// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // clib/cfathread.cfa -- // // Author : Thierry Delisle // Created On : Tue Sep 22 15:31:20 2020 // Last Modified By : // Last Modified On : // Update Count : // #include "fstream.hfa" #include "locks.hfa" #include "kernel.hfa" #include "stats.hfa" #include "thread.hfa" #include "time.hfa" #include "cfathread.h" extern void ?{}(processor &, const char[], cluster &, $thread *); extern "C" { extern void __cfactx_invoke_thread(void (*main)(void *), void * this); } //================================================================================ // Thread run y the C Interface struct cfathread_object { $thread self; void * (*themain)( void * ); void * arg; void * ret; }; void main(cfathread_object & this); void ^?{}(cfathread_object & mutex this); static inline $thread * get_thread( cfathread_object & this ) { return &this.self; } typedef ThreadCancelled(cfathread_object) cfathread_exception; typedef ThreadCancelled_vtable(cfathread_object) cfathread_vtable; void defaultResumptionHandler(ThreadCancelled(cfathread_object) & except) { abort | "A thread was cancelled"; } cfathread_vtable _cfathread_vtable_instance; cfathread_vtable & const _default_vtable = _cfathread_vtable_instance; cfathread_vtable const & get_exception_vtable(cfathread_exception *) { return _cfathread_vtable_instance; } static void ?{}( cfathread_object & this, cluster & cl, void *(*themain)( void * ), void * arg ) { this.themain = themain; this.arg = arg; (this.self){"C-thread", cl}; __thrd_start(this, main); } void ^?{}(cfathread_object & mutex this) { ^(this.self){}; } void main( cfathread_object & this ) { __attribute__((unused)) void * const thrd_obj = (void*)&this; __attribute__((unused)) void * const thrd_hdl = (void*)active_thread(); /* paranoid */ verify( thrd_obj == thrd_hdl ); this.ret = this.themain( this.arg ); } //================================================================================ // Special Init Thread responsible for the initialization or processors struct __cfainit { $thread self; void (*init)( void * ); void * arg; }; void main(__cfainit & this); void ^?{}(__cfainit & mutex this); static inline $thread * get_thread( __cfainit & this ) { return &this.self; } typedef ThreadCancelled(__cfainit) __cfainit_exception; typedef ThreadCancelled_vtable(__cfainit) __cfainit_vtable; void defaultResumptionHandler(ThreadCancelled(__cfainit) & except) { abort | "The init thread was cancelled"; } __cfainit_vtable ___cfainit_vtable_instance; __cfainit_vtable const & get_exception_vtable(__cfainit_exception *) { return ___cfainit_vtable_instance; } static void ?{}( __cfainit & this, void (*init)( void * ), void * arg ) { this.init = init; this.arg = arg; (this.self){"Processir Init"}; // Don't use __thrd_start! just prep the context manually $thread * this_thrd = get_thread(this); void (*main_p)(__cfainit &) = main; disable_interrupts(); __cfactx_start(main_p, get_coroutine(this), this, __cfactx_invoke_thread); this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP]; /* paranoid */ verify( this_thrd->context.SP ); this_thrd->state = Ready; enable_interrupts( __cfaabi_dbg_ctx ); } void ^?{}(__cfainit & mutex this) { ^(this.self){}; } void main( __cfainit & this ) { __attribute__((unused)) void * const thrd_obj = (void*)&this; __attribute__((unused)) void * const thrd_hdl = (void*)active_thread(); /* paranoid */ verify( thrd_obj == thrd_hdl ); this.init( this.arg ); } //================================================================================ // Main Api extern "C" { int cfathread_cluster_create(cfathread_cluster_t * cl) __attribute__((nonnull(1))) { *cl = new(); return 0; } cfathread_cluster_t cfathread_cluster_self(void) { return active_cluster(); } int cfathread_cluster_print_stats( cfathread_cluster_t cl ) { #if !defined(__CFA_NO_STATISTICS__) print_stats_at_exit( *cl, CFA_STATS_READY_Q | CFA_STATS_IO ); print_stats_now( *cl, CFA_STATS_READY_Q | CFA_STATS_IO ); #endif return 0; } int cfathread_cluster_add_worker(cfathread_cluster_t cl, pthread_t* tid, void (*init_routine) (void *), void * arg) { __cfainit * it = 0p; if(init_routine) { it = alloc(); (*it){init_routine, arg}; } processor * proc = alloc(); (*proc){ "C-processor", *cl, get_thread(*it) }; // Wait for the init thread to return before continuing if(it) { ^(*it){}; free(it); } if(tid) *tid = proc->kernel_thread; return 0; } int cfathread_cluster_pause (cfathread_cluster_t) { abort | "Pausing clusters is not supported"; exit(1); } int cfathread_cluster_resume(cfathread_cluster_t) { abort | "Resuming clusters is not supported"; exit(1); } //-------------------- // Thread attributes int cfathread_attr_init(cfathread_attr_t *attr) __attribute__((nonnull (1))) { attr->cl = active_cluster(); return 0; } //-------------------- // Thread int cfathread_create( cfathread_t * handle, const cfathread_attr_t * attr, void *(*main)( void * ), void * arg ) __attribute__((nonnull (1))) { cluster * cl = attr ? attr->cl : active_cluster(); cfathread_t thrd = alloc(); (*thrd){ *cl, main, arg }; *handle = thrd; return 0; } int cfathread_join( cfathread_t thrd, void ** retval ) { void * ret = join( *thrd ).ret; ^( *thrd ){}; free(thrd); if(retval) { *retval = ret; } return 0; } int cfathread_get_errno(void) { return errno; } cfathread_t cfathread_self(void) { return (cfathread_t)active_thread(); } int cfathread_usleep(useconds_t usecs) { sleep(usecs`us); return 0; } int cfathread_sleep(unsigned int secs) { sleep(secs`s); return 0; } void cfathread_park( void ) { park(); } void cfathread_unpark( cfathread_t thrd ) { unpark( *thrd ); } void cfathread_yield( void ) { yield(); } typedef struct cfathread_mutex * cfathread_mutex_t; //-------------------- // Mutex struct cfathread_mutex { single_acquisition_lock impl; }; int cfathread_mutex_init(cfathread_mutex_t *restrict mut, const cfathread_mutexattr_t *restrict) __attribute__((nonnull (1))) { *mut = new(); return 0; } int cfathread_mutex_destroy(cfathread_mutex_t *mut) __attribute__((nonnull (1))) { delete( *mut ); return 0; } int cfathread_mutex_lock (cfathread_mutex_t *mut) __attribute__((nonnull (1))) { lock( (*mut)->impl ); return 0; } int cfathread_mutex_unlock (cfathread_mutex_t *mut) __attribute__((nonnull (1))) { unlock( (*mut)->impl ); return 0; } int cfathread_mutex_trylock(cfathread_mutex_t *mut) __attribute__((nonnull (1))) { bool ret = try_lock( (*mut)->impl ); if( ret ) return 0; else return EBUSY; } //-------------------- // Condition struct cfathread_condition { condition_variable(single_acquisition_lock) impl; }; int cfathread_cond_init(cfathread_cond_t *restrict cond, const cfathread_condattr_t *restrict) __attribute__((nonnull (1))) { *cond = new(); return 0; } int cfathread_cond_signal(cfathread_cond_t *cond) __attribute__((nonnull (1))) { notify_one( (*cond)->impl ); return 0; } int cfathread_cond_wait(cfathread_cond_t *restrict cond, cfathread_mutex_t *restrict mut) __attribute__((nonnull (1,2))) { wait( (*cond)->impl, (*mut)->impl ); return 0; } int cfathread_cond_timedwait(cfathread_cond_t *restrict cond, cfathread_mutex_t *restrict mut, const struct timespec *restrict abstime) __attribute__((nonnull (1,2,3))) { Time t = { *abstime }; if( wait( (*cond)->impl, (*mut)->impl, t ) ) { return 0; } errno = ETIMEDOUT; return ETIMEDOUT; } } #include extern "C" { #include #include #include //-------------------- // IO operations int cfathread_socket(int domain, int type, int protocol) { return socket(domain, type, protocol); } int cfathread_bind(int socket, const struct sockaddr *address, socklen_t address_len) { return bind(socket, address, address_len); } int cfathread_listen(int socket, int backlog) { return listen(socket, backlog); } int cfathread_accept(int socket, struct sockaddr *restrict address, socklen_t *restrict address_len) { return cfa_accept4(socket, address, address_len, 0, CFA_IO_LAZY); } int cfathread_connect(int socket, const struct sockaddr *address, socklen_t address_len) { return cfa_connect(socket, address, address_len, CFA_IO_LAZY); } int cfathread_dup(int fildes) { return dup(fildes); } int cfathread_close(int fildes) { return cfa_close(fildes, CFA_IO_LAZY); } ssize_t cfathread_sendmsg(int socket, const struct msghdr *message, int flags) { return cfa_sendmsg(socket, message, flags, CFA_IO_LAZY); } ssize_t cfathread_write(int fildes, const void *buf, size_t nbyte) { // Use send rather then write for socket since it's faster return cfa_send(fildes, buf, nbyte, 0, CFA_IO_LAZY); } ssize_t cfathread_recvfrom(int socket, void *restrict buffer, size_t length, int flags, struct sockaddr *restrict address, socklen_t *restrict address_len) { struct iovec iov; iov.iov_base = buffer; iov.iov_len = length; struct msghdr msg; msg.msg_name = address; msg.msg_namelen = address_len ? (socklen_t)*address_len : (socklen_t)0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = 0p; msg.msg_controllen = 0; ssize_t ret = cfa_recvmsg(socket, &msg, flags, CFA_IO_LAZY); if(address_len) *address_len = msg.msg_namelen; return ret; } ssize_t cfathread_read(int fildes, void *buf, size_t nbyte) { // Use recv rather then read for socket since it's faster return cfa_recv(fildes, buf, nbyte, 0, CFA_IO_LAZY); } }