// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // concurrency/future.hfa -- // // Author : Thierry Delisle & Peiran Hong & Colby Parsons // Created On : Wed Jan 06 17:33:18 2021 // Last Modified By : // Last Modified On : // Update Count : // // #pragma once #include "bits/locks.hfa" #include "monitor.hfa" #include "select.hfa" //---------------------------------------------------------------------------- // future // I don't use future_t here since I need to use a lock for this future // since it supports multiple consumers // future_t is lockfree and uses atomics which aren't needed given we use locks here forall( T ) { // enum(int) { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards // temporary enum replacement const int FUTURE_EMPTY = 0; const int FUTURE_FULFILLED = 1; struct future { int state; T result; dlist( select_node ) waiters; futex_mutex lock; }; struct future_node { inline select_node; T * my_result; }; // C_TODO: perhaps allow exceptions to be inserted like uC++? static inline { void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) { ((select_node &)this){ blocked_thread }; this.my_result = my_result; } void ?{}(future(T) & this) { this.waiters{}; this.state = FUTURE_EMPTY; this.lock{}; } // Reset future back to original state void reset(future(T) & this) with(this) { lock( lock ); if( ! waiters`isEmpty ) abort("Attempting to reset a future with blocked waiters"); state = FUTURE_EMPTY; unlock( lock ); } // check if the future is available // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected bool available( future(T) & this ) { return this.state; } // memcpy wrapper to help copy values void copy_T( T & from, T & to ) { memcpy((void *)&to, (void *)&from, sizeof(T)); } // internal helper to signal waiters off of the future void _internal_flush( future(T) & this ) with(this) { while( ! waiters`isEmpty ) { select_node &s = try_pop_front( waiters ); if ( s.race_flag == 0p ) // poke in result so that woken threads do not need to reacquire any locks // *(((future_node(T) &)s).my_result) = result; copy_T( result, *(((future_node(T) &)s).my_result) ); else if ( !install_select_winner( s, &this ) ) continue; // only unpark if future is not selected // or if it is selected we only unpark if we win the race unpark( s.blocked_thread ); } } // Fulfil the future, returns whether or not someone was unblocked bool fulfil( future(T) & this, T & val ) with(this) { lock( lock ); if( state != FUTURE_EMPTY ) abort("Attempting to fulfil a future that has already been fulfilled"); copy_T( val, result ); bool ret_val = ! waiters`isEmpty; state = FUTURE_FULFILLED; _internal_flush( this ); unlock( lock ); return ret_val; } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] get( future(T) & this ) with( this ) { lock( lock ); T ret_val; if( state == FUTURE_FULFILLED ) { copy_T( result, ret_val ); unlock( lock ); return [ret_val, false]; } future_node(T) node = { active_thread(), &ret_val }; insert_last( waiters, ((select_node &)node) ); unlock( lock ); park( ); return [ret_val, true]; } // Wait for the future to be fulfilled T get( future(T) & this ) { [T, bool] tt; tt = get(this); return tt.0; } // Gets value if it is available and returns [ val, true ] // otherwise returns [ default_val, false] // will not block [T, bool] try_get( future(T) & this ) with(this) { lock( lock ); T ret_val; if( state == FUTURE_FULFILLED ) { copy_T( result, ret_val ); unlock( lock ); return [ret_val, true]; } unlock( lock ); return [ret_val, false]; } void * register_select( future(T) & this, select_node & s ) with(this) { lock( lock ); // future not ready -> insert select node and return 0p if( state == FUTURE_EMPTY ) { insert_last( waiters, s ); unlock( lock ); return 0p; } // future ready and we won race to install it as the select winner return 1p if ( install_select_winner( s, &this ) ) { unlock( lock ); return 1p; } unlock( lock ); // future ready and we lost race to install it as the select winner return 2p; } void unregister_select( future(T) & this, select_node & s ) with(this) { lock( lock ); if ( s`isListed ) remove( s ); unlock( lock ); } } } //-------------------------------------------------------------------------------------------------------- // These futures below do not support select statements so they may not be as useful as 'future' // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future' // since it uses raw atomics and no locks afaik // // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future' // since it is monitor based and also is not compatible with select statements //-------------------------------------------------------------------------------------------------------- forall( T ) { struct single_future { inline future_t; T result; }; static inline { // Reset future back to original state void reset(single_future(T) & this) { reset( (future_t&)this ); } // check if the future is available bool available( single_future(T) & this ) { return available( (future_t&)this ); } // Mark the future as abandoned, meaning it will be deleted by the server // This doesn't work beause of the potential need for a destructor void abandon( single_future(T) & this ); // Fulfil the future, returns whether or not someone was unblocked thread$ * fulfil( single_future(T) & this, T result ) { this.result = result; return fulfil( (future_t&)this ); } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] wait( single_future(T) & this ) { bool r = wait( (future_t&)this ); return [this.result, r]; } // Wait for the future to be fulfilled T wait( single_future(T) & this ) { [T, bool] tt; tt = wait(this); return tt.0; } } } forall( T ) { monitor multi_future { inline future_t; condition blocked; bool has_first; T result; }; static inline { void ?{}(multi_future(T) & this) { this.has_first = false; } bool $first( multi_future(T) & mutex this ) { if (this.has_first) { wait( this.blocked ); return false; } this.has_first = true; return true; } void $first_done( multi_future(T) & mutex this ) { this.has_first = false; signal_all( this.blocked ); } // Reset future back to original state void reset(multi_future(T) & mutex this) { if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads"); if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads"); reset( (future_t&)this ); } // Fulfil the future, returns whether or not someone was unblocked bool fulfil( multi_future(T) & this, T result ) { this.result = result; return fulfil( (future_t&)this ) != 0p; } // Wait for the future to be fulfilled // Also return whether the thread had to block or not [T, bool] wait( multi_future(T) & this ) { bool sw = $first( this ); bool w = !sw; if ( sw ) { w = wait( (future_t&)this ); $first_done( this ); } return [this.result, w]; } // Wait for the future to be fulfilled T wait( multi_future(T) & this ) { return wait(this).0; } } }