (Eq, EQ Eq

pair : (Ord, Ord) Ord

list : (Q) Q

list : (Eq) Eq

list : (Ord) Ord

list : (Num) Num

list : (Q) Q

Given a sefl’ of equations over type expressions constructed@rom , a

unifier of I' is a substitutior® such th#(t,) = 6(t,) for all equations
T, = 1, inT. Anorder-sorted signature is calleditary if for all such equa-

tion setsl’ there is a complete set of unifiers containing at most one element.

Since unitary signatures guarantee principal types, we give the following
conditions from [SS85] to guarantee thdirate signature is unitary:

* Regularity Each type has a least sort.

» Downward completenesény two sorts have either no lower bound or
an infimum.

* Injectivity: X : (Yy, ...,y )yandx: (Yy, ....Y,)y implyy, =y, forall

* Subsort reflectionx : (Y, ....Y,) Y andy <y implyX : (Yy - Y)Y

for somey, 2v,, ...,y,2Y, -

Haskell imposes context conditions to guarantee that the signatures that
arise in Haskell programs are unitary; this is further discussed in Chapter 5.
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2.4 Semantics

It is often convenient to use denotational semantice® reason about the
evaluation ofA-expressions. A denotational semantics is given in terms of
an evaluation function that mapgntactic termgo semantic valueg ase-
mantic domainThe evaluation functiore[e] p  interprets an expresson

in theenvironmenp and returns a value in tl®mainV. An evaluation en-

vironment is a finite mapping from identifiers to semantic values. A seman-
tic domain is an algebraic structure that allows us to represent (semantic)
values corresponding to the (syntactic) entities in our calculus.

2.4.1 Recursive Domains

The notion of domains goes back to [SS71]. To illustrate this notion, we re-
call that in the untyped-calculus we start out with the built-in constants

(integers, Booleans, etc.) and are able to define functions over the constants.
We can further define functions that range over these functions and so on.
This structure is reflected in the definition of the domin that satisfies the
following isomorphism:

VOB+ N+ (V- V) + {wrong}

Here+ stands for the coalesced sum, so that all types\over share the same
least element] . In other word¥, is isomorphic to the sum of the Boolean
valuesB , the natural numbeiks |, the continuous functions ¥omV to , and

a valuewrong representing runtime type errors.

Solutions of equations of this kind can be found in the class of continu-
ous functions over complete partial orderscé@mplete partial orde(cpo)
consists of a séd and a partial oraer @n  such that

e there is a least element M , and

* each increasing sequenogs...<X <... has a least upper bound

(lub) O . X, -
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A functionf is continuous iff it preserves lubs of increasing sequences, that

is,
(2 0% = Hhx o)
An element of a cpo is called-finite iff whenever it is less than the lub of
an increasing sequence it is less than some element in the sequence. Finally,
adomainis defined as a cpo satisfying the following conditions:
» Consistently completeAny consistent subset &f has a least upper

bound, whereX 0V igonsistenif it has an upper bound i

» w-algebrac: V has countably mango-finite elements, and given any
x [V, the set otw-finite elements less than is directed and kas as
its least upper bound.

The w-finite elements in any subs¥t of a cpo are denoted°by

Our domainV can be constructed via a limiting process described in
[Smy77].
2.4.2 Weak ldeals

Ideals [MPS86] capture the notion of sets of structurally similar values and
have proven to be a useful model for types. As a detailed treatment of the
ideal model goes beyond the scope of this dissertation, we confine ourselves
to a summary of the properties relevant to our work.

A subsetl of a domai® is @eak) idealiff it satisfies the following
conditions:

o | £0,
e forallydl andxOD ,x<y impliexO1 , and

« for all increasing sequencex [ x| for at 0 impliés U

Ideals have the pleasant property that they form a complete lattice with their
greatest lower bounds given by set-theoretic intersection and their least up-
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per bounds given by the following formula, stating that finite lubs are given
by set-theoretic union:

(D1 = 03,)

The ideals over domaid formamplete metric spac®n which a Ba-
nach fixed-point theorem holds. This allows us to model recursively defined
types as fixed points afontractive map®n ideals. The maps on ideals cor-
responding to the type constructors in our type model (see Section 3.6.3) are

contractive and consequently, our recursively defined algebraic datd types
have a well-defined semantics.

Lalgebraic data types in our language are a restricted version of ML datatypes.



3 An Extension of ML with First-
Class Abstract Types

This chapter presents a semantic extension of ML, where the component
types of a datatype may be existentially quantified. We show how datatypes
over existential types add significant flexibility to the language without even
changing ML syntax. We then describe a deterministic Damas-Milner type
inference system [DM82] [CDDKS86] for this language, which leads to a
syntactically sound and complete type reconstruction algorithm. Further-
more, the type system is shown to be semantically sound with respect to a
standard denotational semantics.

3.1 Introduction

In ML, datatype declarations are of the form

datatype [arg] F kof | T ] Kef T

1 n

where theK ’s are value constructors and the optional prefix arguangnt
is used for formal type parameters, which may appear free in the component
typest; . The types of the value constructor functions are universally quan-

tified over these type parameters, and no other type variables may appear
free in thet, 's.

36
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An example for an ML datatype declaration is
datatype 'a Mytype = mycons of 'a * ('a -> int)

Without altering the syntax of the datatype declaration, we now give a
meaning to type variables that appear free in the component types, but do
not occur in the type parameter list. We interpret such type variables as ex-
istentially quantified.

For example,

datatype Key = key of 'a * ("fa -> int)

describes a datatype with one value constructor whose arguments are pairs
of a value of typéa and a function from typ& toint . The question is

what we can say abotd . The answer is, nothing, except that the value is

of the same typéa as the function domain. To illustrate this further, the
type of the expression

key(3,fn x => 5)

is Key, as is the type of the expression

key([1,2,3],length)

wherelength is the built-in function on lists. Note that no argument types
appear in the result type of the expression. On the other hand,

key(3,length)

is not type-correct, since the type ®is different from the domain type of
length

We recognize thakey is an abstract type comprised by a value of some
type and an operation on that type yieldingir@in . It is important to note
that values of typ&ey are first-class; they may be created dynamically and
passed around freely as function parameters. The two different values of
type Key in the previous examples may be viewed as two different imple-
mentations of the same abstract type.
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Besides constructing values of datatypes with existential component
types, we can decompose them usingléte construct. We impose the re-
striction that no type variable that is existentially quantifiedlet aexpres-
sion appears in the result type of this expression or in the type of a global
identifier. Analogous restrictions hold for the correspondipgn andab-
stype constructs described in [CW85] [MP88].

For example, assumingis of typeKey, then

let val key(v,f) = xin
fv
end

has a well-defined meaning, namely the result off applied tov. We

know that this application is type-safe because the pattern matching suc-
ceeds, sinc& was constructed using construckey , and at that time it was
enforced that can safely be applied ta On the other hand,

let val key(v,f) = x in
%
end

is not type-correct, since we do not know the type atatically and, con-
sequently, cannot assign a type to the whole expression.

Our extension to ML allows us to deal with existential types as described
in [CW85] [MP88], with the further improvement that decomposed values
of existential type aréet -bound and may be instantiated polymorphically.
This is illustrated by the following example,

datatype 'at =k of (a->'b) * (b -> int)

let val k(f1,f2) = k(fn x => x,fn x => 3) in
(f2(f1 7),f2(f1 true))

end

which results in3,3) . In most previous work, the value on the right-hand
side of the binding would have to be bound and decomposed twice.
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3.2 Some Motivating Examples

3.2.1 Minimum over a Heterogeneous List

Extending on the previous example, we first show how we construct heter-
ogeneous lists over different implementations of the same abstract type and
define functions that operate uniformly on such heterogeneous lists. A het-
erogeneous list of values of tyey could be defined as follows:

val hetlist = [key(3,fn x => Xx),

key([1,2,3,4],length),

key(7,fn x => 0),

key(true,fnx=>ifxthen1else0),

key(12,fn x => 3)]
The type ohetlist isKeylist ;itis a homogeneous list of elements each
of which could be a different implementation of tylley. We define the
functionmin, which finds the minimum of a list ¢dey’s with respect to the
integer value obtained by applying the second component (the function) to
the first component (the value).

fun min [x] = x
| min ((key(v1,f1))::xs) =
let val key(v2,f2) = min xs in
if f1 vl <=f2 v2 then
key(v1,f1)
else
key(v2,f2)
end

Thenmin hetlist returnskey(7,fn x => 0) , the third element of the
list.

3.2.2 Stacks Parametrized by Element Type

The preceding example involves a datatype with existential types but with-
out polymorphic type parameters. As a practical example involving both ex-
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istential and universal quantification, we show an abstract stack parame-
trized by element type.

datatype 'a Stack =

stack of {value b,
empty S o}
push 'a->'b->"b
pop 'b->"b
top b ->"a,

isempty :’b -> bool}

An on-the-fly implementation of aint Stack  in terms of the built-in type
list can be given as

stack{value =[1,2,3], empty =],
push = fn x =>fn xs => X :: XS,
pop =tl, top = hd, isempty = null}
An alternative implementation obtack could be given, among others,
based on arrays. We provide a constructor for each implementation:

fun makeListStack xs = stack{value = xs, empty =[],
push = fn x => fn xs => x :: xs, pop = tl,
top = hd, isempty = null}

fun makeArrayStack xs = stack{...}

To achieve dynamic dispatching, one can provide stack operations that work
uniformly across implementations. These “outer” wrappers work by opening
the stack, applying the intended “inner” operations, and encapsulating the
stack again, for example:

fun push a (stack{value = v, push = pu, empty = e,
pop=po,top=t,isempty=i}) =
stack{value = pu a v, push = pu,
empty = e, pop = po,
top = t, isempty = i}
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Different implementations could then be combined in a list of stacks, and we
can uniformly apply the wrappgush to each element of the list:

map (push 8) [makeListStack [2,4,6],
makeArrayStack [3,5,7]]

3.2.3 Squaring a Heterogeneous List of Numbers

The next example shows that datatypes with existential component types
provide high extensibility. The following type describes an abstract data
type consisting of a number and a multiplication function that can be used
on the number:

datatype Mult = mult of 'a * ('fa * 'a -> ’a)
We define a function that squares an abstract number:
fun square(mult(x,f)) = mult(f(x,x),f)

Now we can square each element of a heterogeneous list of numbers in the
following fashion:

map square

[mult(3, op * :int * int -> int),

mult(7.5, op + : real * real -> real)]

New functions using the abstract typtult can be added easily without
modifying the previous definitions. This provides high extensibility in com-
parison with the closure approach; see also the example in Section 2.1.2. For
example, we can add a functicaobe and raise each element of a list to its
cube:

fun cube(mult(x,f)) = mult(f(x,f(x,x)),f)

map cube [mult(8, op * : int * int -> int),
mult([1,2,3], op @)]
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3.2.4 Abstract Binary Trees with Equality

This example shows that abstract data types with binary operations can be
modeled conveniently and naturally using existential types. This is in con-
trast to the tree example in Section 2.1.2. We start with the following
datatype declaration:

datatype Tree = tree of {value : b,

empty :’'b

eq :’'b *’'b -> boaol,
left :’b->"'Db,

right :’b->"b,

join  :’b*’b->'b}
Assuming that has type€lree , we can now check whether the left and right
subtrees of are equal:

let val tree{value=v,left=l right=r,eq=eq,...} =t
in

eq(l v,rv)
end

As opposed to the closure approach, where we would have to convert both
subtrees to a common representation, we can take advantage of the fact that
two subtrees of a tree already have the same representation.

3.3 Syntax
3.3.1 Language Syntax
Identifiers X
Constructors K
Expressions e =x [e,e) ¢€ Axe |

let x=e in € |

data Uo,...a .x in e[K|is K|
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let Kx=e in €

In addition to the usual constructs (identifiers, applicatianabstractions,

and let expressions), we introduce desugared versions of the ML con-
structs that deal with datatypes.data declaration defines a new datatype;
values of this type are created by applying a constru€tor , their tags can be
inspected using ais expression, and they can be decomposed by a pattern-
matchinglet expression. Further, we require each identifier bound by a

or let expression to be unighe
The following example shows a desugared definition of ML'’s list type
and the associated length functiom; introduces a recursive type as de-

scribed below.

data Oa. (uB.Nil unit Cens axp) in
let length =fix lengthA xs. A
if (is Nil xs)
0
(let Cons ab = xs in
+ (length(snd ab)) 1)

length(Cons(3,Cons(7,Nil())))
3.3.2 Type Syntax
Type variables a
Skolem functionsk
Types T o=unit |[bool fo fr,x1, -1 |
K(Ty 0 T X

Recursive types X =pp.Kn; +... +K n, wherg # KJ. for

1of course, one would use a static, block-structured scoping discipline in practice.
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i Z]
Existential types n :=0.n ¢
Type schemes ¢ :=la.c 1

Assumptions a u=o0/x Hag.o .x/K

Our type syntax includes recursive types and Skolem type constructors ;

the latter are used to type identifiers bound by a pattern-matdéing
whose type is existentially quantified. Explicit existential types arise only
as domain types of value constructors. Assumption sets serve two purposes:
they map identifiers to type schemes and constructors to the recursive type
schemes they belong to. Thus, when we WALEK) , we meamwthe such

that 0 = Day...a.... +Kn +.... Further, le2[Kn] stand for sum type

contexts such ak,n, +... +K_n_,whekg = K and=n for some

3.4 Type Inference

3.4.1 Instantiation and Generalization of Type Schemes

Ua,...a,.t=1 iff there are types,,...T, such that

10y n

U =1[1/0y ..., 1/0.]

(o ..o .t<T iff there are types,,...T, such that

1 n

U =1[1/0y ..., 1/0]

gen( A1) = O(FV(T)\FV(A)).T
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skolem( ALy,...y,.-T) =T1[K (0, ...a,)/y] wherek,...k_ are new

Skolem type constructors such that
{Ky K} nFS(A =0, and

{Og 0} = FV(Oyy, 1) \FV(A)

The first three auxiliary functions are standard. The funcsikoiernr replac-
es each existentially quantified variable in a type by a unique type construc-
tor whose actual arguments are those free variables of the type that are not
free in the assumption set; this reflects the “maximal” knowledge we have
about the type represented by an existentially quantified type variable. In
addition toFV , the set of free type variables in a type scheme or assumption
set, we use-S , the set of Skolem type constructors that occur in a type
scheme or assumption set.

3.4.2 Inference Rules for Expressions

The first five typing rules are essentially the same as in [CDDK86].

(VAR) A(X) =T

AfFXx:t
(PAIR) Ate 1y Ate T,

At (epe) iTXT,
(APPL) Ate: T 5T Ate:T
Ateé:t

Alt/x] fFe:t
(ABS) ALAxe: T -1
(LET) Ate:t Algen(At)/Xx] £ €:T

Atlet x=ein €:T
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The new rules DATA, CONS, TEST, and PAT are used to type datatype dec-
larations, value constructoris, expressions, and pattern-matchiafy ex-
pressions, respectively.

o = Uoy...o,.up.Kng +... +K.n,
FV(o) = O Alo/Ky, ...,0/K ] Fe:it
Atdata o in e:t

(DATA)

The DATA rule elaborates a declaration of a recursive datatype. It checks
that the type scheme is closed and types the expression under the assumption
set extended with assumptions about the constructors.

(cons)y A(K 2uBZ[Kn]  n[uB.=[Kn]/B] <t
At K:tT- uB.Z[Kn]

The CONS rule observes the fact that existential quantification in argument
position means universal quantification over the whole function type; this is
expressed by the second premise.

(TEST) A(K) =2pB.2[Kn]
Atis K: (uB.Z[Kn]) - bool

The TEST rule ensures th&t K  is applied only to arguments whose type

is the same as the result type of construétor

At e:puB.Z[Kn] FS(T) OFS(A
(PAT) Algen( A skolerd A [uB.2[Kn]/B]))/x] F€:T
Atlet Kx=ein €:T1

The last rule, PAT, governs the typing of pattern-matclenhg expressions.

It requires that the expressi@en be of the same type as the result type of the



Section 3.4 Type Inference 47

constructorK . The bod¢ is typed under the assumption set extended with
an assumption about the bound identifker . By definition of the function
skolemn, the new Skolem type constructors do not appeak in ; this ensures
that they do not appear in the type of any identifier free' in  otherxhan

It is also guaranteed that the Skolem constructors do not appear in the result
type 1.

3.4.3 Relation to the ML Type Inference System

We compare our system with Mini-ML’, an extension of Mini-ML with re-
cursive datatypes, but without existential quantification. Mini-ML' has the
same syntax as our language. The type inference system of Mini-ML’ con-
sists of the rules VAR, PAIR, APPL, ABS, and LET, and the following mod-

ified versions of the remaining rufes

o = Uog...o.up.Kt +.. +K T

FV(o) = O Alo/Ky, ....0/K ] Fe:it

(DATA) TG T
(cons) —AK) =pB.2 [KT]

AFK:T- uB.Z[KT]
(TEST’) A(K) 2 pB.2 [K1]

Atis K: (uB.Z[KT]) - bool

At e:uB.Z[KT1]

(PaTy  ALGEN(AT[uB.2[KT]/B])/x] pe:T
Atlet Kx=ein €:T

Theoretically, it is sufficient to modify only the DATA rule to preclude that exis-
tential quantifiers arise in the inference system; however, it is more illustrative
to present modified versions of the CONS, TEST, and PAT rules as well.
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Theorem 3.1[Conservative extension] For any Mini-ML' expressien ,
Atretiff Abyve € T

Proof: By structural induction ore

Corollary 3.2 [Conservative extension] Our type system is a conservative
extension of the Mini-ML type system described in [CDDK86], in the fol-
lowing sense: For any Mini-ML expressi@en A - e: T iIff

A Frtini-mL €7 T

Proof: Follows immediately from Theorem 3.1.

3.5 Type Reconstruction

The type reconstruction algorithm is a straightforward translation from the
deterministic typing rules, using a standard unification algorithm [Rob65]
[MM82]. We conjecture that its complexity is the same as that of algorithm
W.

3.5.1 Auxiliary Functions

In our algorithm, we need to instantiate universally quantified types and
generalize existentially quantified types. Both are handled in the same way.

inst- (Ua,...a .1) =t1[B/ay,...,B /o] whereB,, ..., B, arefresh
type variables

inst- (Lo, ...a 1) =t[B/0ay,...,B /0] whereB,, ..., B, arefresh
type variables

The functionsskoler andyen are the same as in the inference rules, with
the additional detail thagkolenr always creates fresh Skolem type construc-
tors.
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3.5.2 Algorithm

Our type reconstruction function takes an assumption set and an expression,
and it returns a substitution and a type expression. There is one case for each
typing rule.
TC(A X =
(Id, inst5 (A(X)))

TC(A (g.&)) =
let  (S,1) =TC(A §)
(Sy 1) =TCHSA e,F
in (S,5,S,1,%1,)
TC(Ae¢§ =

let (ST) =TC(A ¢
(S,7) =TC(SA §
B be a fresh type variab
U=mgu( S, T - B)

in (USS UpR)

TC(AAx.€) =

let [ be afresh type variabl
(ST) =TC(A[B/X],€)
in (S P -1)

TC(Alet x=ein ¢€) =

let  (S1) =TC(A 9
(S,t) =TC(SA gerf SA)/X],¥€)
in (SST)
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TC(Adata o in e =
let Oa,...o .pp.Kn,+...+K n, =0 in

if FV(o)=0 then
TC(A[o/Ky, ...,0/K_],€)

TC(A K =
let 1 = inst; (A(K))

MB....+Kn+.. =1
in (Id, (insty(n[t/B])) - 1)

TC(Ais K) =
let T =inst; (A(K))
in (ld, T - bool)

TC(Alet Kx=ein ¢€) =

let (ST) =TC(A ¢
U = mgyC, inst,(A(K)))

up....+Kn+... = Ut
T, = skolem( USAn [Ut/[3])

(S, 1) =TC(USA gerf USA,)/x], €)

if FS(T) OFS(SUSA O
(FS(1,) \FS(N[U1/B])) n FS(SUSA = [

then (SUST)

3.5.3 Syntactic Soundness and Completeness of Type
Reconstruction
Since any two type schemes that differ only by renaming of bound variables

instantiate to the same set of types, it is convenient to treat them as equiva-
lent. This expressed by the following lemma:
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Lemma 3.3[Equivalence under renaming] Let, = Ua,...a, .1, and
0, = UB;...B, (T[By/0ay, ..., B/0]) . Theno, 21 iffo, =1 for any type

T.

Proof: Follows immediately from the definition of instantiation.

Lemma 3.4 [Stability of 2] If c>1, thenSo> St .

Proof: By definition,o = Dal...an.To andr = TO[Tl/(Xl, ...,Tn/an] for

some types,, ..., T, . Since thee ’'s may be renamed consistently, we

n
assume thata,, ...,a.} n (DomSO FMRngS) = [ . Consequently,
So = Uay...qa,.St1y2 (Sro) [St,/ay, ..., St /o] = St, by definition

of >.
Lemma 3.5[Stability of gen] Sgert At) = ger(SA §).

Proof: Follows from the definition ofjen , assuming that
(FV() \ FV(A) n (DomSO FMRngS) = O.

Lemma 3.6[Stability of skolenr] Sskolerq An) = skolenf SA &) .

Proof: Similar, using the definition ofkolenr and an appropriate renaming.

Lemma 3.7[Stability of + ] If A} e: 1 andS is a substitution, then
SAt e: St also holds. Moreover, if there is a proof tree fo-e: 1 of
heightn, then there is also a proof tree A} e: St of height less or

equal ton .

Proof: By induction on the height of the prooftree fArl- e: 1 . We have

one case for each type inference rule, but include only the nonstandard
cases.



52 Chapter 3 An Extension of ML with First-Class Abstract Types

At data Oaj..a uB.Kn;+...+K n in e:t
The premise isA[o/K,...,0/K | | e:T , where
o = Uay...o .uB.Kn, +... +K n... SinceFV(o) = O , we have
So = o. By the inductive assumption,
S(A[o/K, ...,0/K]) I e:St, where
S(A[o/Ky, ...,0/K]) = (SA [0/K,, ...,0/K ] . Finally, we apply
the DATA rule and obtainSA}t data ¢ in e: St

ArK:1t- pp.Z[Kn] and

Atis K: (uB.Z[Kn]) - bool

The claim follows from stability o& under substitution.
Atlet Kx=ein €:1

Assuming that3 0 DomS[ FMRngS , we have

S(uB.2[Kn]) = pB.2[K(Sn)] and

S(n[KB.2[Kn]/B]) = (Sn) [MB.Z[K(Sn)]/B] .

We apply the inductive assumption to the first premise, obtaining
SAt e: uB.Z[K(Sn)] , and to the last premise, obtaining

S(A[ gef A skolem A [UB.Z[KN]/B]))/X]) + € : St . Further,
S(A[ gefi A skolem, R [UB.Z[Kn]/B]))/x]) =

(SA [Sgerf A skoletn A [UB.Z[Kn]/B]))/X] =

(SA [gen(SA skole(n SA n$[uB.Z[K(Sn)]/P]))/X] , using
Lemma 3.5 and Lemma 3.6.

Finally, we observe thafSt') OFSA impliesYI) 0FYSA , and
the claim follows by applying the PAT rule.
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Theorem 3.8[Syntactic soundness] FTC(A @ = (S1) ,theBAft e:T

Proof: A straightforward application of Lemma 3.7. We show the only
tricky case:

TC(Alet Kx=ein €) = (SU,T)
By applying the inductive assumption to the first recursive callGo

we haveSAt e: 1 . Sincengyt, inst (A(K))) succeeds with , we

know thatA(K) > Ut , whenc&t is of the forp3.2[Kn] . By
Lemma 3.7,SUSAt e: SUT . We now apply the inductive assump-
tion to the second recursive call and get

S (USA[ geit USA skolgm USW[UT/B]))/x]) +€:1 .
We use Lemma 3.5 and Lemma 3.6 to obtain

(SUSA) [gen SUSA skoleh'®SA S(n[Ut/B])))/X] +e:1,
whereS (n[ (Ut)/B]) = (Sn) [SUt/B] . The subsequerit state-
ment ensures that none of the fresh Skolem constructors escape the
scope of thdet expression. Hence, the PAT rule applies and our

claim is proved.

Definition 3.1 [Principal type]t is a principal type of expressien under
assumption seA A} e: 1 and whenevérf e: T then there is a sub-

stitution S such thatt = '

Theorem 3.9[Syntactic completeness] A e:T ,thelC(A e suc-
ceeds withTC(A @ = (S 1) and there is a substituti@n such that

A

SA = RS/Zand? = Rt .

Proof: Analogous to the completeness proof given in [Dam85]. We show
only the new cases:
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SA  data Dog..a  uB.Kng+...+K nin e:1

m
Leto = Day...a .uB.Kn, +....SinceFV(o) = O ,we havéo = o
The other premise iSA' + e: T , whe = Alo/Ky, ..., 0/K ]
By the inductive assumptioM,C(A,e) = (S 1) , where there is a sub-
stitution R such thaBA' = RSA an#l = Rt . HendeC(A data ...)

succeeds with(S 1) . SincBA' = RSA SA = RS/ also holds,

whenceR is our desired substitution.

SAFK:T - uB.Z[KA]

It is clear from the premises th&A\(K) is of the foome Hoy...a.p
wherep = uB.Z[KIB;...B.Ty] ; furtherFV(o) = U , since must
have been declared in a surrounduhga expression. Therefore,
SA(K) = A(K), and the instantiationmst, andst;  succeed, such

thatt = (15 - p) [a'i/ai,B'j/Bj] , where thex', anfl’

. arefresh type

variables. By definition ok and , there are types..., 1, and
Ty, ..., T, such thatt - uB.2[KA] = (15 - p) [ti/ai,r'j/Bj] :
Finally, by choosingR = S+ [t/a0, T;/B;] . we have

Rt = T - uB.=Z[KA] andRIdA = A, since
Fv( O {a'y,...,0, By - B} and

FV(A) n {a'y, 0 By o B = 0

SAtis K: (MB.Z[KA]) - bool

This case is analogous to the preceding one.

SAtlet Kx=ein €:%
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Again,éA(K) = A(K) must be of the forns = Ua,...a,.p , where

P = UB.Z[Kny] . Therefore,inst (o) = p[a’,/a;] , where the', are
new variables. We apply the inductive assumption to the first premise,
SA | e: uB.Z[KA] , whenceTC(A & = (S 1) andthereisdh such

thatSA = RS/ andRt = uB.Z[KA] = pB.Z[K(ng[t/a])] .

In the first caser = a , thuR = [uB.Z[K(r]O[fi/ai])]/O(] . Further,
mgu succeeds witld = [p[a’/a.]/a] anR = [fi/a'i] U |, there-

fore RU = R andn = ny[a’/a;] . Consequently,

A

SA = RSA= RUS andA[uB.Z[KA]/B] = R(n[Ut/B]) .
In the second case, = uB.Z[K(ny[t,70;])] , wheRe, = fi . Therefore,

mgusucceeds withy = [t,/a%] .Sincetle,  occur onlyinst (o)
we haveUt = 1 and) = ny[1,/0;] . FurtheBA = RSA= RUS,

andf [uB.Z[KA]/B] = R(n[Ut/P]) .

In either case, we can apply Lemma 3.7 to the last premise, obtaining
((RUSA [gen RUSA skole(RUSA Rn[Ut/B])))/x]) +€:T.
By applying Lemma 3.5 and Lemma 3.6, we get
R((USA [gen USA skole@SAnNn[UT/B]))/X]) +€:T .
Next, the inductive hypothesis gives T€(A, €) = (S, 1) , Where
A' = USA[ geff USA skoldtdSA n[Ut/B]))/X] , and anR such that
RA = RSA' and® = RT . ThenRSUSA= RUSA= RSA &
also holds.
Finally, FS1") = F§Rt) O FS(ASA) = FYRSUSA implies
FS1) OFYSUSA. This, together with the definition skolenr guar-
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antees that thd statement succeeds. Consequé@(p let ...)

succeeds with(SUS 1) , anB s the desired substitution.

Corollary 3.10 [Principal type] HTC(A @ = (S 1) , thent is a principal
type fore underA .

3.6 Semantics

We give a standard denotational semantics. The evaluation furt€tion maps
an expressiore [ Exp to some semantic value , in the context of an eval-
uation environmenp O Env . An evaluation environment is a partial map-
ping from identifiers to semantic values. Runtime type errors are represent-
ed by the special valugrong . Tagged values are used to capture the seman-
tics of algebraic data types.

We distinguish between the three error situations, runtime type errors
(wrong), nontermination, and a mismatch when an attempt is made to de-
compose a tagged value whose tag does not match the tag of the destructor.
Both nontermination and mismatch are expressed by

Our type inference system is sound with respect to the evaluation func-
tion; a well-typed program never evaluatesatmng . The formal proof for
semantic soundness is given below.

It should be noted that we do not commit ourselves to a strict or non-
strict evaluation function. Therefore, our treatment of existential types ap-
plies to languages with both strict and non-strict semantics. In either case,
appropriate conditions would have to be added to the definition of the eval-
uation function for pair expressions, function applicatidets, expressions,
and pattern-matchinigt expressions: the strict evaluation function returns

[0 whenever a subexpression evaluatesSito , while the non-strict evaluation

function retaind] as the value of that subexpression.
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3.6.1 Semantic Domain

Unit value U = {unit}

Boolean values B = {false, true}

Constructor tags C
Semantic domain
VOU+B+ (V- V) + (VxV) + (CxV) + {wrong}

In the latter definition oV #+ stands for the coalesced sum, so that all types

overV share the sanie

3.6.2 Semantics of Expressions
The semantic function for expressions,
E:Exp- Env- V,

is defined as follows:

Elx]p = p(x)
El(epe)]1p = [E[e]p,E[e)]pl
E[e€d] p =
ifE[€e] p OV > Vthen
(Elelp) (E[€]p)
else wrong
E[Ax.€e] p = AvUOV.E[e]l(p[v/X])

E[let x=ein €]p =

Ele] (p[E[e] p/X])
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E[data o in e]p =

Elelp
E[K] p = AvOV.IKMC
E[is K]p = AvOV.ifvO {K} xV then true else false

E[let Kx=ein €]p =

E[€] (p[if E[e] p O {K} xV then
snd (E[e] p)
else 0/x])

3.6.3 Semantics of Types

Following [MPS86], we identify types witlveak idealsover the semantic
domainV . A type environmend [0 TEnv is a partial mapping from type

variables to ideals and from Skolem type constructors to functions between
ideals. The semantic interpretation of types,

T: TEXp - TEnv- O (V)

is defined as follows.

T [unit] @ = U
T [bool] Y - B

Tla]y = Y(a)
TltyxtlJe = Tty xTT,]g
Tt -7l = Tty - T[T]Y

TIk(Ty o T) 1Y =
W) (Tlrdw, ... Tt Jw)
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TIHB.S KN 1w = WA OOW).3 {K} x TIn ] (WII/B]) E

T[o.oly = ISD)\IDD(V).T[O] (w[l/a])

T[fo.n]w %MDD(V)-T[H](UJ[VG])

The universal and existential quantifications range over thé&lgetl (V)

of all ideals that do not contawrong . Note that the sum in the definition
of recursive types is actually a union, since the constructor tags are assumed
to be distinct. It should also be noted that our interpretation does not handle
ML's nonregular, mutually recursive datatypes. An adequate model can be
given by extending the semantics described in [MPS86] to handle full ML
datatypes [Aba92]; the machinery for this model is given in [Plo83]. An ad-
equate semantics can also be found in the PER model described in [BM92].

Theorem 3.11The semantic function for types is well-defined.

Proof: As in [MPS86]. We observe that
AMDOOWMNV).S{K} xTn] ([lI7a]) is always contractive, since

cartesian product and sum of ideals are contractive; therefore, the fixed
point of such a function exists.

Lemma 3.12Let Y be a type environment such that for evaryl Domy :

wrong O Y (a) . Then for every type schene wrong O T[o] W
Proof: By structural induction om

Lemma 3.13[Substitution]
Tlo[o/a]]y = T[o] (W[T[oTy /a])

Proof: Again, by structural induction oa
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Definition 3.2 [Semantic type judgment] LeA be an assumptionset, an

expression, and a type scheme. We defilngw A as meaning that
DomA [0 Domp and for everyx O DomA ,p(x) O T[AX]¢ ; further, we
say A I:p y €0 iff |:p " A implies E[e] p OT[o]W¥ ; and finally,

A F e: o meansthat foralp OEnv ang OTEnv we ha\/JeI:p y 0

Theorem 3.14[Semantic soundness] he: 1 thelhfke:T

Proof: By induction on the size of the proof tree fArt- e: 1t . We need to

consider each of the cases given by the type inference rules. Applying
the inductive assumption and the typing judgments from the preceding
steps in the type derivation, we use the semantics of the types of the
partial results of the evaluation. In each of the cases below, chlipose

andp arbitrarily, such that|:p qJA . We include only the nonstandard
cases. Lemma 3.13 will be used with frequency.

A tdata Oog...a .pp.Kn,+...+K n_in e:t
The premise in the type derivationfs[0/K,, ..., 0/K_] te:t
whereo = Ua,...a .uB.K;n, +... +K_n_. Since by definition,

I:p lIJA[G/Kl, ...,0/K_] , we can use the inductive assumption to ob-

tain E[data Oa,..a .x in e]p =E[e]p OT[t]y

AFK:1T5 uB.2[KN]
The last premise in the type derivatiomigup.Z[Kn] /B] <1 , Where

n = Oy;...Y,-T. By definition of instantiation of existential types,
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T = f[Tj/yj, MB.Z[Kn]/B] for some types,, ..., T .

First, choose an arbitrary 0 T[T] and a fingev . Now,
al  (T[E[/y, uB-Z[KN]/B]])"
= (TIT[MB-Z[Kn] /Bl ] (WIT[T W /y]))°

0 0 (TIRBE[KN] /BT (@ [3/%]))°
= 0 O TIRMBI[KnI/BI] (W)
0

= (TIn [WB.Z[Kn]/BlTW)"° .
Hence, v = [M{a|afiniteanda<v} OT[n [uB.Z[Kn]/B]]1Y , by

closure of ideals under limits. Consequently,
(K, vid {K} xT[n [uB.Z[Kn]/B]]W
O o+ {K} xT[n [WB.Z[Kn]/BITW +...
= oA {K} xTn] (WIT[UB.Z[Kn]]Ww 7B]) +...
= TIuB.Z[Kn] ]y .

Hence E[K]p OT[T - uB.Z[Kn]]W

AFis K: (uB.Z[Kn]) - bool
Choose an arbitrarw O T[puB.Z[Kn] ]y . Clearly,

(E[is K]p)vOB, whence
E[is K]pOT[(uB.Z[KN]) - boolly .

Atlet Kx=ein €:T
We follow the proofs in [Dam85] and [MPS86]. The first premise in the
type derivation isA f+ e: 1 , where = uB.Z2[Kn] and
n=0y...y,1. Let {a,...,a,} = FV(1) \FV(A) . Then, for arbi-
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traryl,, ... 1, 00, Fp,w[li/ai|i:1...k]A holds, since none of tlog s

are free inA .
Let v = E[e] p ; by the inductive assumption,
vOT[t] (@ [I;/a;]) . Consequently,

VI T wia)
= 1 ...ﬂkDDT[“B'Z[Kn]] (W [i7a;])
= o+
{K} x 1 ﬂlk S TIn (Wilizog Titl (wili/oql) 7B1)
+
First, consider the more interesting casst,(v) = K . Then
snd (v) O N [

Iy 1,003, ..,3. 00
LA (0 [/ 37y, TIE] (W1 /ag]) /1)

Let O gy s O h< k, be those variables among, ..., o that are free

in T[t/B].
We now choose a finita such thak snd (v) , thus
all p) ] (TLT[T/B]] (W [Ii/ai,Jj/yj]))°.
Iy 1,00 J,.., 3,00
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By definition of set union and intersection, there exist functions

f, . £, 00" = O(V),

such that
all N (TET[/BIT (WL f (g 1) /YD) °
Iy oo 1,00
H N T[T[1/B]] (qJ[Ii/ai,fj(Il, ..,Ih)/yj])
Iy oo 1,00

i I ...,r?hDDT[ Tk (g, o ap) /7y /BT (W [0, /K1)

= T[Oo...ap1 [Kj (g e O(h)/yj,T/B]] (Y [fj/Kj])
= T[gen(A skoleni M [1/f]))] (WIf/K])
assuming that th&j 's are the ones generatedkblem( An[1/B])

Since by definition okskolen , none of thq 's are freeAn

Fo, Wit /K] A holds and we can exterhl apd , obtaining

Fota/x), wir /] ALENC A skolert A1 [T/B])) /4 .
We now apply the inductive assumption to the last premise,

Al[gen( A skolerg M [1/B]))/x] +e:T,
and obtain

E[e] (p[arX) OTLT] (Wifi/x]l) =TItIw
sinceFS(t') OFS(A . Finally,
E[let Kx=ein €]p
= Ele] (p[snd(E[e] p)/x])
= I{E[€] (p[as/X]) |afiniteanda<snd (E[e] p)}

by the continuity ofE . The latter expression isTr U] @ by the clo-

sure of ideals under limits.
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In the second casést (v) #K . For any functidps..., f U D(\/)n - OV
we have OO T[gen( A skolent M [1/B]))] (Y [fj/Kj]) . Again,
since none of th&j 's are free M |,:p, Wit /K] A  holds and we can
extendA and , obtaining
I:p[D/X],llJ[fj/Kj] Algen( A skolerg M [1/B]))/x] .
By applying the inductive assumption to the last premise,
Algen( A skolerd A [t/B]))/x] +€: 1,
we obtain
Efe] (p[0/x]) OTIT] (WIfi/k]) = T[Ty

This concludes our proof of semantic soundness.

Corollary 3.15 [Semantic soundness] Lét be a type environment such

that for everya OO Domy wrong Oy (a) . IfAte: 1 and |:p qJA , then
E[e] p Zwrong .

Proof: We apply Lemma 3.12 to Theorem 3.14.



4 An Extension of ML with a
Dotless Dot Notation

In this chapter, we describe a extension of our language that allows more
flexible use of existential types. Following notations used in actual pro-
gramming languages, this extension assumes the same representation type
each time a value of existential type is accessed, provided that each access
is through the same identifier. We give a type reconstruction algorithm and
show semantic soundness by translating into the language from Chapter 3.

4.1 Introduction

MacQueen [Mac86] observes that the use of existential types in connection
with an elimination constructopen, abstype , or ourlet ) is impractical

in certain programming situations; often, the scope of the elimination con-
struct has to be made so large that some of the benefits of abstraction are
lost. In particular, the lowest-level entities have to be opened at the outer-
most level; these are the traditional disadvantages of block-structured lan-
guages.

We present an extension of ML that provides the same flexibility as the
dot notation described in [CL90]. In this extension, abstract types are again
modeled by ML datatypes with existentially quantified component types.
Values of abstract type are created by applying a datatype constructor to a

65
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value, and they are decomposed in a pattern-matcleihg expression.
However, we allow existentially quantified type variables to escape the
scope of the identifier in whose type they appear, as long as the expression
decomposed is an identifier and the existentially quantified type variables do
not escape the scope of that identifier. Each decomposition of an identifier,
using the same constructor, produces identical existentially quantified type
variables. We call our notation a “dotless” dot notation, since it uses decom-
position by pattern-matching instead of record component selection.

4.2 Some Motivating Examples
We assume the type declaration

datatype Key = key of 'a * ("a -> int)
in the following examples. In the first example,

let val x = key(3,fn x =>x + 2) in
(let val key(_,f) = x in f end)
(let val key(v,_) = xin v end)
end
the existential type variable in the typefoifs the same as the one in the type
of v, and the function application produces a result of igpe. This follows

from the fact that botli andv are bound by decomposition of the sdme
identifier,x. Consequently, they must hold the same value and the whole ex-
pression is type-correct.

lWe assume the ML scoping discipline, which ukgs statements as scope
boundaries; alternatively, one could require each bound identifier to be unique.
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In a language with the traditional dot notation, for example Ada, abstract
types can be modeled as packages, and an example corresponding to the pre-
vious one would look as follows:

package KEY_PKG is

type KEY is private;

X : constant KEY;

function F(X : KEY) return INTEGER,;
private

type KEY is INTEGER,;

X :constant KEY := 3;
end KEY_PKG;

package body KEY_PKG is
function F(X : KEY) return INTEGER is
begin
return X + 2;
end,
end KEY_PKG;

var Z : INTEGER;

Z := KEY_PKG.F(KEY_PKG.X);

The components of the abstract tyfieY PKGare selected using the dot no-
tation.
The following are examples of incorrect programs. For instance,

let val x = key(3,fn x =>x + 2) in
let val key(_,f) =x in
f
end
end
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is not type-correct, since the existential type variable in the tyfde ed-
capes the scope af Neither is the following program,

let val x = key(3,fn x => x + 2)

valy = x
in
(let val key(_,f) = x in f end)
(let val key(v,_) =y invend)
end

since different identifiers produce different existential type variables, al-
though they hold the same values in this case. As the latter cannot be deter-
mined statically, we must assume that the values have different types. Sim-
ilarly,

valz=(3,fnx=>x+ 2)
let val key(_,f) = key zin
let val key(v, ) = key z in
fv
end
end
is not type-correct. Since the expressions that are decomposed are not even
identifiers, we cannot assume statically thatan be applied tw.

4.3 Syntax

4.3.1 Language Syntax

Syntactically, our underlying formal language is almost unchanged, except
that pattern-matchintgt expressions only allow an identifier to be decom-
posed, not a general expression. This is not a significant restriction, since
we can always bind the expression in an enclohgbefore decomposing

it. Again, we assume that each identifier bound Ry a letor expression is

unigue.

Identifiers X
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Constructors K
Type constructorsl

Expressions e =0 true false |

x| (e,e) [ee |Axe |
let x=ein € |

data Ua,..a. .x in e|K]is K |

let Kx=X in ¢
4.3.2 Type Syntax

Type variables a

Skolem functionsk

Types T o=unit |[bool fo fr,x1, -1 |
Ky ki (T Tp) X

Recursive types X =pp.Kn;+... +K n wheﬂéi;tKj for
i #j

Existential types n :=[b.n f

Type schemes ¢ :=la.c T

Assumptions a u=o/x Hog..o..X

Our type syntax is almost unchanged. However, Skolem type constructors
are now uniquely associated with an identifter by using the symbol |, in-
dexed byx , the constructéd used in the decomposition, and the index of
the existentially quantified variablg  to be replaced.
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4.4 Type Inference

4.4.1 Instantiation and Generalization of Type Schemes

Ua,...o.t=1 iff there are types,,...T, such that
U =1[1/0y, ..., 1/0]

[o,...a,.t<T iff there are types,,...T, such that
U =1[1/0y, ..., 1/0.]

gen(AT) = O(FV(1) \FV(A)).T

skolem(A, x, K, Oy, ...y,.T) =

T[K a,)/y,] where

x K, i (O o
{ag, ..o = FV(Ly;...y,. 1) \FV(A)

Instantiation and generalization are unchanged. The modified function

skolem replaces each existentially quantified variable in a type by a unique
type constructor whose actual arguments are those free variables of the type
that are not free in the assumption set. Since identifiers are unique, we ob-
tain Skolem constructors uniquely associated with an identifier by using
the symbolk , indexed by , the construcr used in the decomposition,

and the index of the existentially quantified variaple  to be replaced. In

addition toFV , the set of free type variables in a type scheme or assumption

set, we useé~S, , the set of those Skolem type constructors that occur in a

type scheme or assumption set and are associated with idertifier

4.4.2 Inference Rules for Expressions

The first three typing rules are the same as in the original system.
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(VAR AX) =T
AbXx:t
(PAIR) Ate Ty Ate,: T,
At (e,e) 1T,%T,
(APPL) Ate: T o1 Ate:t

Albeéd:t

The ABS and LET rules are modified to prevent Skolem constructors asso-
ciated with a bound variable to escape the scope of that variable.

A[t/x] Fe:t FS(A) OFS(1) = O

(ABS) -
AFAxe:T o1

Ate:t
Alger{ AT)/x] F€:T FS(A) U FS(T) = 0

(LET) :
Allet x=ein €:1

The rules DATA, CONS, TEST remain unchanged.

O = LU U PR T e TR

FV(o) = 0O Alo/K,, ...,0/K ] fe:t

(DATA") _
Afdata o in e:t

(cons) A zuBZ[Kn]  n[uB>[Kn]/B] <t
At K:t- pB.2[Kn]
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(TEST) A(K) = pB.2 [Kn]
Atis K: (uB.Z[Kn]) - bool

A(K) 2 Uj3.2 K] A 2 HB.2 | KN
Al ger( A skolertA, x, K, n [uB.Z[Kn]/B]))/x] Fe:1
AfFlet Kx=xin e:T

(PATY)

The new PATrule does not enforce any restriction on occurrence of Skolem
constructors. It only requires that the variakle be of the same type as the
result type of the constructéd . The body is typed under the assumption

set extended with an assumption about the bound identifier

4.5 Type Reconstruction

Again, the type reconstruction algorithm is a straightforward translation
from the deterministic typing rules.

4.5.1 Auxiliary Functions
While instD and instD are as in the preceding chapter, the other auxiliary

functions are the same as in the inference rules.

4.5.2 Algorithm

Our type reconstruction function takes an assumption set and an expression,
and it returns a substitution and a type expression. There is one case for each
typing rule.

TC(A X =
(Id, inst, (A (X))
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TC(A (e, e)) =
let (S,ty) =TC(A &)
(S, 1,) =TC(SA e2)
N (S5, 5,1, 1))
TC(A e é) =

let (ST)=TC(A ¢

(S, 7) =TC(SA ¢
B be a fresh type variab
U=mgu( S, T - B)

in (USS UR)

TC(A, AX.€) =

let 3 be afresh type variable

(S1) =TC(A[B/X], €

if  FS(SAUFS(t)=0 then
(SP-1)
TC(Alet x=e in €)=
let (S1) =TC(A €
(S, 7) =TC(SA[ gen SAr)/X],€)

if FS(SSAUFS()=0 then
(SS 1Y)
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TC(A,data o in e =
let Uoj..a .uB.Kn +...+K n =0 in
if FV(o)=0 then
TC(A[o/Ky, ..., 0/K ], €)

TC(A K) =
let 1 =inst;(A(K))
MB....+Kn+... =1
in (Id, (insty(n[t/B])) - 1)

TCAis K)
let T =inst; (A(K))
in  (ld, T - bool)

TC(Alet Kx=xin €)=
let T =Inst(A(X)
U = mgyt, inst(A(K)))
uB.... +Kn+... = Ut
T, = skolem(UA, x, K, (n[Ut/B]))

(STt) =TC(UA[gen( UAT,)/X], €)

(SU, 1)
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4.5.3 Syntactic Soundness and Completeness of Type
Reconstruction

Lemma 4.1[Stability of } ]If A} e:1 andS is a substitution, then
SA} e: St also holds. Moreover, if there is a proof tree for- e: T of
heightn , then there is also a proof tree A} e: St of height less or

equal ton .

Theorem 4.2[Syntactic soundness] FC(A, e = (S1) ,theBAf e:t

Definition 4.1 [Principal Type]t is a principal type of expressien under

assumption seA A F e: 1 and whenevérf e: T then there is a sub-

stitution S such thatt = '

Theorem 4.3[Syntactic completeness] I8A | e: T , then

TC(A, & = (S 1) and there is a substitutidd  such tiodt = RS/ and
T = Rr.

Corollary 4.4 [Principal type] f TC(A, e = (S 1) , them is a principal
type fore underA .

Proof: We modify the proofs given in Chapter 3.

4.6 A Translation Semantics

We retain our original semantic interpretatigf | . Following [CL90], we
prove semantic soundness by giving a type- and semantics-preserving trans-
lation to our original language. The idea is that we can enclose an expression
e with subexpressions of the forlet K x =x in € by an outer expres-
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sion that definex’ and repladet Kx =x in € By . Thatis, we re-

placee by

let Kx,=xin e[&[x,/X]/let Kx=xin ¢€]

We chose the enclosirigt expression defining’ large enough so that no
existentially quantified type variables arising through the ineter expres-
sions escape this outer definition. Since the AB®l LET rules guarantee

that no existentially quantified variables emerging from the decomposition
of x escape the scope &f , it is safe to enclose the whole body af the or
let expression.

However, we must be careful, since the outer decomposition in the trans-
lation might fail, while the inner decomposition in the original expression
might not necessarily have been reached; this is possible if the value held by
x does not have the constructor tdg . Therefore, we need to replace by
anif expression with branches for each constructor tag in the datatype that
x has. This is reflected in the definition of the auxiliary translation function

| || below.

4.6.1 Modified Original Language

Type judgments in a modified version of the original language are of the
form A F e: 1. We modify theskolenr function and the PAT rule of our

original language:
skolenf(A, x, Ly ...y,.T) = T[K, ;(ay, ...a,)/y,] where
{a, ..o = FV(Dy;...y,. 1) \FV(A)

Unique Skolem type constructors can be generated by using the symbol

indexed by the unique namxe of the bound identifier and the index of the

existentially quantified type variabke  to be replaced.
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A e:pB.2[Kn] FS(A) OFS(T) = O

0 Alger(A skoleft(A, x, n [UB.Z[Kn]/B]))/x] F €T
(PAT®) AFlet Kx=ein ¢€:T1

Using this modifiedskolent function, the PAT rule can enforce that newly
generated Skolem constructors escape their scope by the condition
FS(A) U FS(t) = O, which expresses that no Skolem constructor associ-

ated withx may escape the scopexof
It is easy to see that this language has the same properties as the original
one, in particular, semantic soundness.

4.6.2 Auxiliary Translation Function

The bodies oA andet expressions are translated by the auxiliary func-
tion given below. It moves all pattern-matchiieg expressions that de-
compose the variable bound by the enclosing lebr expression to the

outermost level possible.
We use aonformity checkn form of a nested expression withs ex-

pressions to determine the constructor tag of the value held by . This re-

guires us to evaluatex; consequently, the resulting expression is always
strict inx. Therefore, this translation is not semantics-preserving if the orig-
inal expression was non-strict k. We need to distinguish between the
translation of the strict and the non-strict version of our language:

* In the strict language, the expression bound to is already evaluated
at binding time, and evaluating it again leaves the semantics un-
changed.

* In the non-strict language, the expression bound to might not be eval-

Lit actually suffices to evaluate the argumentvieak head normal forpso that
the top-level constructor of the argument can be inspected; see [PJ87] for details.
Nevertheless, the resulting translation is not semantics-preserving.
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uated at all; to be semantics-preserving, the translation must not intro-

duce additional evaluations a&f

As described in [PJ87], the only patterns for which a conformity check can
be omitted safely are therefutable patterns involving datatypes with a sin-
gle constructor. We therefore restrict then-strictversion of our language

in the following way:

Existentially quantified type variables may occur only in the compo-
nent types of datatypes with a single constructor.

The auxiliary translation function for the strict version of the language
is defined as follows:

”e"x, K1n1+ +Knr|n =

n o N, A uiell
1

fail let K.

erx, /xX7/let K, X=x1In €
o [, ] 1
let K;X¢ =xin e .
1 iz1X=xin ¢€

else if is sz then

else if is Kn x then
. e'[xKn/x']/Iet Kn X=Xin €
let Kn X¢ =X in e
n fail let Kiinx':x in €
else

e[fail let KX =xin €]

In the non-strict case, there can be only a single constructor with an existen-
tial component type, and the auxiliary translation function reduces to:

||e||X,Kn =let Kx.=xin e[e[x/x]/let Kx=xin €]

= e
||e||x Klrl+ . Knrn
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4.6.3 Inference-guided Translation

We give a translation guided by the type inference rules, along the lines of
[NS91]. Lete, be a closed, well-typed term. The translation is defined along

with the type inference rules for each subternepf

(VAR A(X) =T
AFx:t0 X
(PAIR) At el.: T, 0f At e2~: T%D e,
At (epe) i1 x1,0 (e, €)
(APPL) Ate:t -t10e Ate:tde
Atee:tdee
(ABS) Al[t/x] fe:10e T #uB.Z [Kn]
AL Axe:T - 10 Ax.e
A[uB.Z[Knl/x] Fe:t FS(A)OFS(1) = O
(ABS") AluB.Z[Kn]/X] llely 5pgpy sTO €
AL Axe: (UB.Z[KNn]) - 10 Ax.e
Ate:tOe T#uB.Z[Kn]
(LET) Algen(AT)/x] fe:10 €

Aflet x=ein €:1'Olet x=ein €



80 Chapter 4 An Extension of ML with a Dotless Dot Notation

Ate:uB.Z[Kn] O e FS(A) OFS(T) = O

Algen( ApB.Z[Kn])/x] Fe:T
Algen( ApB.Z[Kn]) /X F €l 5y s T 0 €

(LET") .
Allet x=ein €e€:10let x=ein ¢€
O = LU U BRI T TR
FV(o) = 0O Alo/Ky, ...,o/K ] Fe:t0 e
(DATA")

At data o in e:10data o in e

(cons) A(KI zuB-2Z[Kn] _ n[uB.2[Kn]/p] <t
AtK:T-pB.2Z[Kn] OK

(TEST) A(K) 2pB.2[Kn]
Atis K: (uB.Z[Kn]) - boolO is K

A(K) 2 us.2 | KN AX) 2 U2 [ KN]
Alger( A skolerta, x, K. n [B.Z[Kn]/B]))/x] Fe:t
O e

Atblet Kx=xin e:t0Olet Kx=xin €

(PAT)

4.6.4 Translation of Type Schemes and Assumption Sets

After applying| | to the body of a det expression, the only pattern-
matching let expressions left in the body are of the form

let K x=x in e.lInthe following translation, the Skolem constructors
associated withk become associated with . This is reflected by the fol-

lowing translations:

Lo] = O-I:KXK, i/Kx, K, i]
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LA] = [Lol/x|A(¥) = a]

4.6.5 Properties of the Translation

Lemma 4.5Let A = A[0a, ..o .uB.Kjn, +... +Kn /x| . If A Fe:t,

then A | €] T .

X, King+...+Kn, -

Proof: In the strict case, let<i<n be arbitrary. We are free to extend

assuming thax, is not free l , hence
|

A[ger(_A\ skoler(A, x, K;, ni))/xKJ Fe:t.

Then, any subexpressidet K. x =x in € ef iswell-typedand
we have a subproof forA' |-let K. X =x in €:17 , where

A'(xKi) = ger(A skolenA, x, K, n:)) . A premise of this judgment is

A [ger(A, skolem(A, x, Ki, ni))/xKJ | €:1 . Therefore,

Ate [XK_/X'] : ', since we may drop the assumption abdut after
|
substitutingx,  for it.
|

By replacing the proof tree for tHet subexpression by this latter one
and by observing thdtil has any type, we can prove
— + .
A[ ger(A skoler(A, x K, n))/x | +
|
€ [xK_/x']/Iet KixX=xin € .
e ' T
fail let Kizi X =X in €

Thus,
_ ' e [xKi/x']/Iet Ki X=X in €
Atflet K x,=xin e T
|

fail let Kj;,,:i X=xin €
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Using a suitable typing for thi expressions, we conclude that

At el T.

X King+...+Kn, -
The claim for the non-strict case follows analogously.

Theorem 4.6[Type preservation] IfA F e:t0 e , thehA| F e:[1]

Proof: By structural induction o . We show the only interesting case, all
others are straightforward.
Aflet Kx=xin e:tOlet Kx=xin &
Since our expression is a subexpression of a well-typed expression,

is bound either in & orin ket expression. Thus, it must be a sub-

expression of an expression of the fofe| , Where

X Z[Kn]
A'[Oa,...a,.uB.Z[Kn]/x] + ||e'||X,z[Kn] T and
FS(A)UFS (1) = O for someA” and' . By definition df | , the

only subexpressions dfe]| of the fortet KX =x in e

X Z[Kn]
are the branches of the expression, each of the form
let Kx,=xin e, where
A[Oa,...a,.uB.Z[Kn]/x] tlet Kx =xin e:T and
FS(A) U FS () = O; thereforet = T andA = A in the subproof.
As a premise, we have
A ger(A skolerA, x K n [WB.Z[Kn]/B]))/ x| Fe:tO &;

by the inductive assumption,

| Alger(A skoleftA, x K. [uB.Z [Kn] /B1)/x] | £ &: L],
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hence

LAl[ger( Al skoler(A, x K n [uB.Z[KN1/B) [/ x ] £ &: L),

Since

[ skolem(A, x K, n [1B.Z [Kn] /B]) ]

= skoleni(A, x,., n [UB.Z[Kn]/B])
we have

LA][ger( A skolef(A, x.,n[uB.Z[Kn]/B]))/x] £ €:[1].
We translate the other two premises and obt&i(K) = | up.=Z[Kn] |
and| A|(X) =| uB.Z[Kn] | . We further observe that
LFSX(A)J = FSXK(l_AJ) andLFSX(T)J = FSXK(I_TJ) , thus
FS, (LA)DOFS, (1)) = 0.
Finally, we can apply the PAT rule and conclude that
LAl F let Kx,=xin e:[1].

Lemma 4.7 E[e] p = E[ €] p for arbitraryp defined

X, King + ... +Knnn]

for x.

Proof: By definition ofE , any subexpression ef is evaluated in an envi-

ronmentp' 00 p , whence'(x) = p(x) . We identify two cases:

p(x) U {K;} xV for somei . Then, in the strict case only,

E[let Kjiix':x in €] p =0

and in both cases,

E[let K x=xin €] p =E[¢€ I:XKi/X']] %3' I:Snd(p(x))/XKi]E
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Consequently, in the strict case,
Elelp
{e'[xKi/x']/let Kix=xin ¢€
Ele

d / N
fail let Kz x=xin e }] Ep[sn (P(X)) *Jo

€ [XK_/X']/|et Kix=xin ¢€
E[let K, x, =xin e{ ! } 0
|

fail let Kj::i X=xin €

El ||e||x King+ ... +Knnn] P

since theif  branch for gets selected.

In the non-strict case far=1 ,

Elelp
Efe[e[x/X]/let Kx =xin €]] (p[snd(p(x)/x])

Eflet Kx,=xin e[e[x/X]/let Kx=xin €]]p
Ellely ol P -

and fori>1,

Elelp = Ellel kv sk 1P -

p(¥) U {K;} xV for anyi .

Then, in the strict caseE[let K, x =xin €] p'=0 ,whence

Ele] p
E[e[fail let Kix=x1in €]]p

El ||e||x King+ ... +Knnn] P

since the lastlse  branch gets selected.

In the non-strict case far=1

E[let Kx=xin €]p
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E[€] (p'[0/X])
E[e[x/X1] (p'[0/x]) .

Therefore,
Elel p
= E[e[€[x/X]/let  Kx=xin €]] (p[0/x])

= Elllely 10 -

Theorem 4.8[Preservation of semantics] K +e: 10 e |, then

E[e]p = E[€ p for arbitraryp .

Proof: By structural induction ore .

Corollary 4.9 [Semantic soundness] & is a closed tern} e: 1 and

|:p qJA as defined previously, thek[e] p OT[T] @

Proof: Follows immediately from the two theorems, observing that= 1
and| A|] = A, since neither nok contain aky 's.



5 An Extension of Haskell with
First-Class Abstract Types

This chapter introduces an extension of the functional language Haskell
with existential types. Existential types combine well with the systematic
overloading polymorphism provided by Haskell type classes. Briefly, we ex-
tend Haskell'sdata declaration in a similar way as the ML datatype decla-
ration above. In Haskell, it is possible to specify what type class a (univer-
sally quantified) type variable belongs to. In our extension, we can do the
same for existentially quantified type variables. This lets us use type classes
as signatures of abstract data types; we can then construct heterogeneous ag-
gregates over a given type class. A type reconstruction algorithm is given,
and semantic soundness is shown by translating into an extension of the lan-
guage from Chapter 3.

5.1 Introduction

Haskell [HPJW92] uses type classes as a systematic approach to ad-hoc
polymorphism, otherwise known as overloading. Type classes capture com-
mon sets of operations. A particular type may be an instance of a type class,
and has an operation corresponding to each operation defined in the type
class. Type classes may be arranged hierarchically.

86
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In [WB89], Wadler and Blott called for a closer exploration of the rela-
tionship between type classes and abstract data types. After an initial explo-
ration described in [LO91], we now present an extension of Haskell with
datatypes whose component types may be existentially quantified.

In Haskell, an algebraic datatype declaration is of the form

data [cO]Ta..a= Kjt..tyl o Kt

Lt
1 m ml

Mk

It introduces a new type constructdr  with value construckgrs.., K

The optional context specifies of which type classes the type variables

a,, ..., &, are instances. The constructors are used in two ways: as functions

1
to construct values, and in patterns to decompose values already construct-
ed. The types of the constructors are universally quantified over the type

variablesa,, ..., a, ; no other type variable may appear free in the component

typest;; .

We describe an extension of Haskell analogous to the extension of ML
described above. Type variables that appear free in the component types are
interpreted as existentially quantified. In addition to the “global” context for
the universally quantified parameters of the type constructor, we introduce
“local” contexts for each value constructor. The local context specifies of
which type classes the existentially quantified type variables in the compo-
nent types are instances. The extended datatype declaration is of the form

data [cU]Ta..a, = [cg U]K, t;...t

| ...
| [c, 01K

1k,

mtml"'tmlgn

When constructing a value using a constructor with an existentially quanti-
fied component type, the existential type variables instantiate to the actual
types of the corresponding function arguments, and we lose any information
on the actual types. However, we know that these types are instances of the
same type classes as the corresponding existential type variables. This
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means that we have types whose identity is unknown but which support the
operations specified by their type classes. Therefore we regard type classes
as signatures of abstract types.

5.2 Some Motivating Examples

5.2.1 Minimum over a Heterogeneous List

This example is the extended Haskell version of the example given in Sec-
tion 3.2.1. We first define a type classy defining the operatiowhatkey
needed to obtain an integer value from the value to be compared.

class Key a where
whatkey :: a -> Int
We now define a datatype€EYwith a single constructdey . The component
type ofkey is the type variabla, which is existentially quantified and is
required to be an instance of type cl&sy.

data KEY = (Key a) => key a

We further define several instanceXaly along with their implementations
of the functionwhatkey .

instance Key Int  where whatkey = id
instance Key Float where whatkey = round
instance Key [a]  where whatkey = length
instance Key Bool where whatkey =
\x ->ifxthen 1 else O

A heterogeneous list of values of ty&Y could be defined as follows:

hetlist = [key 3,key [1,2,3,4],key 7,
key True,key 12]
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The min function finds the minimum over a list &EYs by decomposing
the elements of the list and comparing their corresponding integer values
obtained by applyingvhatkey .

min [X] = X
min ((key v1):xs) =
case min xs of
key v2 ->
if whatkey v1 <= whatkey v2 then
key v1
else
key v2

Thenmin hetlist evaluates t&ey True , as this is the element for which
whatkey returns the smallest number.

5.2.2 Abstract Stack with Multiple Implementations

We also give the extended Haskell version of the stack example from Sec-

tion 3.2.2. However, these stacks have a fixed element type, since Haskell

type classes cannot be parameterized. An extension of Haskell with param-

eterized type classes is found in [CHO92]; it could in turn be extended with

existential types, which would allow us to have polymorphic abstract stacks.
An integer stack is described by the following type class:

class Stack a where

empty sa

push tint->a->a
pop ca->a

top sa->Int

isempty :: a -> Bool

To achieve abstraction, we define the corresponding datatype of “encapsu-
lated” stacks:

data STACK = (Stack a) => Stack a
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We define two stack implementations, one based on a list of integers:

instance Stack [Int] where

empty =]
push =()
pop = tall
top = head
isempty = null

and one based on an integer array:

maxindex :: Int
maxindex = 100

data FixedArray = Fixarr Int (Array Int Int)

instance Stack FixedArray where
empty = Fixarr O (listArray(1,maxIindex)[])
push a (Fixarris)=
if i >= maxindex then
error "stack size exceeded"
else
Fixarr(i+1)(s // [(i+1) = a])
pop(Fixarr i s) =
if i <=0 then
error "stack empty"
else
Fixarr(i-1) s
top(Fixarr i s) =
if i <=0 then
error "stack empty"
else
sli
isempty(Fixarris) =i<=0

arrayStack xs = Stack(Fixarr(length xs)
(listArray(1,maxindex) xs)
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As we saw in Section 3.2.2, it is convenient to define wrapper functions that
apply the functions operating on instances of the type @&k to an en-
capsulated value of typ®TACK these “outer” wrappers open the encapsu-
lated stack, apply the corresponding “inner” operations, and close the stack
again. This provides dynamic dispatching of operations across different im-
plementations o65TACK The wrappewpush is defined as follows:

wpush a (Stack s) = Stack(push a s)

We can define the following list, which is a homogeneous list of two differ-
ent implementations d3TACK

stackList = [Stack([1,2,3] :: [Int]),
arrayStack([5,6,7] :: [Int])]

Using the wrappewpush and the built-in functiommap, we can uniformly
push an integer onto each element of the list:

map (wpush 8) stackList

5.3 Syntax

The formal treatment of our extension of Haskell builds on the article
[NS91] by Nipkow and Snelting, who are the first to give an accurate treat-
ment of type inference in Haskell. Our language is an extension of theirs
with algebraic data types.

5.3.1 Language Syntax
Identifiers X
Constructors K
Type constructorg

Expressions e =0 ftrue false |

x| (e,e) [ee |[Axe |



92 Chapter 5 An Extension of Haskell with First-Class Abstract Types

let x=ein € |

Klis K|let Kx=ein ¢

Declarations d :=data t=0a,..a,.x in e |
Vl yn

class y<y,, ...

.Y, Where

Xq Day.rl, e X Day.rk

inst  t:(yy,....,y,) Y where

Xl = el, ...,Xk: ek

Programs p =d;..de
5.3.2 Type Syntax

Type variables «a

Skolem functionsk

Type constructorg

Types T = unit |bool |0(y [y xt, F-1 |

€Ty 1) IX

Recursive types X =pp.Kn; +... +K n, wherg # Kj for

I ]

Existential types n :::Eb(y.r] T

Type schemes o :::Day.o H-1t T

Assumptions a =o/x p/K

Our type syntax includes recursive types

and Skolem type constructors

the latter are used to type identifiers bound by a pattern-matdéing
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whose type is existentially quantified. Explicit existential types arise only
as domain types of value constructors. FurtherZlgin] stand for sum

type contexts such ak,n;+...+K n_ , whekg = K and=n for

somei . Our type syntax also includes explicit type constructors ; this
makes it possible to extend the order-sorted signature with arities for user-
defined type constructors.

5.4 Type Inference
5.4.1 Instantiation and Generalization of Type Schemes

Dayl...ayn.r 2T iff there are types,, ...1, of sortg, ...,y, , re-

spectively, such that = T[Tl/cxy Y ey Tn/dy]
1 n

Eb(yl...ayn.T 2T iff there are types,, ...1, of sortg, ...,y, , re-

spectively, such that' = TI:Tl/C(V Y ey rn/ay]
1 n

In addition toFV , the set of free type variables in a type scheme or assump-
tion set, we uséS , the set of those Skolem type constructors that occur in
a type scheme or assumption set, &1d , the set of defined type construc-
tors in a type scheme.

5.4.2 Inference Rules for Expressions

The first five typing rules are the same as in the system described in [NS91].

(VAR™) A 2. T

(A, C) |—+x:r
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(A O Fe: 1 (AO Fe:,

(PAIR™) -
(AC) I (ep&) 1T xT,
(APPLY) (A, C) |—+e: T 5 T (A, ©) |—+ e:r
(ALC) Fee:t

(ABSH (A[T/x],C) Fe:t

(A C) F axe:T o1

vy \ vy — 1uy1, ...,uyn;

(AC) Fe:t Eﬁ[DoW.T/x], C% Fe:r

(LETY) L

(A, C) i—+let Xx=ein €:°1

The new rules CONS TEST", and PAT are used to type value construc-
tors,is expressions, and pattern-matchirgy expressions, respectively.

AK) 2. n - t(T,) N<cT
(A O FK:t-tr)

(CONS"

The CONS rule observes the fact that existential quantification in argument
position means universal quantification over the whole function type; this is
expressed by the second premise.

AK) 2o n - t(T)

(TESTH -
(A O Fis K:t(t)) - bool

The TEST rule ensures thas K is applied only to arguments whose type

is the same as the result type of construétor
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A4 C u rok 7|_| N \ LA 1 - N

{Kp oK} 0 (FST)OFYA) = O

EA[TI:Ki/Be;i‘i = 1...k]/xEP .
g . U :
0 C[Ki:6i||=l...k] 0
(PATY)

(ALC) F'let Kx=ein €e:1

The last rule, PAT, governs the typing of pattern-matchifeg expres-
sions. It requires that the expressin be of the same type as the result type
of the constructoK . The body istyped under the assumption set extended
with an assumption about the bound identiker . The new Skolem type con-
structors must not appear A ; this ensures that they do not appear in the
type of any identifier free i® other than . It is also guaranteed that the
Skolem type constructors do not appear in the result type . The Skolem

type constructorx,, ...,k,  replace the existentially quantified type vari-
ables of sort®,, ..., 9, . Thus the body of eé expression is typed under
the extended signature containing appropriate aritieg for., K, . The pat-

tern-matchindet expression is monomorphic in the sense that the type of
the bound variabl& is not generalized. This restriction is sufficient to guar-
antee a type-preserving translation into a target language (see Section
5.6.5). Thecase expression in Haskell syntax corresponds to a neted
with anis and a pattern-matchingt expression for each case.

5.4.3 Inference Rules for Declarations and Programs

The rules for class and instance declarations, and programs are the same as

in [NS91]. We add the DATA rule to elaborate a recursive datatype decla-
ration.
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FT(t)) O ... OFT(r,) U Dom(C)
(CLASSY)

(A, C) |—+ class y<y,, ...,y, Where
Xy DGV.Tl, ey Xy Day.Tk:
(A[Day.ri/xi|i =1..K,Clysyy - ¥,])

t LI Dom(C) Ax) = a1,

(A O Fe:t[to,)/a i = 1.k
(INST) [ Yo y]

(A, C) |_+ inst t: %/_n%/ where X =€, X, =€
O, ot "
(Ai—l’ Ci_]_) F di: (Ai’ci) I =1...n

(A,C) Fe:t
(ApCy) Fdj..de:t

(PROG)

o= DO(_yn.uB.Klr]l+ LHK N
(DATA*) FT(o) 0 Dom(C) t 0 Dom(C)
(AC t data t=o:
[Dayn.r]i [t(ayn)/B] R t(ayn)/Ki‘i = 1...m}

Clt: Bal?]

The DATA' rule adds assumptions about the value constructors to the as-
sumption set, and extends the signature with an appropriate arity for the new
type constructor. Whereas recursive datatypes were anonymous in the two
preceding chapters, they are now represented by named type constructors.
This is necessary since the order-sorted signa@ure  may contain arity dec-

LA N
N U
N U
[ [

larations for user-defined type constructors. We avoid using a separate type
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constructor environment; therefore, in an assumptgi about a value

constructorg now is the type scheme kKor when regarded as a function, as
opposed to the type scheme describing the entire recursive datatype be-
longs to.

5.4.4 Relation to the Haskell Type Inference System

Theorem 5.1[Conservative extension] Let Mini-Haskell’ be an extension
of Mini-Haskell with recursive datatypes and a monomorphic pattern-
matchinglet expression, but without existential quantification. Then, for

any Mini-Haskell’ progranp ,(A, C) |—+ p:t iff(AC) FyyP:iT .

Proof: By structural induction om

Corollary 5.2 [Conservative extension] Our type system is a conservative
extension of the Mini-Haskell type system described in [NS91], in the fol-
lowing sense: For any Mini-Haskell progrgm (A, C) |—+ p:T Iff

(AC) FyyP:T.

Proof: Follows immediately from Theorem 5.1.

5.5 Type Reconstruction

The type reconstruction algorithm is a translation from the deterministic
typing rules, using order-sorted unification [SS85][MGS89] instead of stan-
dard unification.

5.5.1 Unitary Signatures for Principal Types

The article [NS91] describes several conditions necessary to guarantee uni-
tary signatures, which are sufficient to guarantee principal types. First, to
make a signatur€ regular and downward compete, we perform the follow-

ing two steps to obtain a new signat@g
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* For any two incomparable classgsy, U Dom(C) , we introduce a new
class declaratioglass  y<y,,y, with an empthere part combin-
ing the operations of, any,

» Then, for each type constructor with instance declarations

inst t: E\E‘bﬂ/l where

inst t: E\/;]EVZ where

introduce another instance declaration of the form
inst t: (Vg OVog -0 Vi BYaop) (Y1 OY)

wherey[0d is simply the additionally declared clasgif @&nd are in-

comparable, or otherwise the lower one in the class hierarchy.
Note that Haskell uses multiple class assertions for type variables to express
this conjunction of classes.
Since regular signatures alone do not guarantee the existence of principal

types, we impose the following two conditions @) , which are also
present in Haskell:
* Injectivity: A type constructor may not be declared as an instance of a

particular class more than once in the same scope

* Subsort reflection: 1%, ..., y,, are the immediate superclasses of , a

declarationinst  t: HZS_n'E{ES where ... must be preceded by declara-
. . il . [

tions inst  t:[y,Oy; where ... such thaﬁj is a subclassy?f for
ali =1..mandj = 1...n.

As discussed in [NS91], a Haskell signature that satisfies these conditions is

unitary.
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5.5.2 Auxiliary Functions

In our algorithm, we need to instantiate universally quantified types and
generalize existentially quantified types. Both are handled in the same way.

mstD(Dayl...ayn.T) = T[Byl/ayl, Byn/ayn] whereByn, BVn are

fresh type variables

mstd[b(yl...ay T = T[Byl/ayl, Byn/ayn] whereByn, BVn are

n

fresh type variables

0SU(T, T) the most general unifier af amd under order-

sorted signatur€

5.5.3 Algorithm

Our type reconstruction function takes an assumption set, an order-sorted
signature, and an expression, and it returns a substitution and a type expres-
sion. There is one case for each typing rule.

TE(A Gy =
(Id, inst, (A (X))

TE(A G (§.8)) =
et (S,T,) =TEA G §)
(S, 75 =THSA C )
in (S,5, ST, %1,)
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TE(A G e§ =

let (ST) =TE(AC 9
(S,7) =TE(SA C §
B be a fresh type variab
U=o0sy- (ST, 7 - B)

in  (USS Up)
TE(A CAx.e) =

let [ be afresh type variable
(S1) =TE(A[B/X],C, ¢

(SPB-1)
TE(A Clet x=e in ¢€) =

let  (ST)=TEA G 9
(S, 1) =TE(SA gerf SA)/X],C, €)

(SST1)
TE(ACK =
let n -1 =inst;(A(K))
in (ld, (inst;(n)) - 1)
TE(A Gis K) =

let n -1 =inst;(A(K))
in (Id, T - bool)
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TE(A Clet Kx=e in €)=

e \& v Ty MYy
Op_ .0 qa =i
DEBék'TOD - t(ayn) inst(A(K))
U= osub(r,t(cxyn))
Ky, -0 K fresh type constructors
T, = (Uty) [Ki/Béi‘i = 1...k]
C = CI[k;: 6i|i =1...K
(S, ) =TE(USAT, /X],C, €)

it {Ky K} n (FYSUSA DO FYT)) =0 then
(Qr1Q -0
TD(A Cdata t=0) =
let Dayl...ayn.pB.Klnl+ Lo tK N, =0 in

if FV(o)=00
t 0 Dom(C) OFT(o) O Dom(C)
then

m{m%.ni[t(%)/[s] - t(a_yn)/Ki‘i = 1...m}%
clt: ] ]

TD(A Cclass  ysy,, ...y, where X, : Ddy.Tl, e X Day.rk) =

oOd

(A[Day.ri/xi|i =1..K,Clysyy - Y, ])

TD(A Cinst t:{y A where x;=ep .., X =€) =

ol B
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TD(A G d;...d) =
let (A,C) =TD(A G d) in
TD(A C,d,...d)
TP(A G d...d e =
let (A,C) =TD(A G d,...d) in
TE(A, C, 6

5.5.4 Syntactic Soundness and Completeness of Type
Reconstruction

Lemma 5.3[Stability of  ]If (A C) F e:1T andS is a substitution,
then (SA O F e: St also holds. Moreover, if there is a proof tree for
(A, C) " e:1 of heightn , then there is also a proof tree for

(SA O |—+ e: St of height less or equal to

Theorem 5.4[Syntactic soundness] FC(A C ¢ = (S1) ,then
(SA O |—+ e:T.
Definition 5.1 [Principal type]t is a principal type of expressien under

assumption seA and signatuCe (A, C) |—+ e:t and whenever

(A, C) F e: T then there is a substitutidh such tisat= 1’

Theorem 5.5[Syntactic completeness] IfSA, C) +e: T , then
TC(A G & = (S1) and there is a substitutidd  such tis& = RS/ and
T = Rr.

Proof: We extend Nipkow’s recent work on type classes and order-sorted
unification and extend it with existential types.
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We assume that the signature built from the glateds andinst
declarations is unitary. Clearly, the extended signature used to type the
body of a pattern-matchinlgt expression is also unitary, since the
Skolem type constructons  are unique, and egch  appears in only
one arity declaration. The latter trivially guarantees injectivity and
subsort reflection.

5.6 Semantics

As in [NS91] [WB89], we give an inference-guided translation to the target
language, an enhanced version of our extension of ML with existential types
described in Chapter 3. Type classes and instances are replaedtbypd)
dictionaries which contain all the operations associated with a particular in-
stance of a type class. The translation rules are of the form

(A, C) |—+ e: 10 e and mean “in the contextA, C) e is assigned type

and translates te .”

5.6.1 Target Language

Our extension of Mini-Haskell is translated into an extended version of the
language presented in Chapter 3. As a generalization of pair types, the lan-
guage contains allh -ary product types x...xdo with expressions

(e, ....e,) and projection functionsnin of type, x...xa_ - a; . The

PAIR rule is superseded by the TUPLE rule:

Ate 1y Ate T,

At (e ....e) 1T X...XT

(TUPLE)

n

Semantically, expressions of the form

let K(xl,...,x):e in €
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are regarded as short forms for neditd expressions of the form
let Kz=e In
let _.n __n_ . .
et x,=mz .. X, ="TzZin ¢€

and are typed by following PAT” rule:

AT E. Mp.2 NI = PPl e AL
T, x...xT = skolenf An) FST)OFSA
o, = gen(At)) o, = genAT)

A[O./X4y .., O /X ] i—+e':I'
(PAT”) 1" 71 n° n

Atlet K(Xp,...x)) =ein €:T

This rule is semantically sound, since the translation of the short form to the
full form is type-preserving: an application of the PAT” rule is replaced by
an application of the PAT rule followed by successive applications of the
LET rule, using appropriate typings for the tuple projections.

5.6.2 Dictionaries and Translation of Types

We call the translated types “ML-types” to distinguish them from the origi-
nal ones. ML-types introduce a method dictionary for each sorted type vari-
able in the original type; each sorted type variable is then replaced by an or-
dinary type variable.

A class declaration

(A, C) |—+ class y<y,,....y, Where x;: Day.rl, e X Day.Tk
introduces a new ML-type for method dictionaries of this class,

y(a) = Tl[G/O(V] X ... xrk[a/ay] xy,(a) x ... xy (o)
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where the type parameter stands for the type of the instance. Thie first
components of(a) are the operations corresponding to glass . Th& next

components are the dictionaries for all immediate superclagses,y, of

y. Note that the dictionar@2(a) for the top of the class hierarchy is the emp-
ty product type.
Instead of definingy(a) directly, the dictionary type is defined in terms

of access functions X, to extract operations from a dictionary, and ac-

1 e

cess functiony, , ..., y,, to extract the dictionaries for the immediate super-
Y Y

classes from a dictionary.
Coercion functions are needed to convert a dictiomg,ry of aglass into

a dictionary of a superclasspf ;they are defined the same way as in [NS91]:

_ an if y=yYv
CaSTC(ay’ Y) = O(Yy CaSE(ay’ 3)) if y< o0y U supet(d)

If there is more than one path from Yo  with respectto cas}, chooses

an arbitrary fixed path. The immediate superclasses of ayglass are defined

as:
super(y) = {Y[y<y U-[B.y<d<y}

The method dictionary for an instante of a clgss within the sign&ure

is defined as
dictc(uy, Y) = castc(uy, Y)
dict(t(ty, ..., 1), Y) =Y, (dict(t;,yy) ... (dict(t,,y,) if according

to C, t(t, ..., 1)) is sort-correct with resulting

sorty
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Note that on the left hand side is a type variable, and on the right hand

Yy
side, an identifier that stands for a dictionary of chidss . As we will see be-

low, the functiony, is the dictionary defined for the type construtctor inthe
translation of the corresponding instance declaration. Its arguments are the

dictionaries for the actual type parameters in an applicatidn of .
We define the translation function for type schemes as follows:

ML(DO(_VH.T) = Oa .y, (o) - ... -y (@) - r[al/ayl, Lo /a ]

n" 7y,
where eachxy_ uniquely maps to ap . For existential component types of
|

user-defined datatypes, the corresponding ML-types need to include the dic-
tionaries for the existentially quantified type variables. This reflects the way

operations on existential types are explicitly included in the datatype com-

ponents in Chapter 3.

ML(EB_Bk.T) = EB_k.T[Bl/Bél, Bk/BBk] x 3, (By) % ... x5, (B,)
The resulting translation function for user-defined recursive type schemes is
ML(Davn.uB.Z[Kr]]) = Ua,.uB.Z [K ML(n)] [al/ayl, an/ayn]

Note that the dictionaries for the universally quantified type variables are
not included in the component types, as they are determined by the actual
instance types substituted for the type variables. Since user-defined
datatypes are anonymous in the target language, the translation function for
the type of a value constructd¢ is given by the entire recursive type

scheme to whickk belongs:

ML(A(K)) = ML(DoW.uB.Z[Kr]]) whereA(K) = Dow.n ST

The functionML extends to assumption sets as follows:
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ML(A) = { ML(A(X)/x|x 00 DomA}

5.6.3 Translation Rules for Declarations and Programs

The first three translation rules concern class declarations, instance declara-
tions, and programs. They are the same as in [NS91]. Declarations translate
to let expressions without bodies.

FT(ty) O ... O FT(t,) O Dom(C)

(CLASS")
(A, O Fclass y<y,, ...y, where
Xq Day.rl, e X Day.rk:
(A[Day.ri/xi|i =1..K,Clysyy, ...y, 1) O
| _ _k+n _ _k+n _ _k+n _ _k+n
et X =T, X =T ’Vl\,‘nk+1""’yn\,_nk+n
SUPERLY) = 1Y, --Y1}
t 0 Dom(C) A(%) = Day.ri
AQ te:t[ta,)/a,]0 8 i = 1.k
sty O e [ty )/a,] 0 &

(A O Finst t: EK/_n%/ where X, =€, ..., X, =€
0 O 0
A CLt: o] o0

let vy, = )\0(_yn.(él, o B

1 1 1
%/t castc(cxyl, y;)---cast(a Y. ) E

Ucast(a.. . v))...cast(a.. . v)B
(A_pC_p) Fd:(ACDOd i=1.n

+ . ~
(AyC) Fetle

(PROG) .
(AyCy Fdj...de:tOd;in .. in d,in &
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o= Dayn.uB.KltBélkl.tl +...+ KmEBam%.rm

FT(o) 0 Dom(C) t [ Dom(C)
(AC) + data t=o:

[D%.Eﬁﬁ?ki.rl[t(ﬁ)/ﬂ% t(a_yn)/Ki‘i = 1...m}

Clt: Hoch]

(DATA™)

I:II:II:IIJ’I.;I
(I

0 data Oa, .uB.
KltBlkl.Tl[ai/ayi, 811/851,-] x
014(Byg) X - %Oy (Byy )

+...+
KmEBmKn.Tm[ai/ayi, ij/ Bij] X

6m1(Bm1) X X amKM(BmKM)

The DATA" rule translates data declaration with order-sorted type vari-

ables to adata declaration in the target language. The component types of

the translated datatype consist of the original component types together with

the dictionaries for the existentially quantified type variables. This is re-

flected in the CONSand PAT rules below.

5.6.4 Translation Rules for Expressions

The first five translation rules are identical to the ones in [NS91].

A(X) = DOW.T
(VAR™) L

.
(A O X.T[Tl/(xyl,...,'[n/dyn] [

(x dict(t4, yy)...dict(t,, ¥,))
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+ ) ~ + . ~
(PAIRY) (AC) et Ue (AC) Fe:it,Ue
(A O F (epe) 11 x1,0 (8,8)
(APPLY) (AC) Fe:T o108 (AC) Fe:rQoe
(AC) Fee:1t0ee
(ABSH (A[T/X],C) Fe:10O @
(A C) F'Axe:T - 10 Ax.@
(AL P eELL E FV(L\FVA) = 1uy1, ...,uyn;
OalDo. .t/x],cEBE e:vO @

(AC) F'let x=ein €:10

let x=MAa_.ein &
Yn

In the LET" rule, the translatio® of the expression to be bound to may
contain free dictionary variables corresponding to the generic type variables
in T; A-bindings for those dictionaries need to be provided.

New translation rules are added for value construciersgxpressions,

and pattern-matchinlgt expressions.

= fa UBC U (o
A(K) DaVn'DEB5k'TD t(ayn)

(CONS" —
(A C) F'K: %r - t(ayn)E[Ti/ayi,fj/Béj] O

(AX.K(x, dict-(T4, 8,), ..., dict(T}, 3)))
The translation of a value constructor is again a value constructor; this trans-

lated constructor packs dictionaries for the types substituted for the existen-
tially quantified type variables together with the value.
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AK) 2 n - (1)

(TEST) —
(A O Fis K:t(r) - boold is K

Theis K expression is needed to examine the constructor tag and trans-
lates to itself.

~ o "k -]

(AC Fe:tt)O &
{Ky K} 0 (FST)OFSA) =

T[K/Bg|i = 1...K]/X]0
N 6" | ]Elfe':T'D e

A
O
O T
0 C[Ki.5i|l—l...k] 0

(PAT™)
(AC) Flet Kx=ein €:10

let KEF(BK’” 5, D ein €

To translate a pattern-matchiteg expression, we need to look at the way

value constructors are translated. We need to provide a binding for the orig-
inal bound variablex , which corresponds to the first component of the en-
capsulated value; we further need to retrieve the dictionaries for the Skolem
type constructors from the remainikg components of the encapsulated val-

ue and bind them to variablés , ..., d, . Any of these bound variables may
1 k

occur in€ , the translation of the body of tle¢ expression.
Sincee , the translation of the expression to be bound, is used monomor-
phically, noA -bindings for potentially free dictionary variables need to be

provided.
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5.6.5 Properties of the Translation

As in [NS91], the correctness of our translation scheme depends on the con-
dition that each instance declaration lists exactly the same operations

Xy, .- X, @s the corresponding class declaration, and in the same order. This

1
scheme prohibits redefinition of operations listed in superclasses.
Furthermore, when translating a progrdm..d e, we require the signa-

ture resulting from elaborating,...d ~ to satisfy the injectivity and subsort

reflection conditions stated in Section 5.5.1.
The next lemma says that the translation can amipducefree dictio-
nary variables in an expression and is needed in the main theorem.

Lemma 5.6 [Free variables] If (A,C) | e:10 & , the®V(e OFV(e |,

andFV(e \ FV(e) contains only dictionary variables.

Proof: By structural induction oe . Free dictionary variables are explicitly
generated in the VARand CONS rules. The variables that are bound

in the LET' rule are also dictionary variables and, by definition, are not
free in the original expression.

Lemma 5.7 [Free variables] If (A,C) + e:10 & and
(A,C) t'e:10 €, then
(FV(e OFV(e)) \ (FV(e O FV(e)) = (FV(e \FV(e) O (FV(€) \ FV(e))

Proof: Using Lemma 5.6 and the fact thiaV/(e aRy(e) do not contain

any dictionary variables.
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Lemma 5.8[Types of dictionaries] Led,...d e be a program with transla-

~

tion al in ...in d, in €. LetC be the unitary signature obtained by

elaboratingd,...d_, and\ a superset of the assumption set obtained by elab-

oratingal in ...in an . The following type judgments hold for occurrences

of cast anddict ine:

Aly@)/a,] +casi(a,, V) : ()

A[yi(cxi)/cxyi‘i = 1...n] fdict(t,y) : Y(T [Gi/ayi‘i = 1...n])

Proof: al in ...in d, in isanestedet expression without body; it re-

sults in assumptions for superclass dictionary access functions  and
y

instance dictionaries df for and its superclasses. The claim follows

from the definitions ottast andict and the conditions®©n
The following, main theorem of this section states that a well-typed ex-
pression in the original type system translates to an expression that is well
typed in the type system of the target language.

Theorem 5.9[Type preservation] If(A,C) F e:t0 & and

(FV(®\FV(9) D (FV(M)\FV(A) = {a,, ...}, then

ML(A) [yl(al)/ayl, yn(an)/ayn] le: T[al/ayl, an/ayn] , Where

{og, ...a} nFV(ML(A) = O.

Proof: We first observe that the translation rules from Section 5.6.3 exactly
implement the type translation scheme from Section 5.6.2 by produc-
ing the correspondinget expressions without bodies. We then con-
tinue by structural induction on the express®n , going through each

case in turn:
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(A, C) |—+ X TI:Tl/(Xyl, Tn/dy:l O (x dict(t4, vy) ... dict(T,, V)

The premise of this judgment &X) = Dow.r , whence
n

(ML(A) (¢ = Oa, .y, (@) - ... -y (@) - T[al/ayl, ...,an/cxyn].
Observing thatV(dict-(t;, v;)) = FV(t;) , let
{a'yl, a'ym} = FV(t) O ... OFV(t) = FV(x dict(t,,¥,)...) -

By Lemma 5.8 and extending the assumption set with assumptions for

all of the a'y where necessary, we have fati<n
j

ML(A) [y’i(a'i)/a'yi‘i = 1...m] f dict(t;, v,)
Yi(T; [a'l/a'yl‘i = 1...m})

By extending the assumption set again and using the TAUT rule, we
also have

ML(A) [y’i(a'i)/a'y‘i = 1...m] Fx:

Eyl(avl) - o yn(ayn) - rg[ri[a'l/a'yl‘i = 1...m]/0(y']

We apply the APPL rule times and obtain

ML(A) [Vi(a'i)/a'yi‘i = 1...m] F (x dict(t4, vp) ... dict(T,, ¥))

Er[rl/ayl, tn/(xyn] E[a'l/a'yl‘i = 1...m]

(AC) Fee:1tOée®
The premises of this judgment according to the translation rules are
(AC Fe:t-tOeand (AC Fe:t0ée .Let

(FV@E)\FV(e &) T ((FV(D) OFV(T) \FV(A) ={a, ..., } .

Ym
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Using Lemma 5.7, we choosing a suitable numbering such that

(FV@®\FV(®) O (FU(T - D\FV(A) = {a,,...a,} and

(FV(E)\FV(e)) O (FV()\FV(A) = {a, ,...a, } ,whereh<l .

Yh+1

By the induction assumption, the following two judgments hold:
ML(A)[yi(ai)/ayi‘| = 1...I] Fe:(t - 1) [Gi/ayi" = 1...IJ
ML(A)[yi(ai)/ayi‘| =h+ 1...m] Fe:t [ai/ayi‘| =h+ 1...m] .

Since we can extend the assumption sets and substitutions in both judg-

ments for variables that do not occur free, we obtain:

ML(A)[yi(ai)/ay_‘i = 1...m] Fe:(t- T)I:Gi/(]y_‘i = 1...m]
ML(A)[yi(ai)/O(y_‘i = 1...m] Fe: r'[ai/ay‘i = 1...m] :

Our claim follows by applying the APPL rule and eliminating the su-
perfluous variables

{ayl, aym} \ ((FV(e€)\FV(e &) O (FV(1) \FV(A))) from the
assumption set.
(A O F (epe) 11 x1,0 (8,8)
(A C) F'Axe: T - 10 Ax.8
These two cases are handled in a similar way as the previous one.
(AC) F'let x=ein e:10let x=Aa,.ein &
Let

(FV@E)\FV(e &) T ((FV(D) DFV(r)) \FV(A) ={a, . ....a, } .

Using Lemma 5.7, we choosing a suitable numbering such that
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(FV@\FV(®) O (FYD\FV(A) = {a,,....a,} and

Y1
(FV(€) \ FV(€)) O (FV(T)\FV(A) = {ayh+1, ...,aym} , Where
n< h< < m. By the inductive assumption,
ML(A)[Vi(Gi)/Gyi‘i =1.. ] Fe:t 0( /a ‘I =1.. ] , and aftem ap-
plications of the ABS rule, we obtain

ML(A) [yi(ai)/ayi‘i =n+ 1...I]

i—)\a_yn.é: (@) » .. -y (@) - T[ai/ayi‘i =n+ 1...I]

We apply the inductive assumption to the last premise, observing that

FV(A) = FV(A[DO( /X]):

ML(A[DCX T/x])[yi(ai)/ay“i =h +1...m]

Fe:r 0(/0( ‘I =h+1.. m]
Finally, we extend the assumption sets of this and the preceding judg-
ment to includex e O and are ready to apply the LET rule.

n+1 m
+ 0. ~\O 2
(A C) ' K: Er - t(ayn)D[Ti/ayi,rj/Béj] O

(AX.K(x, dict-(T4, 8,), ..., dict-(T}, 3,)))
Let ML(A(K)) = Oa,.uB.Z[Kn] = Oa.x, where

n = [B_k.rl:ai/ayi, BJ/BES,-] x8,(By) X ... x5,(B,), and let

FV(r) 0. OFV() OFVEY O .. OFVEY = {o, o) } .
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Furthermore, lett' = T[Ti/ayi’Tj/Béj] .
We first apply the CONS rule to derive
ML(A) [yl(a'l)/a'yl, ym(a'm)/a'ym, t'[a'i/a'yi]/x] FK:
(T'%8(T)) x ... x3,(T)) - X[1;/0]) [O('i/a'yi]
and the TUPLE rule together with Lemma 5.7 to derive
ML(A) [yl(a'l)/a'yl, ym(a'm)/a'ym, T [a'i/a'yi]/x]
F (X dictc(fl, O1)s s dictc(fk, ) :
(T %x8,(Ty) * ... X3, (1)) [a'i/a'yi]

for the argument supplied & . We then use the APPL rule to derive
ML(A) [yl(u'l)/a'yl, ym(a'm)/a'ym, T [a'i/u'yi]/x]
FK (%, dict(Ty, 8y), ..., dict~(T), &) & (X [rj/aj]) [a'i/a'yi]
and finally the ABS rule, which gives us
ML(A) [y'l(a'l)/a'yl, y'm(a'm)/a'ym]
F (AX.K (X, dictc(fl, Op)s e dictc(fk, d)) :
("> X [Tj/CXj]) [a'i/a'yi]
(A O Fis K:t(t) - boold is K

This case is a straightforward application of the TEST rule in the target
language.

~

(AC) Flet Kx=ein e:10 let KEF(’{)K’ 5 U= in &
1

0 7
Let

(FV(2&)\FV(e &) O 5FV(t(T,)) O FV(T) 5\ FV(A) o= {ay, 0y}
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choosing a suitable numbering such that

(FV(® \ FV(9) O FFV((T ) \ FV(A)F = {a, ..o} and

(FV(@)\FV(e) O (FV(T)\FV(A) = {a, ,...a,} ,where

Yh+1
h<l<m.
Let Do’ .uB.Z[KB,.T] = ML(0) , where
1= TI:Bl/Bal, Bk/Bék] x0,(By) ... 3, (B))
By the induction assumption,
ML(A)[yi(ai)/ayi‘| = 1...IJ Fe: t[ai/ayi‘| = 1...IJ , Where
T U n LU ' ' .
t = B.Z[KB, 1] D[rl/a vy rn/ayn] . We further apply the in-
duction assumption to the last premise to obtain
yi(ai)/ayi‘i =h+1..m
T [Ki/B5j]/X’ 51(K1)/5K1, o 0Ky )/ O,

Fe: t'[ai/ay_‘i = h+1...m]
|

ML(A)

Note thatdictc.(Kj, 6j) =90, ine€ . We now extend the assumption sets
j
of this and the preceding judgment to inclunvz, e a , and apply
1 ym

the PAT” rule. Our claim follows after restricting the final assumption
setto (FV(e€)\FV(e &) O (FV(T)\FV(A) .
|

The following corollary is a deterministic version of the type preserva-
tion theorem in [NS91]. It covers the case of unambiguous resulting expres-
sions, that is, expressions whose translations do not contain free dictionary
variables not free in their types.
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Corollary 5.10 [Type preservation] Let all types in the range®of be closed.
If (AC) Fe:td eandFV(§\FV(e OFV(), then

ML(A) + )\ayn.e: y,(ay) - o -y (@) - T[al/ayl, an/cxyn] , Where

{ay, ..o} n FV(ML(A) = 0.

Proof: We use the preceding theorem and apply the ABS rule from
Chapter 3n successive times.

Corollary 5.11 [Semantic soundness] Let all types in the rangé& of be

closed, and letp be a type environment such that for eadiyDomy
wrong O @(a). If (A,C) F e:10 & and Fp, yML(A) , then
E[ € p #wrong .

Proof: By type preservation and semantic soundness of the target language.
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Related Work, Future Work, and
Conclusions

6.1 Related Work

The following table compares our work with other programming languages
with similar features or objectives. The design criteria used as a basis for

our comparison are taken from Section 1.1:

1.

2.

3.

4.

5.

6.

Strong and static typing,

type reconstruction,

higher-order functions,

parametric polymorphism,

extensible abstract types with multiple implementations, and

first-class abstract types.

In the tabled means the feature is supportéd,means it is not fully sup-

ported, and a blank entry means it is not supported at all.

119
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Design Criterion
Language 1. 2. 3. 4. 5. 6.
Our work O O O O O 0
ML/Haskell 0 O O O O O
SOL O O O 0 O
Hope+C U l l U 0 O
XML+ O] [ [ [ l
Dynamics O O O O O O
OOL H U U [
6.1.1 SOL

SOL is based on the full second-order polymorphicalculus. It is not
known whether there is a type reconstruction algorithm for this language.

6.1.2 Hope+C

The only other work known to us that deals with Damas-Milner-style type
reconstruction for existential types is [Per90]. However, the typing rules
given there are not sufficient to guarantee the absence of runtime type errors,
even though the Hope+C compiler seems to impose sufficient restrictions.
The following unsafe program, here given in ML syntax, is well-typed ac-
cording to the typing rules, but rejected by the compiler:

datatype T = K of "a
funfx=letvalKz=xinzend
f(K 1) = f(K true)
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In addition, an identifier bound in a pattern-matchlietg expression is not
polymorphic according to the typing rules. This restriction does not apply to
our work.

6.1.3 XML+

The possibility of making ML structures first-class by implicitly hiding their
type components is discussed in [MMM91] without addressing the issue of
type inference. By hiding the type components of a structure, its type is im-
plicitly coerced from a strong sum type to an existential type. Detailed dis-
cussions of sum types can be found in [Mac86] [MH88].

6.1.4 Dynamics in ML

An extension of ML with objects that carry dynamic type information is de-
scribed in [LM91]. A dynamic is a pair consisting of a value and the type of
the value. Such an object is constructed from a value by applying the con-
structordynamic . The object can then be dynamically coerced by pattern
matching on both the value and the runtime type. Existential types are used
to match dynamic values against dynamic patterns with incomplete type in-
formation. Dynamics are useful for typing functions suclezed . Howev-

er, they do not provide type abstraction, since they give access to the type
of an object at runtime. It seems possible to combine their system with ours,
extending their existential patterns to existential types. We are currently in-
vestigating this point.

6.1.5 Object-Oriented Languages

Most statically typed object-oriented languages identify subclassing with

subtyping (C++ [Str86], Modula-3 [CD®®9]) at the expense of severely re-
stricting the expressive power of the language. Due toctmgravariance

rule for function subtyping, not even simple algebraic structures can be de-
scribed in C++; this is discussed in detail in [CHC90] [HL91].
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Recognizing and attempting to overcome this restriction, other languag-
es sacrifice static typing (Eiffel [Mey92], Ada 9X [dod91]) and rely on run
time checks to guarantee compatibility of function arguments.

Furthermore, most object-oriented languages do not support type recon-
struction; a recent advance in type reconstruction for a Smalltalk-like lan-
guage is presented in [PS91].

6.2 Current State of Implementation

We have implemented a Standard ML prototype of an interpreter with type
reconstruction for our core language, Mini-ML [CDDK86] extended with
recursive datatypes over existentially quantified component types. The ML-
style examples from this thesis have been developed and tested using our in-
terpreter.

Technically, the interpreter consists of the following components:

» Lexer and parser were built using the tools ML-Lex [AMT89] and ML-
Yacc [TA91], respectively.

» The type reconstruction phase is based on [Han87].

» The evaluator directly implements the denotational semantics present-
ed in Section 3.6.2.

We plan further to develop this prototype towards an interpreter of a full lan-
guage based on our extension of SML.

The latest releases of the Lazy ML [AJ92] and Haskell B. [Aug92] sys-
tems feature datatypes with existentially quantified component types. Both
systems were developed at the Chalmers University of Technology; they
provide full compilers and interpreters capable of dealing with larger pro-
grams. The Haskell examples from this thesis have been tested using the
Chalmers Haskell B. interpreter.

6.3 Conclusions

The question we had set out to answer in this dissertation was:
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Is it feasible to design a high-level programming language that satis-
fies criterial. through6.?
We showed that such a design is feasible from a type-theoretic, a language
design, and an implementation perspective:
» Type-theoretic viewStatic typing and semantic soundness of the type
systems hold for all three languages presented. Furthermore, we ex-
tended the Damas-Milner type reconstruction algorithm used in ML to

cope with our languages.

» Language design viewDur examples demonstrated that we gain con-
siderable expressiveness and flexibility by adding first-class abstract
types to ML and Haskell while retaining the syntactic and semantic
“look and feel” of the original languages.

* Implementation viewOur prototype implementation shows that our
languages can be implemented using standard techniques as the ones
described in [Han87] or used in the Standard ML of New Jersey imple-
mentation [AM92]. The Chalmers LML and HBC systems demonstrate
that it is feasible to implement our extensions in practical compilers

and interpreters.

6.4 Future Work

Our work leads off to a number of future research directions, some of which
are discussed below.

6.4.1 Combination of Modules and Existential Quantification

in ML
We demonstrated in Chapter 5 how Haskell type classes can be used as sig-
natures of abstract data types. The ML module system also provides sigha-

tures, which are strong sum types. One could imagine using these signatures
to describe interfaces of abstract types. First-class abstract types could then
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be achieved by applying an injection that makes the type components of the
signature existentially quantified, along the lines of [MMM91].

6.4.2 A Polymorphic Pattern-Matchinglet Expression

An identifier bound using the pattern-matchinet expression from
Chapter 5 is monomorphic, whereas an identifier bound by the correspond-
ing expression from Chapter 3 can be used polymorphically. It would be de-
sirable to overcome this restriction by exploring an extended target lan-
guage, where a function depending on some method dictionaries can be de-
composed before being applied to any arguments. While unsound in the
general case, we conjecture that this is sound in our case, since the argu-
ments are the same whenever the bound identifier is used with the same type.

6.4.3 Combination of Parameterized Type Classes and
Existential Types in Haskell

Type classes in Haskell are not parameterized, thus we cannot model ab-
stract container classes. This shortcoming was discussed in [LO91] and is
also present in our extension of Haskell described in Chapter 5; thus the
stack example from Section 5.2.2 is not polymorphic. An extension of
Haskell with parameterized type classes was recently presented in [CHO92];
it would be desirable to apply the same extension to our language. We con-
jecture that parameterized type classes are an orthogonal extension and
combine well with existential quantification.

Another interesting extension of Haskell is one with a dotless dot nota-
tion analogous to the ML extension from Chapter 4; it appears that such a
language could be translated into the language described in Chapter 5.

6.4.4 Existential Types and Mutable State

Since the full ML language also provides polymorphic references, an exten-
sion of this language with existential types would depend on the coexistence
of existential types and polymorphic references. Similar considerations hold
for other forms of mutable state such as linear types [Ode91] [Wad90].
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6.4.5 Full Implementation

Whereas implementations of Lazy ML and Haskell B. extended with exis-
tential types are now available, further implementation work could be envi-
sioned both at the ML level and at the Haskell level.

At the ML level, the language would be strict and include datatypes with
existentially quantified component types, polymorphic references, and pos-
sibly modules.

At the Haskell level, the language could be strict or non-strict and in-
clude existential quantification over parameterized type classes. Alternative
implementation strategies for Haskell or similar languages with type classes
could be explored; instead of translating to an ML-like language, type class-
es could be mapped to C++ templates [Ode92]. A possible starting point for
further exploration could be an explicitly typed version of Mini-Haskell in
the spirit of [MH88].
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