SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(9), 835-870 (SEPTEMBER 1994)

Assignment as the Sole Means of Updating Objects

P.A. BUHR, DAVID TILL
Dept. of Computer Science, Univ. of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (pabuhr @uwaterloo.ca)

AND

C. R.ZARNKE
Hayes Microcomputer Products, 295 Phillip Street, Waterloo, Ontario, N2L 3W8 (bzarn_| @hayes.com)

SUMMARY

Itispossible, by appropriate programminglanguageextensions, to usethe assignment statement asthe sole
means of changing the value of a variable, thereby eliminating the need to modify routine arguments by
output parameter s. Sever al suggestionsaremade to enhancethe syntax and semantics of routine definition
and assignment to maintain notational convenienceand efficient execution nor mally associated with output
parameters. Finally, an almost completeimplementation of theideasis presentedin C.

KEY WORDS Assignment Parameter passing Programming language

INTRODUCTION

In conventional imperative programming languagesthere are twowaysin which avariable can
be assigned: by the assignment statement and by being an output argument of aroutine*(e.g.,
Pascal! VAR or Adai? OUT and IN OUT parameters). Unfortunately, the notation of aroutine
call usually doesnot indicateif an argument ischanged. Asaresult, arguments can be changed
unexpectedly, making comprehension, maintenance and debugging of a program difficult. A
way of expressing that an argument is changed at the call sitewasdiscussedinthe preliminary
Ada reference manual® (Sections 5.3-5.4) but was not included in the revised version of
Ada. C* forces the address of an argument to be passed to aroutineif the argument is to be
reassigned. Thisapproachisrepresented syntactically at thecall siteby prefixing the argument
by an *&’, but there are situations where this is unnecessary (e.g., an array parameter). For
most imperative programming languages, it is hecessary to examine the routine definition to
know if an argument is changed. We propose that there be only one mechanism to change
the value of a variable and, given the choice between the two mechanisms just described, it
must be by assignment. However, this must be able to be accomplished without sacrificing
notational convenience or efficient execution normally associated with output parameters.
Achieving these goal s requires augmenting both routine definition and assignment.

Both routine definition and assignment, as defined in languages such as Pascal and Ada,
are relatively pedestrian. As will be shown, their utility can be increased substantially, but

* In this paper, no differentiation is made between functions and procedures. All programs are called routines, some of these
may return values.
t Adais a Registered Trademark of the U.S. Department of Defense

CCC 0038-0644/94/090835-36 Received 10 July 1993
(©1994 by John Wiley & Sons, Ltd. Revised 17 June 1994



836 P.A.BUHR, D. TILL AND C. R. ZARNKE

thishasimplicationsin severa parts of the programming language. And if these implications
are not addressed by appropriate extensions of the programming language, enhancing routine
definition and assignment achieves only a small advantage.

This paper is divided into two parts. The first part discusses, in general, our approach
to extending routine definition and assignment, as well as some additional facilities that we
believeareimportant. Thispart shouldinterest programming languagedesignersasit discusses
several basic languageissues. The second part describes an almost complete implementation,
in C, of theideas presented in thefirst part. Theimplementation is achieved using atranslator.
No compiler support is used so that some trade-offs are necessary and not al aspects of
the design are implemented. This part should interest programming language implementors
as it discusses difficult implementation issues in extending C with more powerful routine
definitionsand assignment.

EFFECTS ON ROUTINES

Because weinsist that all assignment to variables be explicitly shown through the language's
assignment mechanism, conventional output parameters of a routine are disallowed. These
are replaced by our own style of output parameters, assignment to which is explicitly stated.
Consequently, traditional procedures, returning valuesthrough parameters, must be rewritten
asvaluereturning traditional functions. To allow traditional output parameters to be rewritten
in theform of returned results, routine syntax and semantics must be extended.

First, routines must be able to return a value of any data type defined in the programming
language, which includes instances of records, arrays, classes (as in Simula®), and possibly
files and routines. Traditionally, these data types have been passed to aroutine by address and
modified directly through this address in the body of the routine. Since we want to eliminate
this, a routine must be able to return these data types so that they can be assigned in the
calling program. Thus, the programmer must now think in terms of returning resultsthat are
subsequently assignedto variablesthrough assignment. Thisideaissimilar to thefundamental
method of work in functional programming, without having to contrive recursive solutions
because of the lack of assignment, and is easily imported into imperative programming, asin
Scheme® and ML".

Second, each output parameter of atraditional routine can be used to modify its correspond-
ing argument; if aroutine has severa of them, multipleresultsare returned from that routine.
The ability to return multiple results using output parameters is one of the important uses of a
traditional procedure over atraditional function in conventional languages. To accommodate
this, routines must be able to return multipleresultsasin CLU 8, Mesa’ and ML. Since these
multiple results must be assigned to an equal number of variables or used in a context that
requires an equal number of values, it is hecessary to make severa augmentation to the lan-
guage to effectively support this. Mimicking returning multiple results by packing them into
arecord or an array that is subsequently returned is not an acceptable method of doing this;
hence, we believe that a programming language must have both facilities: returning complex
data types and returning multiple results.

Routine syntax

The syntax we propaose for routine definition expresses the fact that some parameters are
changed. The syntax chosen is as follows:



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 837

routine name
l
RTN X T INT — f (...)
T T
return value parameter (s)
(output parameter) (input parameter)

Here the return value, called an output parameter, is explicitly named and is specified using
the assignment symbol, <. This syntax issimilar to that in APL°.
A list of output parametersis alowed, to support returning multipleresults, asin:

RTN x,y:INT,z: REAL « 9o(...)

Here three results are returned, two are integer values and oneis areal value. The location of
the output parameters and the use of the assignment symbol indicatesthat the parameter isto
be modified. It also models the usage of the routine at the call site; the above routines would
beinvoked in the following way:

y«f(...)
X Yz+g(...)

Aswell, the output parameters are explicitly named, which is consistent with multiple input
parameters, so that individual output parameters can be initialized. Explicitly named output
parameters have other benefits. They make removal of temporaries normally associated with
returning complex val ues strai ghtforward by using the storage of the output argument directly
(discussed in detail shortly). Furthermore, flow analysis can guarantee that all output param-
eters are initialized before returning. A separate RETURN statement that specifies avaue to
bereturned, asin:

RETURN x
RETURN x, vy, z

is rejected because it has the potentia to list arguments in the wrong order for returning
multiple values. Therefore, a simple RETURN with no arguments and running off the end of
aroutine are our choices.

Input parameters

While we want to prohibit the changing of arguments, the input parameters might still
be changed. However, if assignment to input parameters is allowed, all arguments must
necessarily be copied. This causes problemsfor certain kinds of objects, such as semaphores
or files, that cannot be copied either because it is not sensible to do so or because no copy
operation is defined.

If assignment to input parameters isdisall owed, copying of argumentsisat the discretion of
the compiler. The compiler can copy or use areference to the argument depending on which
is more efficient in time or memory space and this would be mostly invisibleto a user. This
restrictionisal so consistent with the ideathat arguments cannot be modified and would make
parameters correspond more closely with the mathematical concept of function parameters,
which never change value in the body of the function.

However, if the compiler passesan argument by reference, itispossiblefor auser to modify
an argument by aliasing, for example:



838 P.A.BUHR, D. TILL AND C. R. ZARNKE

VAR X : TYPE

RTNf(p: TYPE)
X+ 1
write(p)

END RTN

f(x)

This program generates different resultsif the compiler choosesto copy or use areference to
the argument of f. Euclid!! showed that many aliasing situations can be controlled; Adatook
the approach that it isthe user’s responsibility not to aliaswhen it may violatethe language’'s
semantics. While the failure to guarantee that arguments cannot be changed is unfortunate,
we believe it will occur infrequently, and does not negate the general benefits given above.
Therefore, our design adopts read-only parameters, i.e. parameters are C style const.

It might be argued that our design may force extralocal variablesin whichto copy theinput
parameters so that calculations can be performed. Introduction of new variablesin this case
increases complexity in the program. However, this situation is mitigated by the fact that the
design has explicit output variables that can be modified. An input parameter can be copied
into an output parameter and cal culations can be performed directly on it there. Finaly, we
conjecture, from a simple analysis of our own and other programs, that most routines only
read their parameters.

Even if direct assignment to a parameter is disallowed, it does not address the issue of
changing valuesindirectly accessiblethrough the parameter. We leave thisto the programmer
to specify in the type of the parameter using the CONST quadlifier, asin:

RTN f(p : REF INT, g : REF CONST INT)

*n 3 // valid

*q 3 [/l invalid: value that q points at is constant

p+q /I invalid: input parameter cannot be changed

g« p /I invalid: input parameter cannot be changed
END RTN

Similarly, if the eements of an array are not defined to be constant or the parameter does not
define them to be constant, they can be changed in the routine, but the entire array cannot be
reassigned. If this scheme is not adopted, objects like a semaphore would be usel ess because
a semaphore must be passed by reference and must be directly changed.

Output parameters

In the case of the output parameter, there are two reasonable interpretation for passing the
output parameter from the routine to the output argument at the call site: write-only or read-
writeparameters (AdastyleOUT or IN OUT, respectively). Withwrite-only output parameters,
the output parameter istreated as alocal variable in the routine, and its value is assigned to
the corresponding output argument. Asin the case of input parameters, the compiler isfreeto
choose the mechanism that is most appropriate for the type of the argument, that is, copy the
value or pass the address of the output argument to the output parameter and modifying the
argument directly. In the latter case, the output argument should be initialized to undefined,
if possible, before usage of the output parameter since the output parameter is considered to
be alocal variablethat is created without avaue. Asin the case of input parameters, aiasing
could be a problem depending on the language.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 839

Theother aternativeisaread-write output parameter. This meansthat the output parameter
would be initialized to the value of the output argument (either by copying or by directly
referencing it). However, in situationslike the following:

y + H(g(h(x)))

y could be uninitialized, and within the nested calls, it is necessary to create temporary
variableswith the same type as the output parameter to hold the results of theroutine calls, as
in:

ty « h(x)

tz + g(t)

y « f(t2)

In this situation, it is the temporary that is passed to routines g and h and the temporary is
definitely uninitialized. Without a programming language facility to check for an undefined
value, the read-write approach is too dangerous as users cannot rely on the output parameter
to haveavaue. Aswell, thisparameter passing mechanism would alow routinesto be written
in thefollowing way:

RTN s:[100] INT « sort()

Thisversion of sort getsitsinput from the output argument and modifiesit directly. It would
be called asfollows:

y « sort()

However, passing input into a routine through the output argument is arcane and does not
follow intuitively from other notions in the programming language. For these reasons the
read-write output parameters are rejected.

Based on thisanalysis, we adopt write-only output parameters. This decision follows con-
ventional programming languagesin requiring the all ocation of thereturn value at the cal site
(output argument on the stack), whereit is subsequently freed implicitly. Thisisin contrast to
languages like Smalltalk!? where it is the responsibility of a routineto create the object that
is being returned. While this does allow an abject to decide which of a group of compatible
objectsarereturned, it makes storage management complex. For example, in Smalltalk, asim-
pleinteger or a multi-precision integer may be returned; these data values must be allocated
dynamically, and hence, must be created on the heap, negating the efficiency of a program
stack.

Optimizations

The routine extensions suggested above are, in general, no more expensive than traditional
output parameters either in time or in space because output parameters are the same as Ada
style OUT parameters. Therefore, it is easy to see how routines using traditional parameter
passing modes can be re-written using the scheme presented here. For example:

PROCEDURE MatrixMultiply(a, b : IN Matrix; product : OUT Matrix)
becomes:

RTN product : Matrix « MatrixMultiply(a, b : Matrix)



840 P.A.BUHR, D. TILL AND C. R. ZARNKE

A routineto sort an array of integers, written as:

PROCEDURE sort(x : IN ARRAY(1..100) OF INTEGER,;
s : OUT ARRAY(1..100) OF INTEGER);

becomes:

RTN s:[100] INT « sort(x: [100] INT)
and would be used in the following way:

S « sort(y)

However, in the following situation:

S « sort(s)

thereis an diasing of two names in the routine to a single dataitem in the caller’s program.
This presentsthe problem that during the sorting of the datavaluestheinput parameter values
are changing as assignments are made to the output parameter. As stated, problems of this
sort cannot be completely detected; nevertheless, in many cases the compiler can detect them
and perform some reasonable action. One solution after detecting the aliasing is to make a
temporary copy of theinput parameter, asin:

S < sort(s) becomes t+ s
S « sort(t)

A novel alternative allows specifying that the input parameter is the same as the output
parameter, asin:

RTN x:[100] INT « sort(x)

The routine writer is indicating that the input and output arguments must be the same. Here
the name x appears as both an output and an input parameter to the routine; hence, such a
parameter is called an in-out parameter. Since thetype of x is defined by the output parameter,
no type information is necessary when it appears as the input parameter. One conseguence
of this approach is that it is no longer sufficient to just specify parameter typesin aroutine
prototype declaration; some parameter names must also be specified so both a programmer
and the compiler know when an in-out parameter is being used.
The situation:

S « sort(s)

isnow allowed and it is obviouswithin routinesort that changes to the output parameter affect
theinput parameter because they are the samevariable. Thisisidentical to thetraditiona sort
written with only asingle IN OUT parameter, asin:

PROCEDURE sort(x : IN OUT ARRAY(1..100) OF INTEGER);
However, the situation:
S « sort(y)

isnow in conflict with the routine definition because the input and output arguments are not
the same. Again, the compiler can detect this and make a copy of the input argument, asin:



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 841

S < sort(y) becomes s« vy
S « sort(s)

thus solving the conflict. Notice that it is unnecessary to create atemporary; instead it isonly
necessary to copy the input argument into the output argument and the output argument is
passed as the input argument satisfying the routine requirement.

Thisfacility can further eliminate temporariesin situationslike nested routine calls, where
the value being passed among the routines is the same type and size, such as several transfor-
mationsto amatrix of values, for example:

y « f(g(h(x))) becomes t; « h(x)
ty < g(ta)
y « f(t2)

and two temporariesarecreated. For acompiler to optimizeout thetemporarieswith traditional
IN OUT parameters, it must perform flow analysisover the body of each routineto establish a
direct relationship between the returned value and input value. If the body of the routine calls
other routines whose bodies are not available, the analysis may fail. Furthermore, if the body
of theroutineitself isnot available, the analysis cannot be done. With in-out parameters, the
relationship between returned value and input value is explicitly stated in the interface, and
therefore, the compiler is told this fact rather than having to infer it, plus the information is
intheroutineinterface so it is aways available to the compiler. For example, if the input and
output parameters are the same for routinesf, g and h, it would be possiblefor the compiler to
trivially follow the chain of arguments, input and output parametersfrom x to y solely through
routine interfaces. The variable y could then be used as the output data area (or temporary)
for the calls of h and g, and f would usey as its output parameter to complete the expression,
asin:
y « f(g(h(x))) becomes vy« x

y < h(y) yisnotcopied becauseitis

y < g(y) being referenced by address

y < f(y)

We suggest that both mechanisms for dealing with the adiasing problem be present in
the programming language, because each method provides the programmer with a different
mechanismfor solving aproblem. The programmer picksaroutineform, based on the expected
‘normal’ case, and the compiler deals with the other cases. The latter solution, making the
output and input parameter the same, isanovel way of providing additional informationinthe
routine interface for optimization purposes, and allows the compiler to easily generate code
for nested routine callsthat is equivaent to the traditional IN OUT parameter case.

Conformant data parameters

Input parameters may be conformant arrays, i.e. the size of such input parameters is de-
termined by the corresponding argument. However, in the case of conformant arrays in the
output parameters thereis no existing array from which to obtain the size, for example:

RTN x:[]INT « f(...)
RTN h(p:[]INT)

h(f(...))



842 P.A.BUHR, D. TILL AND C. R. ZARNKE

In the nested routine calls, the size of parameter p cannot be determined from the output
parameter x. However, if the parameter, x, is an in-out parameter, asin:

RTN x:[]INT « f(..., X, ...)

itispossiblefor thecompiler to examinethe argument that correspondsto theinput parameter,
X, to determine the size of the conformant parameter. For example, in:

VAR z : [100] INT
h(f( ...,z ...))

the size of the argument, z, is used as the size of the conformant parameter (and possibly the
size for a temporary variable to hold the result of f). The compiler starts at the innermost
nesting level and propagates the actual array size for any conformant output parameter to
outer nesting levels.

If the output parameter is a conformant array and not an input parameter, the size for the
output parameter must come from the variabl e that receives the val ue of the output parameter,
asin:

VAR z:[100] INT

RTN g(p : [100] INT)

RTN x:[]INT « f(...)

a(f(...)) /I output parameter of f is the size of input parameter of g
zf(...) // output parameter of f is the size of z

Thevariableto receivetheresult of the output parameter can befurther away dueto intervening
callsto routineswith input and output parameters that are the same, asin:

RTN x:[]INT « f(x)
RTN x:[]INT « g(x)
RTN x:[]INT « h(...)

z+f(g(h(...)))

The size of the output parameter is the size of z. Aswell, because of the routine definitions,
the compiler does not need temporaries; instead the storagefor z is used. Hence, the compiler
starts at the innermost nesting level and instead of propagating the actual array sizeasin the
previous case, it must look at the outer nesting levels for an actual array size to propagate
back to an inner nesting level. Which direction to ook is determined by whether the output
parameter is also an input parameter.

Collectively, these extensions to routine syntax and semantics allow a traditional routine
with IN OUT parameters to be rewritten as a routine returning results easily and without any
loss, and possibly a dight gain, in efficiency. However, to benefit fully from these extensions
requires modificationsto other parts of the programming language so that they can be used to
their fullest potential.

EFFECTS ON ASSIGNMENT

Traditional assignment is too limiting because it allows assignment of only one value to one
variable or to part of one variable. This section describes some possible extensions.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 843

Statement versus oper ator

Most conventional programming languages (Basic, Fortran, Cobol, Modula-2/3, Pascal,
Ada) specify assignment as a statement, which has the general form:

variable < expression

Somelanguages (Algol-60, Algol 683, C, C++) treat assignment likeaconventional arithmetic
operator, thereby alowing it to produce a value. Thisform can be used in any programming
language context where avalueisrequired, for example:

VAR r: REAL

VAR i, j:INT

VAR a:[10] INT
RTN f(p, q : INT)
i—j«<5

ali« 5]
fli—i+1lj«j+1)

Here, the value produced by assignment is used as the operand of another assignment, as a
subscript and as an argument value. Finaly, Mesa alows assignment to appear either as a
statement or as an expression operator; it will be shown that the difference is used to enforce
restrictionson certain kinds of assignment.

The main issue with assignment as an operator is whether the programming practice that
it encourages is desirable. (C is notorious for this style of programming.) We contend that
itis not desirable because the assignment operator may be hidden within an expression, and
this somewhat contradicts our objective of making assignment apparent. This style makes
finding the places where a variable is modified difficult, and hence, is nearly as undesirable
as modifying arguments of routines invoked in the middle of expressions. Aswell, there are
some situations where the result may be indeterminate, asin:

(iej)+(j<k)

ali«—1]«i+1

flie—i+liei+1)
Depending on the order that the compiler performs the assignments, the results will be
different. For these reasons, we believe it is reasonabl e to restrict assignment to appear only
in a separate statement and not allow it to be used as an operator. Such a restriction neither

impedes the ability to write efficient programs nor prevents the compiler from generating
efficient code.

M ass assignment

Some languages, likePL/I**, allow several variablesto be assigned aparticular value, called
mass assignment, for example:

Vi, Va, ..., V,, ¢ expression

wherethev,’s are variables. Mass assignment is particularly useful for initializing variables,
asin:

i j, k<0



844 P.A.BUHR, D. TILL AND C. R. ZARNKE

We define mass assignment to have parallel semantics, that is, the right-hand side expression
is evaluated and assigned to each variable on theleft-hand side asif al assignments occurred
simultaneously. Operationally this means:

temp « expression
Vi < temp
Va < temp

vV, < temp
rather than:

Vv, < expression
Vp—1 < Vp

Vi < Vs
which avoids problems when the variables are of different type. For example, givenr a rea
variableand i an integer variable then if:

rni«<35 means i+ 3.5 r«i

r obtains the value of 3 instead of 3.5. This interpretation of the statement is too arcane. It
is not normally what a programmer desires and it is difficult to locate this kind of mistake.
Conversionsfrom one typeto another that may result in aloss of information should be done
with an explicit cast or coercion facility.

Multiple assignment
Some languages allow alist of valuesin assignment, asin:

Vi, V2, ..., Vp < €1, €3, ..., €,

where the v,’s are variables and the e;’s are expressions. We call this multiple assignment
(also called concurrent assignment™®). One such languageis BCPL® and its meaning is:

Vi < €1
Vg < €5

Vy < €,
As for mass assignment, we believe this meaning for multiple assignment is arcane, as the
following:

X, y<VY X
does not do anything sensible. In CLU, multiple assignment has parallel semantics, which
means:

1 e

ty — e,

t, « e,

Vi« t;

Vo — t5

V, < 1,



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 845

s0 that:
X, y<VY X

interchanges the values of x and y. Normally interchanging two variables requires explicit
creation of atemporary variable; in general, eliminating variables correspondingly reduces
program complexity. Therefore, we adopt parallel semantics for multiple assignment.
However, in CLU, a variable may appear only once on the left-hand side of a multiple
assignment statement. We could find no explanation for thisrestriction; presumably, the order
inwhich the assignmentsare performed is conceptual ly simultaneous, so a statement such as:

X, X + X, X+1

has no clear meaning because the ordering of the individual assignments by the compiler
could be indeterminate. We, too, dislike statements with indeterminate semantics, because
we believe programmers find them confusing, particularly at this fundamenta level, even
though they may afford the compiler an additional degree of freedom for code generation. A
classical example appearsin C, where f(i++, i++ ) has indeterminate semantics because the
order of evaluation of argumentsis not defined. Therefore, we define a left to right ordering
in the evaluation of operands of an operator and in the execution of multiple assignment so
the previous statement means:

f; < X;ty « x+1
X1, X ts

and the value of x is incremented. Findly, performing assignments from left to right for
multiple assignment is consistent with other forms of assignment that are discussed.

Only the combinations of assigning severa values to the same number of variables or of
assigning one value to several variables (mass assignment) are allowed, as the semantics of
these are clear. Other combinations are not allowed as the meaning is unclear, for example:

a,bcd«xy /l what does this mean ?
a,b«<xvypaq /l what does this mean ?

Icon'’ defines a special exchange operation that can be used to swap two variables, for
example, x :=: y exchanges the values of x and y. However, multiple assignment subsumes
this case and is much more powerful. Mesa has a restricted form of multiple assignment only
for record types, asin:

birthday : RECORD |

day :[1..31],
month : [1..12],
year :[1900..2050)
]
[dd,mm,yy] «+ birthday; -- extractor
birthday < [dd,mm,yy]; -- constructor
Cascade assignment

Even with mass and multi pleassignment, having one statement contain several assignments
isstill useful, asin:



846 P.A.BUHR, D. TILL AND C. R. ZARNKE

Vi ¢ Vg < ... ¢V, ¢ expression

where the v;’s are variables. We call this cascade assignment (sometimes referred to as
multiple assignment). As for mass and multiple assignment, problems with type conversions
are mitigated by adopting parallel semantics so that cascade assignment means:

temp < expression
Vi < temp
Va < temp

Vv, « temp

Cascade assignment is useful in situationswhere the expression on the right-hand side has a
side effect. In this case, cascade assignment cannot be mimicked by multiple assignment, for
example,

a+ b+« f(1)
cannot be simply transformed into:
a, b « f(1), f(1)

becauseroutinefisnow evaluated twice. Thisissimilar to the difference between thefollowing
two C statements:

a[random(10)] = a[random(10)] + 1; /* random evaluated twice */
a[random(10)] += 1; /* random evaluated once */

Because cascade assignment may eliminate the explicit temporary variable needed if only
multiple assignment were present in the language, we believe it is a useful construct.

Cascade assignment can be easily extended to work in combination with multiple assign-
ment, asin:

a, b, cd e fef(l),g@2), hQ)

Like multiple assignment, only the combinations of assigning several values to the same
number of variables or of assigning one value to several variables (mass assignment) are
alowed.

Mesa has both cascade and (restricted) multiple assignment but they can only be combined
in restricted forms. Asmentioned, Mesa has an assignment statement aswell as an assignment
expression. The statement form of assignment is used to enforce therestriction that extractors
can only appear as the left-hand side of an assignment statement; an extractor/constructor
cannot appear astheleft-hand operand of an assignment operator in an assignment expression,
so thefollowingisillegal:

birthday < [dd,mm,yy] < birthday;

Thus, Mesa does not provide a general mechanism for combining cascade and multiple
assignment.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 847

TUPLES

Further programming language extensions are suggested here to take advantage of the ordered
list of heterogeneous items that have been introduced by routines returning multiple values
and extended assignment. Both capabilities suggest that alist of variables or expressions be
considered a separate construct in its own right. Theselists of values are called tuples. While
atupleis a series of items of possibly different types, our tupleis not a record. It is never
considered as a single structured set of datawith separately accessible fields, asarecordis.

SETL*® providesadifferent form of tuple, whichisan ordered sequence of arbitrary entities
organized into a single entity using the following syntax:

[E1, ..., Enl

Theentitiesg; of aSETL tuple can be of any type and atuple can be acomponent of another
tuple,i.e., tuplescan benested. However, SETL essentially treatstuplesasarraysof unbounded
size, allowing valuesto be selected from and assigned to the tuple using subscripting, which
isdifferent from our approach. Finally, SETL allows the assignment:

[X1, -y X ] =8
where x; through x;, are variablesand t is atuple, which is equivalent to:
X1 == t(1);

xk = t(k);

and thus can be thought of as a multiple assignment.

ML provides a tuple context more like what we are suggesting. An ML tupleisa cartesian
product of heterogeneous values. In essence, an ML tuple is a record, where the first field
hasthe name ‘1’, the second field has the name ‘' 2’, etc., and the names must be consecutive
integer values. Because ML tuplesarerecords, they also haveinternal structure. ML functions
allow only one argument and return value, but that argument or return value may be a tuple.
ML also provides pattern matching to implicitly compose alist of valuesinto atuple, and to
extract the fields of a tuple into individua values. Our tuples differ most significantly from
thosein ML by their lack of structure.

Existing tuple contexts

Depending ontheparticular programming language, there may be several syntacticcontexts
where tuplesaready exist. Two tuple contexts common to most imperative languages are the
subscript list and argument list, for example:

VAR a : [10, 10, 10] REAL

RTN g(x, y, z : INT)

afi, j, k] « 3.0 I, j, k form a tuple
0(4, 5, 6) /l'4, 5, 6 form a tuple

Like ML, our definition of tuple allows atuple to be used in a tuple context. For example, a
routine returning multiple values, asin:

RTN a, b, c: INT « f(...)

isactually returning atuple and can be used in the following ways:



848 P.A.BUHR, D. TILL AND C. R. ZARNKE

a[f(...)]« 3.0 [/l output parameters match with subscripts
a(f( ...)) /I output parameters match with input parameters

Multiple assignment affords another tuple context so that the following is possible:
X, ¥,z f(...) [/l output parameters match with assignment tuple

Inall these cases, the number of itemsin the tuple must match exactly withthat required by the
tuple context. An aesthetic problem is that the syntax does not show that the number of tuple
itemsisequal, i.e., aroutinecall or subscript operation no longer indicatesthe number of input
parameters or the dimension of the array. However, we believe that this capability providesa
programming techniquethat is very expressive, overriding this small syntactic deficiency.

New tuple contexts

Tuples can be formed in ways other than simple lists of variables or expressions. One
exampleis ashort-hand form for referring to severa fields of arecord:

VARTr: RECORD
a,b,c d e:INT
END RECORD
r(ab,c)«1,2,3 means ra,rbrc«1,2,3

Here the record r is ‘distributed’ over the parenthesized list of field names. This form is
particularly useful if ris subscripted or if severa qualifiers are necessary, asin:

i, jJ.(a, d,c) « 1,2,3 means i, jl.a, rfi, jl.d, rli, jl.c « 1, 2, 3

p.g.v.(b, e, d) « 1,2,3 means p.g.v.b, p.q.v.e, p.gv.d+ 1,2, 3

These forms do not obviate a statement like the Pascal WITH statement, but it does mitigate
its use; the above two examples would be written in Pascal as:

WITH ri, j] DO WITH p.q.v DO
BEGIN BEGIN
a=1,d:=2;¢c:=3 b:=1,e:=2;d:=3
END END

The former statements are more readable while still allowing the compiler to optimize the
references as easily asit can in the WITH statement.

Ingeneral, thisfacility isused to ‘flatten’ anested structureinto alinear tuple. For example,
given the following structure:

t: RECORD
a: RECORD
X
Y.
END RECORD
b:..
¢ : RECORD
zZ:..
WL
END RECORD
END RECORD



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 849

this can be compl etely flattened by atuple:

VARV : t
v.(a.(x,y), b,c.(z,w))

Here both variable and field names are used to specify the tuple. Whileit might be possibleto
construct an interpretation of asituation like:

v.(X,Y)

it isnot our intention to extend thisidea further than flattening of records. For example, PL/I
allows qualification to be omitted if it is unambiguous.

Tupletype

Each element of atuple has atype. Thetype of atuple, therefore, is the tuple of the types
of the components of the tuple, for example, the type of tuple, 2, 4.3, isint, real. Two tuples
are compatibleif and only if they have the same number of components and corresponding
components are type compatible. Because a tuple is flattened (defined shortly), its internal
structure is unimportant in determining compatibility.

Tuplevariables
The existence of tuples suggests aneed for variablesto store tuple values, for example:

VAR x : INT, REAL

More complex tuple variables can be created using other type constructors, such as pointers
and arrays. Tuple variables can be used in assignments:

x4, 3.1
i, < X

Notethat tuple variables are not tuples. Tuplevariables reference contiguousareas of storage,
in which tuple values are stored; tuple variables and tuple values are runtime entities. Tuples
are compile-time constructs, usually a list of expressions, whose values may not be stored
contiguously.

Also, tuplevariablesare not record variabl es. First, the el ements of thetuplevariableare not
individually accessible. Second, atuplevariable may beused in atuplecontext, where arecord
variable cannot. This capahility is possible because of several implicit coercion operations,
discussed next. Finally, our tuples have asimpleinterna structure, aflat list, whereas records
may have a complex internal structure.

Tuple coercions

There are four coercions that can sensibly be performed on tuples and tuple variables:
closing, opening, flattening and structuring. In addition, the coercion of dereferencing can be
performed on atuple variableto yield itsvalue(s), as for other variables.

Closing takes a tuple of values and convertsit into a tuple value, which is a contiguous set
of values. The following assignment illustrates closing:



850 P.A.BUHR, D. TILL AND C. R. ZARNKE

VAR w : INT, INT, INT, INT
w1234

First theright-hand tupleis closed into atuple value and then the tupleva ueis assigned using
ablock copy.

Openingisbasically the oppositeof closing; atuplevaueisconvertedinto atupleof values.
The following assignment illustrates opening:

a,bcde—w

w isimplicitly opened to yield a tuple of four values, which are then assigned individually
using multiple assignment.

Flattening coerces a nested tuple, i.e., a tuple with one or more components which are
themselves tuples, into a flattened tuple, which is a tuple whose components are not tuples.
For example, flattening thetuple 1, [2, 3], 4, where[] are used to enclose anested tuplelikein
SETL, produces1, 2, 3, 4. Flattening is also performed on tuple types. For example, the type
int, [int, int], int can be coerced, using flattening, into the type int, int, int, int. The following
assignment illustratesflattening:

VAR a, b, c, d : INT
a,bcd«1,[23]4

First the right-hand tuple is flattened and then the values are assigned individually using
multiple assignment.

Neither SETL nor ML support flattening. In both languages, a tuple has internal structure
(i.e., anarray or record, respectively), and this structure must match exactly with the context
inwhichthetupleis used. We believe structured tupl es preclude many reasonabl e cases, both
simpleand complex. A simple caseis:

VAR x : INT, REAL
x«1,25
a, b,c d«1,x FALSE

In ML, the tuplex must be explicitly flattened:

val x = (1, 2.5);
val (a, b, c, d) = (1, #1x, #2x, 4);

A complex caseis combining routineswithout having to restructureintermediate tupleval ues.
For example, the followingisnot allowed in ML but allowed in our design:

RTN [x,y:int], z:int « f(...) ...
RTNg(x,y,z:int) ...
a(f(...)) /I implicit flattening coercion

In ML, the output parameter type of f: [int, int], int does not match the input parameter type of
g: int, int, int. In our design, the call is valid because of theimplicit flattening coercion. The
lack of a flattening coercion may be a secondary issue in ML because the tuple is used for
other purposes where flattening would cause problems; however, for our purposes, flattening
iscrucia to make tuplesas genera as possible.

Structuring is basically the opposite of flattening; atupleis structured into amore complex
nested tuple. For example, structuringthetuple 1, 2, 3, 4 intothetuple1, [2, 3], 4 or thetuple
typeint, int, int, int into the tupletypeint, [int, int], int. The following assignment illustratesall
the coercion operations:



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 851

VAR w : INT, INT, INT, INT
VAR X : INT
w1234

X+ 5

X, W < W, X

w isopened, producing atuple of four values; therefore, the right-hand tupleis now the tuple
[1, 2, 3, 4], 5. Thistuple is then flattened, yielding 1, 2, 3, 4, 5, which is structured into 1,
[2, 3, 4, 5] to match the tuple type of the left-hand side. Thetuple 2, 3, 4, 5 isthen closed to
create atuplevalue. Finally, x isassigned 1 and w is assigned the tuple value using multiple
assignment. A possible additional language extension is to use the structuring coercion for
tuplesto initialize a complex record with atuple. Neither SETL nor ML support structuring,
which results in similar restrictions to not having a flattening coercion. For example, the
followingisnot allowedin ML but allowed in our design:

RTN [x,y:int], z:int < f(...) ...
RTN g(x:int, [y, z:int]) ...
a(f(...)) /I flattening and structuring coercions

Using tuple variables

We conjecture that tuple variables will not be used frequently; nevertheless, they have
their uses. The following are two possible situations where tuple variables are useful. Tuple
variables can be used to store argument listsfor aroutinecall, asin:

VAR arg : INT, INT, INT, INT
arg«1,2,ab
WHILE ... DO
IF x>0 THEN
f(arg) /I implicitly coerced open
ELSE
f(c,d,3,4)
ENDIF
END WHILE

Inthiscase, theargument list for thefirst call tof isformed in atuplevariable outsidetheloop
and can be copied onto the calling stack with a block copy. Clearly, this optimization could
be performed without tuple variables, but it is more difficult. The same optimization can be
performed when accepting or returning multiple values, asin:

RTN ret : INT, INT, INT < f(arg : INT, INT, INT )

If the tuple value passed as an argument is already closed or if the value returned does not
need to be opened, an efficient block copy can be used.

ROUTINE PARAMETERS ON THE RIGHT SIDE OF ASSIGNMENT

A programming language extension is suggested to further increase the expressive power
of the language, which follows naturally from the suggested extensions thus far. An output
parameter of aroutineis able to be associated with avariable on theleft side of an assignment



852 P.A.BUHR, D. TILL AND C. R. ZARNKE

(asinx « f(a)); this suggests the extension of alowing an input parameter of aroutineto be
associated with a variable on the right of an assignment’®. Such a routine is defined in the
following way:

RTN f (..) <« z:INT
1 T

input(s) input(s)

parameter parameter

and isinvoked by, f( ... ) « 3, whichisreally ‘syntactic sugar’ for f’( ..., 3), wheref’ isthe
same as f with the additiona input parameter:

RTNf/(...,z:INT)

Hence z is just an input parameter and must obey all the rules of input parameters. Some
languages(e.g. Algol68, C++, ML) allow aroutineto appear on theleft side of assignment, its
meaning is quitedifferent from that suggested here. Such aroutinein Algol68 must produce a
pointer (or REF) asitsresult that isused to receive the value of theright side of the assignment
as opposed to the right side being an implicit parameter to the routine.

Thisextension can beused toincreasethenotational capability of the programming language
by allowing nested routine callsto be written in the form of cascade assignment. For example,
instead of the traditional form, x < q(y, r(s(z))), these routines could be redefined:

RTN out: ... + s(...)
RTN out:... « r() «in:...
RTN out:... « q(...) « in:..

so that they would be invoked in the following fashion:
X q(y) < 1() « s(2)

The inputs to these routines can be divided into two classes: primary and secondary. The
primary inputs are those values modified by the routine, while the secondary inputs provide
information on how the primary inputsare modified. Thisform resembles the syntax used for
pipesin the UNIX Shell?® except that the data ‘flows' towards the l€eft rather than the right.
However thereis no implied concurrent execution; both these points are considered shortly.
A more concrete exampl e of thisextension isthe problem of determining if an array of words
contains any misspelled words. A solution can be written in the following way using UNIX
Shell commands®:

cat words | translit A-Z a-z | sort | unique | common -2 dict > mispelled
Using standard procedural notation thiswould be written:

mispelled «+ common( -2, dict, unique( sort( translit(’ A-Z' ,’ a-z' , words) ) ) )

and similarly written in the following way with the routine extension:
mispelled «+ common( -2, dict) «+ unique() < sort() < translit(’ A-Z’ ;" a-z’ ) + words

Experience has shownthat many people prefer the flattened pi pe command syntax, rather than
the nested routine call form; however, the nested form has historicaly been the only form
available in imperative programming languages.

Finally, it is possible to have multipleinput parameters by assignment. For example:



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 853
RTN rl, r2 :int «+ foo( i1, i2 :int) «+ al, a2 :int

returns two output parameters and accepts two conventional input parameters plus two input
parameters by assignment. It is called in the following way:

X,y foo(1,2)+ x5

Note that the call must be consistent with the routine definition, so foo(1, 2, x, 5) isillegal.
Our approach is more consistent than that taken in the Shell or in C++. In the Shell,
commands can alow input from both afilter or from an argument list, asin:

% cat x| sort
% sort x

Because there is no forma definition for the parameters to a Shell command, there is no
type-checking in commands. Hence, it is impossible to know which form is used, and the
command must check if a parameter is suppliedtoit or not. A further problem occursif both
forms of input are specified, asin:

% cat x | sorty

Thislast formisavalid usage of sort asfar asthe Shell isconcerned, but sort may not properly
handle this situation, nor isit necessarily trivia to handle such a case.

In C++, overloading binary operators and other techniques are used to flatten expressions.
For example, 1/0O operations are performed by overloading the binary shift operators to form
an /O pipeline, for example:

cin >>a>>b >>c;
cout << setw(5) << a<< b <<¢;

However, defining aroutinethat fitsin the pipelinewith secondary parameters, e.g. setw(5), is
difficult and non-obvious. Basically, atemplateis used to construct a closure around aroutine
with parameters to transform it into a manipulator routine with no parameters so it can be
placed in the pipeline.

I nput/output routines

The changes suggested have direct ramifications in the definition of input/output routines
usually predefined in a programming language. Traditionally, input routines have used OUT
parameters or a mechanism that looks like OUT parameters, asin:

READ(INPUT, A, B, C) Pascal, output parameters
READ(5,*) A,B,C Fortran, a form of output parameters

These statements can be rewritten using output parameters, asin:

a «+ read(input) a « input.read
b « read(input) or b+ input.read
€ « read(input) C « input.read

Similarly, output routines can be rewritten to use parameters on theright side of assignments:



854 P.A.BUHR, D. TILL AND C. R. ZARNKE

write(output) < a output.write «+ a
write(output) < b or output.write « b
write(output) < ¢ output.write < ¢

This latter change is not essential for output routines but is suggested to maintain the pro-
gramming flavour from above.

Thispaper does not discusshow routines such as /O routineswoul d handle avariable num-
ber of parameters and/or polymorphic parameters. These facilities would alow the multiple
statements above to be expressed as:

a, b, c « read(input) or a,b, ¢+ input.read
write(output) < a, b, ¢ or output.write < a, b, c

A full discussion of these topicsis beyond the scope of this paper. Some ideas on this topic
have been presented®.

DIRECTION OF ASSIGNMENT

It might be argued that the UNIX form for the spelling checker is more expressive because it
reads left to right in the order that a programmer conceives of the operations. Thisisavalid
point for interactive commands that are typed (left to right) as they are conceived, used and
then discarded. And right to left assignment could be easily incorporated into a programming
language, by having assignment assign to the variable on the right side, as in PROTEL? and
BETA?*:

atb—c
sort(x) — X

Defining assignment to work thisway doesnot affect any of thelanguage extensionsdiscussed
so far. However, we believe that this syntax is less desirable when used with statements that
will beread and modified at alater time because the most important component of assignment
is the target, which is normally on the left, and hence, is able to be discerned easily when
scanning the sourcecode. If thetargetsare at theendsof ‘ ragged right’ assignment statements,
they are more difficult to find.

CONCURRENCY

Thusfar, execution of assignment with routi nes hasbeen assumed to be performed sequentially.
Thisis not aproperty of assignment itself but of the definitions of the routines. If alanguage
provided some mechanism to create tasks, such asaPROCESS construct:

PROCESS x:[]INT « foo(x:INT)...

which starts a new thread of control in a routine body (asin Mesa and Turing®) when it is
called, concurrent execution of processesin an assignment statement could be madeto operate
very much likethe Shell *|'.

One method for concurrent processes to communicate is through a pipe: an object that has
routinesread and write and aninternal buffer, whichwhen full causes suspensionof thecurrent
writer or when empty causes suspension of the current reader. Figure 1 shows an example
of asimpleimplementation of a pipe using a Simula-like CLASS. A more general definition



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 855

CLASS PipeOfChar

ESCAPE EndOfData /I end of data exception
VAR q : queue(CHAR, 10) /I bounded monitor queue of characters
RTN ch :CHAR « read() /I read characters from the queue
ch « g.front() /I return front element of queue
END RTN
RTN write( ch : CHAR) /I write characters into the queue
g.back() + ch /I add element to end of queue
END RTN
/I initialization code for class
TERMINATION
SIGNAL EndOfData /l termination code for class
END CLASS

Figure 1. Smple implementation of a pipe

for a pipe could be made by having a generic CLASS, which accepted the type of the queue
elements as a parameter like the monitor queue above.
An example of the usage of thisclassis:

PROCESS p : PipeOfChar + Producer(...)
PROCESS Consumer(...) « p: PipeOfChar
VAR p : PipeOfChar

p < Producer( ...) /I write into the pipe

Consumer(...) < p /I read from the pipe

Producer beginswritinginto the pipe until it finishes or the pipefills; Consumer subsequently
removes the contents of the pipe, blockingif the pipeis empty. The more interesting situation
isthefollowing:

Consumer( ... ) + Producer( ...)

where a single pipeis created (as atemporary) before starting Consumer and Producer, and
Consumer usesthispipedirectly asitsinput parameter. Here Producer and Consumer execute
concurrently like Shell commands separated by afilter operator.

Figure 2 shows how input and output pipes can be used in a single process. This process
would be used as follows:

Consumer( ... ) « ProdCons( ... ) « Producer( ... )

The exception EndOfData to signal end of input from the pipe requires handling. This is
accomplished by the EXCEPTION control structure, which establishesthe codeto be executed
for the escape EndOfData signalled in a lower-level block, in this case, the read routine of
Pipeln. Eventually, when ProdConsisblocked on Pipeln.read(...) waiting for input, the process
on the right of the assignment, Producer, will terminate execution. As part of itstermination,



856 P.A.BUHR, D. TILL AND C. R. ZARNKE

PROCESS PipeOut : PipeOfChar «+ ProdCons(...) < Pipeln : PipeOfChar

VAR ch : CHAR
EXCEPTION /I catch signalled escape
LOOP
ch « Pipeln.read() /I read from pipe

/I process character ch, possibly writing more or fewer characters
/I into pipe PipeOut for each character from pipe Pipeln
PipeOut.write(ch) [/l write into pipe
END LOOP
ESCAPE Pipeln.EndOfData
/I end of data processing for pipe Pipeln
END EXCEPTION

END PROCESS
Figure 2. Input and output pipes

Producer endsitsaccessto the pipeused to communicate with ProdCons; thisisthen signalled
by the pipe and handled by ProdCons in the exception construct.

When this facility is used in conjunction with tuples, it is possible to construct multiple
concurrent connections between two processes or between one process and several others, for
example:

PROCESS outy, out; : PipeOfChar + Producer()
PROCESS Consumer() « iny, in; : PipeOfChar

Consumer() + Producer()

Hence, there may exist multiple concurrent flows of information in an assignment statement.

C IMPLEMENTATION

A trandator* for ANSI C, called K-W C' 26, was built to test the proposed ideas. C was chosen
because of its popul arity, however, we discovered that certain syntax quirksof C forced severa
significant extensions that would be unnecessary in other languages and al so precluded some
ideas completely. All K-W C extensions are directly applicablein C++.

Declar ations

Early intheproject, we discovered that it isimpossibleto extend existing C routine syntax to
support multiplereturn values. Thisresultsfrom thefact that the routine name and parameters
are embedded within the return type, mimicking the way that the return value is used at the
routine’scall site. For example, aroutine returning apointer to an array of integers, is defined
and used in the following way:

* Theterm tranglator is used rather than preprocessor becausethe K-W C programsare partially parsed and symbol tables are
constructed. A preprocessor normally does only string substitutions.
T *K-W’ stands for Kitchner-Waterloo, which is the twin city in which the University of Waterloo is located.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 857

int (*y)[10];
int (*f( int (*x)[10] ))[10] { return x; };

*f(y )3l +=1; /I definition mimics usage

While attempting to make the two contexts consistent was alaudable god, it has not worked
out in practice; C declaration syntax is notoriously confusing and error prone. Furthermore,
this syntax cannot be extended with multiple return types because it is not possibleto embed
a single routine name within multiple return type specifications.

To alow the specification of multiple return types requires a completely new form of
definition syntax for routines. The change to routine definition then affected other routine
related declarations, such as routine prototype declarations and pointers to routines. Rather
than have a declaration anomaly in K-W C just for routine specification, we attempted to
extend all the C declaration contextswith the new form of declaration syntax. Asit turned out,
the syntax chosen for the extended routine syntax was amenableto al C declaration contexts,
and is simpler to use than C declaration syntax. Furthermore, by making one small change to
standard C declaration syntax, it was possible to alow our new declarations to appear with
standard declarations; this backwards compatibility is useful becauseit allowsK-W C codeto
coexist with the large body of existing C programs. In fact, the two styles of declaration may
appear together in the same block, but cannot be mixed within a specific declaration. While
extending the new declaration syntax to all declaration contexts is not germane to the thesis
of this paper, it is simpler to explain the complete declaration change, rather than limit the
discussion to routine contexts.

The one change made to standard C declaration syntax is to require a base type for al
declarations, asisdonein C++; C defaultsto basetypeint if no typeis specified, for example,
the following are valid C declarations:

X; [* int x */

*y; [* int *y */

f( pl, p2); [* int f(int p1, int p2); */
f(pl, p2){} [* intf(int pl,int p2){}*

Always specifying the base type is good programming practice. Furthermore, we believe
that large amounts of existing C code would be unaffected by this change. This change is
necessary to be able to distinguish between the new extended declarations and standard C
declarations. The new declarations place al modifiers to the left of the base type, while
standard C declarations place modifiersto theright of the base type. The only exceptionis bit
field specification, which always appearsto the right of the type modifier. If abasetypeisnot
made mandatory, it isimpossibleto tell if modifiers are for anew or a standard declaration.

In K-W C declarations, the character * is used to indicate a pointer, square brackets[] are
used to represent an array, and parentheses () are used to indicate a routine declaration, which
isidentical to C declarations. However, K-W C type declaration tokens are specified from | eft
to right and the entire type specification is distributed across all variables in the declaration
list. For instance, avariable x of type pointer to integer isdefined in K-W C asfollows:

K-W C C
*int x; int *x;

Other examples are:



858 P.A.BUHR, D. TILL AND C. R. ZARNKE

K-W C C
[20]inty; int y[20]; [* array of 20 integers */
*[20] float z; float (*2)[20]; /* pointer to array of 20 floats */
[20] * char w; char *w[20]; /* array of 20 pointers to char */
struct s { struct s {
int f0:3; int f0:3; /* bit field syntax the same */
*int f1, int *f1;
[10] * int f2; int *f2[10]
¥ ¥

If abase typewas not required, the declaration [10] *x; could be either avalid new declaration
or aninvalid old style declaration. As stated above, the two styles of declaration may appear
together in the same block, but mixing is not recommended. The type modifiers extern and
static are also supported.

Tupletypesare discussed in detail in alater section.

Type operators

The new declaration syntax can be used in other contexts where types are required, such as
casts and the pseudo-routine sizeof, for example:

K-W C C
y = (*int)x; y = (int ¥)x;
X = sizeof([10] * int); X = sizeof(int *[10]);

Routine definition

The point of the new declaration syntax isto alow specifying routines that return multiple
values, asin:

routine [int 01, int 02, char 03] foo(int i1, char i2, char i3) {
routine body

}

which has three output and input parameters. First, the routine keyword is necessary to
distinguish K-W C routine definition from routine prototype declarations.* Second, the type
modifiersstatic and extern are possiblebefore theroutine keyword. Third, brackets, [], enclose
the result type and each return value is named and that name is a local variable of the
particular return type. The value of each loca return variable is automatically returned at
routinetermination. Lastly, if there are no output parameters or input parameters, the brackets
and parentheses must still be specified; in both casesthetypeisassumed to be void asopposed
to the standard C default of int.
The routinefoo could be called as follows:

[i, j, ch] =foo(3," &, ch);
Thelist of return values from foo istreated as atuple.

* We conjecturethat it is possible to eliminate this keyword. Unfortunately, the way our grammar devel oped made subsequent
attemptsto eliminate it extremely difficult. We haveleft thisissuefor future work.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 859

The syntax of the new routine prototype declaration follows directly from the new routine
definition syntax; thetypeisthe same, except the routine name and possibly parameter names
are omitted, asin:

[int] O f; [* returning int with no parameters */

[* int](int) g; [* returning pointer to int with int parameter */
[I(int,char) h; /* returning no result with int and char parameters */
[* int,int](int) k; [* returning pointer to int and int, with int parameter */

The decision to put the routine name at the end of the prototypeinstead of between the output
and input parameters resulted from a desire to make aroutine prototype declaration similar to
apointer to routine, asin:

[* int](int) *pg; /* pointer to routine returning pointer to int with int parameter */

Thisdesign decision is still under review.
In-out parametersrequire thename of an output parameter be specified but no type specified
when it isused again in the input parameter list, asin:

[int, int y](y, int) bar;
routine [int x, inty] bar(y, intz) { ... }

Without requiring abasetypein adeclaration, itisimpossibleto tell anin-out parameter from
astandard C declaration in the input parameter list.

Returning values

Becausethevaueinthereturn variableisautomatically returned when theroutineterminates
in K-W C, thereturn statement does not contain an expression, asin the following example:

routine [int x] bar() {

x=0;
return;

}

When the return is encountered, the current value of x isreturned to the caller. * Falling off the
bottom’ of aroutineis permitted, asin:

routine [int x] foobar() {
x=0;

}

Tuples
The general format of atupleisthe following:
[ <exprlist> ]

where <exprlist> is alist of one or more expressions separated by commas. The brackets,
[1, alow the parser to distinguish between tuples and expressions containing the C comma
operator. The following are examples of tuples:



860 P.A.BUHR, D. TILL AND C. R. ZARNKE

[x,y, Z]
[2]
[v+w, x*y, 3.14159, foo()]

Tuplesare permitted to contain sub-tuples; however, in virtually all contexts nested tuplesare
flattened, so atuple, suchas, [[14, 21], 9], whichisa2-element tuplewhosefirst element isitsel f
atuple, isequivalent to the tuple, [14, 21, 9]. The only exception is when atuple-structuring
coercion is needed.

K-W C also considers the parameter list of a routine to form a tuple. Unfortunately, C's
syntax for subscripts precluded treating them as tuples. The C subscript list has the form
[il[j]..-and not [i, j,...]. Therefore, there is no syntactic way for a routine returning multiple
values to specify the different subscript values, for example, f[g()] aways means a single
subscript value because there is only one set of brackets. (Fixing thisrequiresamajor change
to C because the syntactic form M][i,j,k] aready has a particular meaning: i,j,k is a comma
expression.)

K-W C supportstupletypesand tupl e variabl es, which can be used everywhere conventional
types and variables can be used. The general format of atupletypeis:

[ <typdist> ]

where<typelist> isalist of oneor morelegal K-W C type specificationsseparated by commas,
which may include other tuple type specifications. Examples of tupletypesinclude:

[int, char]

[double, double, double]

[unsigned long]

[* [20] int, * * char, * [[int, int]] (int, int)]

Like tuples, tuple types may be nested, but also like tuples, nested tuple types are flattened
because they are not a structuring mechanism like records, so the following tuple types are
equivalent:

[int, int, int]
[[int, int], int]
[int, [int, int]]

Examples of tuplevariables are:

[int, int] x; /* 2 element tuple, each element of type int */
* [char, char] y; /* pointer to a 2 element tuple */
[[int, int]] ([int, int]) z;

The last example declares an externa routine that expects a 2 element tuple as an input
parameter and returnsa 2 element tuple asits result.

Note, tuples that appear as parameter lists may have their square brackets omitted for
convenience. Therefore, the following routine invocations are equivalent:

f([1, x+2, fred()]);
f(1, x+2, fred());

Also, atuple or a tuple variable may be used to supply al or part of a parameter list for
a routine expecting multiple input parameters or for a routine expecting a tuple as an input
parameter. For instance, the following are all legal:



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 861

[int, int] wl;
[int, int, int] w2;

[void] (int, int, int) foo; /* three input parameters of type int */
[void] ([int, int, int]) bar; /* 3 element tuple as input */

foo([1,2,3]);
foo(wl, 3);
foo( 1, wl);
foo(w2);
bar([1,2,3]);
bar(w1, 3);
bar( 1, wl);
bar(w2);

Notethat atuplecan contain aC commaoperator, provided that theexpression containingthe
comma operator isenclosed in parentheses. For instance, the following tuples are equivalent:

[1,3,5]
[1, (2, 3), 3]

The second element of the second tuple isthe expression (2, 3), which yieldsthe result 3.

M ass assignment
Mass assignment has the following general form in K-W C:
[ <lvalue>, ..., <lvalue> | = <expr>;

The left-hand side is a tuple of <lvalue>s, which is a list of expressions each yielding
an address, i.e, any data object that can appear on the left-hand side of a conventional
assignment statement. <expr> isany standard arithmetic expression. Clearly, the types of the
entities being assigned must be type compatible with the value of the expression.

Mass assignment has parallel semantics, for example, the statement:

[i.ylil. zZ =a + b;
is conceptually equivalent to:

t =a+b;
al = &i;
a2 = &ylil;
a3 = &z;
*al =t;
*a2 =t;
*a3 =t;

The temporary t is necessary to store the value of the expression to mitigate conversion
problems. The temporariesfor the addresses are needed so that locationson theleft-hand side
donot change asthevaluesare assigned. In thiscase, y[i] usesthe previousvalueof i and not the
new value set at the beginning of the mass assignment. In general, agood optimizing compiler
could remove most of the address temporaries by determining that individua assignmentsdo
not interfere.



862 P.A.BUHR, D. TILL AND C. R. ZARNKE

M ultiple assignment
Multiple assignment has the following general form in K-W C:
[<lvalue>, ..., <lvalue> | = [ <expr>, ..., <expr>|;

Theleft-hand sideisatupleof <lvalue>s, and theright-hand sideis atupleof <expr>s. Each
<expr> appearing on the right-hand side of a multiple assignment statement is assigned to
the corresponding <lvalue> on the left-hand side of the statement using the same parallel
semantics as for mass assignment. K-W C's multiple assignment is more powerful than
the CLU equivaent; in CLU, only variables can appear on the left-hand side of a multiple
assignment statement.

An example of multiple assignment is:

i, y[il, z] =11, a + b];

Here, thevalues1, i and a + b are assigned to the variablesi, y[i] and z, respectively. Note that
the parallel semantics of multiple assignment ensure that:

X, yI =1y, xI;

correctly swapsthe values stored in x and y.
Finally, translator checks ensure that the number of entities in both tuples are equal. The
following are flagged as errors:

[a,b, c]=11, 2, 3, 4];
[a, b, c]=11, 2];

The approach of issuing a warning and truncating and/or zero-filling the operands on the
right-hand side of the assignment was rejected, since statements such as these are most likely
the result of mistyping.

As for al tuple contexts in C, side effects should not be used because C does not define
an ordering for the evaluation of the elements of a tuple; both these examples produce
indeterminate results:

f(x++, x++); /* C routine call with side effects in arguments */
[V1, v2] = [x++, x++]; /* side effects in RHS of multiple assignment */
Cascade assignment

Cascade assignment has the following genera formin K-W C:
<tuple> = <tuple> = ... = <tuple>;

and it has parallel semantics asfor mass and multiple assignment. Some examples of cascade
assignment are:

x1=yl=x2=y2=0;
[x1,y1] = [x2, y2] = [x3, y3];
[x1, y1] = [x2,y2] = 0;
[x1,yl]=z=0;

Asin standard C, the rightmost assignment is performed first, i.e., assignment parses right to
left.



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 863

Record field tuples
Tuples may be used to select multiplefields of arecord. Its genera format is:
<expr> . [ <fiddlist> ]

<expr> is any expression yielding a value of type struct. Each element of <fieldlist> is an
element of the struct specified by <expr>. A record field tuple may be used anywhere atuple
can be used. An example of the use of arecord field tupleis the following:

struct s {
int f1, f2;
char f3;
double f4;
3

struct s v,

foo( v.[f3, f1, 2] ); /* equivalent to foo( v.f3, v.f1, v.f2 ) */

If afield of astructisitself another struct, multiplefields of this subrecord can be specified
using anested record field tuple, asin the following example:

struct inner {
int f2, f3;

3

struct outer {
int f1;
struct inner i;
double f4;

3

struct outer v;

V.[f1, i.[f2, 3], f4] = [11, 12, 13, 3.14159];

Passing input parameters by assignment

K-W C alows input parameters to be passed in two ways: either in parentheses (the
traditional way) or on the right-hand side of an assignment statement. It is possibleto define
routinesthat are called in the following way:

x=foo(1) =12, 3];

Here, thetuple[2, 3] ispassed asan input parameter to foo. Thefollowingisasampledefinition
of aroutinethat accepts input parameters by assignment.

routine [int ret] foo( int parm1 ) = [int parm2, char parm3] {

,

Here, parml is a conventional input parameter, and parm2 and parm3 are input parameters
passed by assignment.

Note that the two kinds of input parameters are not interchangeable. If the above routine
foo is defined as shown, the statement:



864 P.A.BUHR, D. TILL AND C. R. ZARNKE

foo( 1, 2, 3);

isillegal, since foo is expecting only one conventional input parameter.
External declarations can specify input parameters passed both by assignment and in paren-
theses:

extern [int] (int) = [int, char] foo;

Thisdeclaration givestheroutine prototypefor foo. Routinetypesthat specify input parameters
passed by assignment can be used in other declarations as well, for example:

extern * [int] (int) = [int, char] fooptr;

K-W C TRANSLATION

The K-W C translator converts K-W C constructsinto ANSI C, which can be subsequently
compiled and executed. The purpose of the translator wasto provide proof-of-concept for the
ideas presented in thefirst half of the paper; while the trandlator is not complete, it has been
used by students to test the ideas presented in the paper. Figure 3 shows a simple K-W C
program that illustrates most of the K-W C features. The output from the K-W C translator
for thisprogramis presented to show theimplementation techniquesfor the different features.
Some editing of the tranglator output has been performed for display and readability purposes,
and comments have been added.

Figure 4 shows the additional declarations added to the K-W C program. Each tuple and
certain tuple contexts are transformed into a C structure. In the example program there are
threestructures generated: theimplicit tuplereturned from routinefoo, the explicit tuple (tuple
variabler) returned from routine bar, and thelocal tuple variable z in the body of routine bar.
Routines foo and bar return instances of thefirst two structures, respectively.

Figure 5 shows the C code generated for routine foo. The output parameters appear as
local variablesin the body of the routine and are subsequently packed into a structure before
returning. A compiler for K-W C would optimize out this step by using the storage for the
routine result at the call site. The translator was not up to the task of locating the calls, and
transforming the expression containing them so that the address of the call siteresult variable
was passed as the first parameter to the routine.

The code for the multipl e assignments show the three basi ¢ steps: cal cul ating the addresses
of the left-hand operands, copying the right-hand expressions, and assigning the right-hand
valuesto theleft-hand locations. Theimplicit return at the end of the routine copies the output
parameters into the return structure, and that is copied back to the call site.

Figure 6 showsthe C code generated for routine bar. Notice that the routine parameter that
appears on the right-hand side of assignment has been made into a normal input parameter.
Also, there are several contexts where tuples are flatten. In the first multiple assignment, the
tuplevariablez isflattened on the | eft-hand side, and the tuple returned from the call to foo is
flattened on the right-hand side. In the second multipleassignment, the tupl e output parameter
r isflattened on the left-hand side, and the tuple variable z is flattened on the right-hand side.

Figure 7 showsthe C code generated for routine main. The main routineillustratesthe use
of record field tuples. The implementation is straightforward, distributing the structure name
across the field names in the tuple list. Also, in the call to routine bar, the input argument
specified on the right-hand side of the assignment has been made into a normal argument.

Many of thefeaturesnot supportedinthetranslator relateto call site optimizationsand block
transfers. K-W C features requiring complex analysisat the call site and creation of cal site



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 865

[int rc](* char fmt, ...) printf;

routine [short x, unsigned y] foo(intw ) {

Iy, X] =[x, y] = [w, 23]; /* cascade, multiple assignment */
}
routine [[int, char, long, int] r] bar() = [short p] {
short x;
unsigned int y;
[int, int] z; /* tuple declaration */
X, ¥, z] = [p, foo( 17), 3]; /* complex tuple coercions */
r=I[xy, z;
}

routine [int rc] main( int argc, ** char argv ) {
struct {
int f1, 2, 3, f4;

}s;

s.[f1, f2, f3, f4] = bar() = 4; /* input argument by assignment */
printf( " expecting 3, 17, 23, 4; got %d, %d, %d, %d\n", s.[f4, {3, f2, f1] );
rc=0;

Figure 3. Sample K-W C program

temporariesare not implemented, along with sometuplecoercions. At thislevel, thetranslator
isfighting with the compiler to do thingsvery differently from the base language's semantics.
Since most of these optimizations would be straightforward if the K-W C constructs were
implemented directly in the compiler, we felt it was not worth expending a large effort to
achieve them outside of the compiler. The following examplesillustrate some of these cases.

The present implementation of K-W C does not support nested routine callswhen the inner
routinereturns multiple values; i.e., statements such asf(g()) are not supported, where routine
g returns multiplevalues or atuplevalue. Toimplement this, thetranglator would have to pull
the expression apart, store the tuple returned from g, and pull the values apart again to pass
them to f. A compiler might notice that the layout of the temporary tuple returned from g is
the same as the parameter list of aroutine and eliminate the temporary by building the result
from g on the stack and calling f directly because the result forms the argument for the call.

In-out parameters are not implemented for similar reasons: they would require complex
decomposition of call sitesin expressions. While the K-W C translator has the symbol table
information about in-out parameters, applying that knowledge at call sites would have been
extremely difficult. A compiler would simply perform in-out inferencing at each call site and
remove unnecessary temporaries accordingly as part of standard code generation.

Finally, the K-W C trandlator does not perform tuple-close coercions to achieve efficient
block transfers; instead, individual field transfers are performed. For example, in routine bar,



866 P.A.BUHR, D. TILL AND C. R. ZARNKE

~
*

struct _i1 {
short _s1;
unsigned int _s2;

tuple returned from foo */

%

struct _i2 {
int_s1,;
char _s2;
long _s3;
int_s4;

~
*

tuple returned from bar */

¥

struct _i3 {
int_s1,;
int_s2;

~
*

tuple for bar::z */

h

int printf(char *fmt, ...);

struct _i1 foo(int w);

struct _i2 bar(short p);

int main(int argc, char **argv);

~
*

prototypes for all routines */

Figure 4. Additional declarations

struct _i1 foo(int w) {

short x;

unsigned int y;

{ I Ty, x] =[x, y] = [w, 23]; */
short*_L1; unsigned int*_L2;
int_R1;int_R2;
L1 =&x; L2 =4&y; /* addresses for LHS expressions */
_R1=w; R2=23; /* copy RHS expressions */
* 1= R1;* L2= R2; /* assign RHS to LHS */

}

{

unsigned int *_L1; short*_L2;
short _R1; unsigned int _R2;

L1=4&y; L2=2E&x; /* addresses for LHS expressions */
Rl1=x; R2=y; /* copy RHS expressions */
* 1= R1;* L2= R2; /* assign RHS to LHS */

}

{ /* implicit return */
struct _i1_S;
_S. sl=x;_S. s2=y; /* return output parameters */
return(_S);

}

Figure 5. Routine foo



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS

struct _i2 bar(short p) {

short x;

unsigned int y;

struct i3 z;

struct _i2r;

{ I* [X,y, z] = [p, foo(17 ), 3]; */
short*_L1; unsigned int* L2;int* L3;int* _L4;
int _R1; short _R2; unsigned int _R3; int _R4;

L1 =8&x; L2 =4&y; /* addresses for LHS expressions */
{
struct _i3*_S;
_S=&(2); /* flatten tuple LHS */
_L3=&(S-> s1); L4=&(_S->_s2);
}
_R1=p; /* copy RHS expressions */
{
struct _i1_S; /* flatten tuple RHS */
_S=foo(17);
~R2=_S. s1; R3=_S. s2;
}
_R4=3;

/* assign RHS to LHS */
*L1= R1;* L2=_R2;* L3=_R3;* L4 =_R4;
}
{ *r=1[xy, z];*
int* L1; char* L2;long* L3;int*_L4;
short _R1; unsigned int _R2; int _R3; int _R4;
{ /* addresses for LHS expressions */
struct _i2 * S;
_S=&(n); /* flatten tuple LHS */
L1 =&(S-> s1); L2=&(_S->_s2);
_L3=&(S-> s3); L4=&(_S->_s4);

}
Rl1=x; R2=y; /* copy RHS expressions */
{
struct i3 _S;
_S=1z /* flatten tuple RHS */
~R3=_S.s1; R4=_S. s2;
}

/* assign RHS to LHS */
*L1= R1;* L2=_R2;* L3=_R3;* L4 =_R4;
}

return(r);

}

Figure 6. Routine bar

867



868 P.A.BUHR, D. TILL AND C. R. ZARNKE

int main(int argc, char **argv) {
struct _t5 {
int f1; int f2; int f3; int f4;

¥
struct _t5 s;
int rc;
{ [* s.[f1, f2, 13, f4] = bar(); */
int* L1;int* L2;int* L3;int* L4,
int_R1; char _R2;long _RS3;int _R4;
/* addresses for LHS expressions */
L1=&s.f1; L2=&s.f2; L3 =&s.f3; L4 = &s.f4;
{
struct _i2_S;
_S = bar((short)4); /* flatten tuple RHS */
R1=_S. sl;, R2=_S. s2; /* record field tuples */
~R3=_S.83; R4=_S. s4;
}

/* assign RHS to LHS */
* 1= R1;* L2=_R2;* L3=_R3;* L4 =_R4;

}

printf( (( char * )" expecting 3, 17, 23, 4; got %d, %d, %d, %d\n"),
s.f4, s.f3, s.f2, s.f1); /* record field tuples */

rc=0;

return( rc);

Figure 7. Routine main

the statement r = [, y, z]; could have been implemented by copying the values of the right-
hand side into atemporary of type struct _i2, which is subsequently assigned directly tor. A
further optimization would be to remove the temporary and assign the individual values from
the right-hand side directly to r. We felt that achieving these additional optimizations was
unnecessary for demonstrating proof-of-concept for the basic ideas.

CONCLUSION

By extending the method for returning values from aroutine, all variable modification can be
accomplished using the assignment statement. As a result, al situations where a variable is
modified are explicitly denoted by «+. Thissimplificationis significant as it makes programs
easier to read and modify, and simplifiesteaching routinesto beginning programmers because
of the single consistent method of changing the value of a variable. To a large extent, this
consistency can be attained without increasing execution time or using more memory.

A number of extensionsare suggested by this methodol ogy; some of these extensions have
more general applications. Mass, multiple, and cascade assignments provide a convenient
way of expressing what may take several statementsin conventiona programming languages.
Tuples are a generdization of the lists of values introduced by multiple assignment and



ASSIGNMENT AS THE SOLE MEANS OF UPDATING OBJECTS 869

are important to make maximum utilization of routines that return multiple values. Treating
some existing contexts as tuples, such as subscript and argument lists, makes tuples an
orthogonal facility in the programming language. Implicit flattening and structuring coercions
for our tuples enhances tuple assignment and functional composition. In ML, a programmer
must explicitly decompose, recombine, and possibly create additional temporaries to achieve
the same results. Allowing routines on the left side of assignment provides a notationally
convenient way for nesting routinecalls. When processesareintroduced, concurrent execution
using acommunication mechanism likea pipeis possi bl e, hence mimicking thefilter operator
inthe UNIX Shell. Thisallows the convenience of combining programs together afforded in
UNIX, which leads to convenient reusing of existing software.

In K-W C, we achieved most of the notational convenience from our initial design but not
the performance benefits. The performance benefits would require changes in the compiler
both in the type system and code generation. None of these changes are beyond current
compiler technology but were beyond the scope of this project. Finally, the concurrency
capabilities were not examined. Nevertheless, K-W C shows that the design is viable and
can be incorporated into traditional programming languages even in a syntactically hostile
languagelike C.

ACKNOWLEDGEMENTS

We would like to thank Gord Cormack and Glen Ditchfield for taking the time to read and
comment ontheideaspresented here. Also, referee A’scommentsresultedinamuch improved

paper.

REFERENCES

1. Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, Springer—\Verlag, third edition, 1985.
Revised by Andrew B. Mickel and James F. Miner, 1SO Pascal Standard.

2. United States Department of Defense, The Programming Language Ada: Reference Manual, ANSI/MIL-
STD-1815A-1983 edition, February 1983. Published by Springer-Verlag.

3. JeanD. Ichbiah, Bernd Krieg-Brueckner, Brian A. Wichmann, Henry F. Ledgard, Jean-ClaudeHeliard, Jean-
Raymond Abrial, John G. P. Barnes, and Olivier Roubine, ‘ Preliminary Ada reference manual’, SSGPLAN
Notices, 14, (6), (June 1979). Part A.

4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall Software Series,
Prentice Hall, second edition, 1988.

5. 0O-JDahl, B. Myhrhaug, and K. Nygaard, Smula67 Common Base Language, Norwegian Computing Center,
Oslo Norway, October 1970.

6. Jonathan Rees and William Clinger, ‘Revised® report on the algorithmic language Scheme’, SIGPLAN
Notices, 21, (12), 37-79, (December 1986).

7. RobinMilner, ‘A theory of type polymorphismin programming’, Journal of Computer and System Sciences,
17, 348-375, (1978).

8. Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan
Snyder, CLU Reference Manual, volume 114 of Lecture Notesin Computer Science, Springer-Verlag, 1981.

9. JamesG. Mitchell, William Maybury, and Richard Sweet, ‘ Mesalanguage manual’, Technical Report CSL—
79-3, Xerox Palo Alto Research Center, (April 1979).

10. K.E. Iverson, A Programming Language, Wiley, New York, 1962.

11. B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. L. Popek, ‘ Report on the programming
language euclid’, SSGPLAN Notices, 12, (2), 1-79, (February 1977).

12. A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation, Addison-Wesley, 1983.

13. A.van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff, C. H. Lindsey, L. G. L. T.
Meertens, and R. G. Fisher, ‘Revised report on the algorithmic language ALGOL 68, SSGPLAN Notices,
12, (5), 1-70, (May 1977).



870

14.

15.
16.

17.
18.

19.
20.

21.
22.

23.

24.

25.
26.

P.A.BUHR, D. TILL AND C. R. ZARNKE

International BusinessMachines, OSand DOSPL/I ReferenceManual, first edition, September 1981. Manual
GC26-3977-0.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

M. Richardsand C. Whitby-Strevens, BCPL — The Language and Its Compiler, Cambridge University Press,
Cambridge, 1979.

Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language, Prentice-Hall, 1983.

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg, Programming with Sets: An Introduction to
SETL, Springer-Verlag, 1986.

A.J. W. Mayer, ‘Valuereceiving procedures’, SGPLAN Notices, 16, (11), 30-34, (November 1981).

S. R. Bourne, ‘The unix shell’, The Bell System Technical Journal, 57, part 2, 1971-1990, (July—August
1978).

J. Bentley, ‘A spelling checker’, Communications of the ACM, 28, (5), 456462, (May 1985).

G. Ford and B. Hansche, ‘Optional, repeatable, and varying type parameters’, SGPLAN Notices, 17, (2),
41-48, (February 1982).

D. G. Foxal, M. L. Joliat, R. F. Kamel, and J. J. Miceli, ‘PROTEL: A high level language for telephony’,
Proceedings 3rd International Computer Software and Applications Conference, November 1979, pp. 193—
197.

Ole Lehrmann Madsen, Birger M dller-Pedersen, and Kristen Nygaard, Object-oriented Programmingin the
BETA, Addison-Wesley, 1993.

R. C. Holt, Turing Reference Manual, Holt Software AssociatesInc., third edition, 1992.

David W. Till, Tuples In Imperative Programming Languages, Master’s thesis, Department of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 19809.



