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Chapter 1

Introdu
tion

In \C" programs, new fun
tions are de�ned in terms of spe
i�
 types and the

fun
tions that are already de�ned for those types. Often programmers want to

provide the same fun
tion for several di�erent types (e.g, fun
tions to manipulate

matri
es of int and fun
tions to manipulate matri
es of double). \C" programmers

have no 
hoi
e but to write separate 
opies of ea
h fun
tion for ea
h type.

\C" fun
tions 
an be made more general by parameterizing them by type and by

operation. Unfortunately, in systems where these fun
tions are used extensively|

parti
ularly as operation parameters to other su
h fun
tions|it be
omes 
ompli-


ated and tedious to supply the type and operation parameters expli
itly. In this pa-

per we propose a variant of \C"|
alled \Sea"|that has fun
tions that are expli
-

itly parameterized by type and operation. It then uses the type-inferen
e/overload-

resolution algorithm des
ribed in [Corma
k 90℄ to automati
ally infer bindings for

these type and operation parameters at the appli
ation site.

For example in \C" we 
an de�ne a square fun
tion that takes a double ar-

gument, uses the double multiply operator and returns a double result. Using

\Overloading Polymorphism" we 
an de�ne a square fun
tion that operates on

any type that has a multiply operator:

forall a : a square(a x, exists a op*(a,a))

{

return x*x;

}

square(5) -> 5.0

square(5.0) -> 25.0

1



CHAPTER 1. INTRODUCTION 2

The goals of this proje
t are to integrate the \overloading polymorphism" type

system with \C", explore implementation issues by building a 
ompiler, and then

to experiment with the resulting language.



Chapter 2

Language De�nition

As the integration of the type system with \C" progressed, it be
ame apparent that,

while it would be easy to design a new language that was mostly 
ompatible with

\C", it would take a major design e�ort to get every feature of the new language

exa
tly 
ompatible with \C"'s already 
omplex language de�nition. Be
ause we

wanted to explore implementation issues, and be
ause there is a separate, parallel

proje
t where the integration of a similar type system with \C" is a major fo
us

[Dit
h�eld 92℄, we have ele
ted to use a mostly 
ompatible language de�nition. The

stru
ture of this do
ument re
e
ts this 
hoi
e, with little attention paid to designing

an exa
tly 
ompatible language de�nition and 
onsiderable spa
e devoted to the

implementation and use of this style of language.

2.1 Overloading

All de
larations of obje
ts with \Sea" fun
tion type are overloaded. De
larations of

any other type of obje
t (in
luding pointers to \Sea" fun
tions) use \C"'s normal

de
laration system. There are only two 
ontexts in whi
h the \Sea" fun
tion type

o

urs 1) external \Sea" fun
tion de
larations and 2) operation parameters. By

restri
ting the language so that only \Sea" fun
tions 
an be overloaded, we make

it possible to transform \Sea" programs so that no run-time 
losures are required.

(see 
hapter 3)

Two overloaded de
larations with the exa
t same name and type intera
t in the

same way as normal \C" de
larations with the same name. Thus overloaded de
-

larations 
an be supplied with prototypes, and 
an be re-de
lared at inner s
opes.

3



CHAPTER 2. LANGUAGE DEFINITION 4

Note that in \Sea", unlike in \C++", we 
an de
lare overloaded fun
tions that

di�er only in their return type.

The de
laration of a normal (non-overloaded) name at an inner s
ope hides all

overloaded de�nitions for that name. This is ne
essary to prevent the addition of a

new external overloaded name from breaking the internal operation of an already

de�ned fun
tion. An overloaded de
laration for a name that already has a normal

de
laration (either at the 
urrent or an outer s
ope) is an error.

Overload resolution is done by the type inferen
er; the algorithm used will be

dis
ussed in another se
tion of this paper.

2.2 Overloaded Polymorphi
 Fun
tions

We 
all the set of operations de�ned for a type its \algebra" (from the language

Russell [DD 85℄).

Using overloaded fun
tion de�nitions we 
an build algebras for di�erent types

that have a 
ommon set of operations in a 
ommon form.

The algebra for int is:

[int op*(int,int), int op+(int,int) ...℄

The algebra for double is:

[double op*(double, double), double op+(double,double)...℄

Both int and double have a multipli
ation operator of the form \t op*(t,t)"

where t is either int or double.

\Sea" polymorphi
 fun
tions are parameterized by a set of type variables and

a list of operation parameters. The type variables 
an be bound to any type as

long as the algebras for these types 
ontain the operations required to satisfy the

operation parameters. Thus the algebra des
ribed by the operation parameters for

ea
h type variable must be a subset of the algebra for the type we are binding to the

type variable. (We 
onsider operation parameters involving multiple type variables

as des
ribing an operation that is required for ea
h of the type variables.)

The following square fun
tion 
an be applied to a parameter of any type a,

provided that a's algebra 
ontains \[a op*(a,a)℄".

forall a : a square(a x, exists a op*(a,a))
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{

return x*x;

}

The square fun
tion 
an be applied to both ints and doubles, so the square fun
tion

extends the algebras for both ints and doubles.

The algebra for int is now:

[int op*(int,int), int op+(int,int), int square(int) ...℄

The algebra for double is now:

[double op*(double, double), double op+(double,double),

double square(double)...℄

The spe
ialized square fun
tion is now available to satisfy the requirements of

another polymorphi
 fun
tion. Note that we stored a spe
ialized version of square

in the int and double algebras; in order to generate this spe
ialized square we need

some sort of 
losure me
hanism (see 
hapter 3.)

The 
ompiler never a
tually has a list of all the operations in an algebra. Su
h

a list would often not be �nite in length. Instead, the type inferen
er re
ursively


onstru
ts algebras on demand in order to satisfy the requirements of polymorphi


fun
tion spe
ializations. (Either due to an appli
ation to a
tual arguments, or in

an attempt to 
reate an algebra to satisfy a spe
ialization already under way.)

2.2.1 Syntax

The syntax for a polymorphi
 fun
tion de
laration is as follows: (Simpli�ed version-

the syntax be
omes 
onsiderably more 
omplex after integration with all of \C"'s

artifa
ts.)

"forall" typevarlist : return_type fun
tion_name(parm_or_exist_de
l, ...)

parm or exist de
l is either a normal parameter de
laration or:

"exists" fun
tion_de
laration

The type parameter de
laration list was put at the beginning of the fun
tion de
-

laration so that the type parameters will be available for de
laring the fun
tion

return value.
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2.3 Type Generators

Every type other than void has a base set of operations. (If a type has no operations

then it is equivalent to void.) The built-in types are de�ned with arithmeti
 and

logi
al operations. For user-de�ned types, ea
h type 
onstru
tor has an asso
iated

set of \a

ess" operations. In \C" these a

ess operations are not normal fun
tions,

and as su
h are not part of the algebra of a type.

We would like to be able to write polymorphi
 fun
tions that 
ould operate over

all 
onstru
ted types with a similar stru
ture (i.e. all ve
tors). One way to do this

would be to make these a

ess fun
tions available as normal fun
tions.

Using this te
hnique we 
ould write a binary sear
h routine that would operate

on any type of ve
tor:

forall elem,elem_ptr : int binary_sear
h(elem_ptr x, int len,

exists elem op*(elem_ptr),

exists int 
ompare(elem,elem));

Or a print list routine that operated on any type that had a next and a data �eld:

forall list_ptr, elem : print(list_ptr list_head,

exists list_ptr get_next(list_ptr),

exists elem get_data(list_ptr),

exists void print(elem));

This is not a very 
onvenient way to write polymorphi
 data stru
ture manipulation

routines.

Instead, in \Sea", parameter types 
an be de
lared in terms of type 
onstru
tors

applied to type parameters. The type inferen
er will make sure the stru
ture of

the argument type mat
hes the stru
ture of the parameter type. Be
ause type


onstru
tors are used to build the parameter type, appropriate polymorphi
 a

ess

fun
tions are automati
ally available. The above fun
tions 
an now be rewritten

as follows:

forall elem: int binary_sear
h(elem *x, int len,

exists int 
ompare(elem,elem));

forall elem : print( stru
t l { l *next; elem data; } *list_head,

exists void print(elem));
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Print is not a valid \Sea" fun
tion be
ause \C"/\Sea" do not re
ognise stru
turally

equivalent re
ords as being the same type. We 
ould alter \Sea" to re
ognise

stru
tural equivalen
e. A better solution, whi
h also saves us from having to repeat

the entire type de
laration whenever it is used, is parameterized types. We 
all these

\type generators"; two generated types are equivalent if the parameters to the type

generator are equivalent.

type list(type elem)

{

return stru
t {

list(elem) next;

elem data; } *;

}

forall elem : print(list(elem) list_head, exists void print(elem));

Type generators use �eld layout 
onventions that are optimized for a

ess by poly-

morphi
 fun
tions. (See 
hapter 3.)

Extensible typegens, allowing for single inheritan
e, would be a useful addition.

2.4 Overloaded Operators

\C" has a large number of heavily overloaded built-in operators. It is desirable to

treat these operators as if they were fun
tions so that 1) overloaded polymorphi


fun
tions 
an be de�ned in terms of these operations, 2) the fun
tionality repre-

sented by the operator symbols 
an be applied to new types and 3) the inferen
er


an be simpli�ed by not having to in
orporate spe
ial rules for ea
h of the built-in

operators.

It is not possible to dire
tly translate all \C" in�x operators into a fun
tion 
all

form be
ause many operators have de�nitions that 
annot be a

ommodated using

normal fun
tion 
all semanti
s.

The following operators 
an be translated dire
tly:

a+b -> op+(a,b)

a-b -> op-(a,b)

a*b -> op*(a,b)
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a/b -> op/(a,b)

a%b -> op%(a,b)

a>>b -> op>>(a,b)

a<<b -> op<<(a,b)

a>b -> op>(a,b)

a<b -> op<(a,b)

a>=b -> op>=(a,b)

a<=b -> op<=(a,b)

a==b -> op==(a,b)

a!=b -> op!=(a,b)

a&b -> op&(a,b)

a|b -> op|(a,b)

a^b -> op^(a,b)

-a -> op-(a)

+a -> op+(a)

~a -> op~(a)

!a -> op!(a)

The logi
al && and || operators 
an be translated dire
tly, but user versions will

not provide short-
ir
uit evaluation.

&& -> op&&(a,b)

|| -> op||(a,b)

The array indexing operator returns an lvalue whi
h is not possible for a normal

\C" fun
tion. We translate op[℄ so that the de�ner is expe
ted to return a pointer

to the assignable value, and then we add a dereferen
e operator to translate this

into an lvalue.

a[b℄ -> *op[℄(a,b)

Two transformations are done to the assignment operators 1) They are given the

address of the parameter that they are expe
ted to modify and 2) Rather than

having the assignment fun
tion return the assigned value (as de�ned in \C") we

have the 
ompiler arrange for a

ess to this value. This is an optimization to avoid

the 
ost of returning a value that is usually ignored.
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x=y -> (op=(&x,y),val(x))

x*=y -> (op*=(&x,y),val(x))

x/=y -> (op/=(&x,y),val(x))

x%=y -> (op%=(&x,y),val(x))

x+=y -> (op+=(&x,y),val(x))

x-=y -> (op-=(&x,y),val(x))

x<<=y -> (op<<=(&x,y),val(x))

x>>=y -> (op>>=(&x,y),val(x))

x&=y -> (op&=(&x,y),val(x))

x^=y -> (op^=(&x,y),val(x))

x|=y -> (op|=(&x,y),val(x))

It should be noted that the system header �les 
ontain a fully polymorphi
 version

of the op= operator, and that unless the user expli
itly makes op= an operation

parameter to a polymorphi
 fun
tion, the default fully polymorphi
 assignment

operator will be used.

In
rement and de
rement operators require treatment similar to that given to

assignment operators:

++x -> (op++(&x),val(x))

x++ -> (oldx=x,op++(&val(x)),oldx)

--x -> (op++(&x),val(x))

x-- -> (oldx=x,op++(&val(x)),oldx)

There is no fun
tional form for the following operators:

&a -> spe
ial

*a -> spe
ial

sizeof(a) -> spe
ial

sizeof(typename) -> spe
ial

(typename)a -> spe
ial

a.fieldname -> spe
ial

a->fieldname -> spe
ial

a?b:
 -> spe
ial

a,b -> spe
ial

\C" built-in operators are heavily overloaded. All the possible versions of all the

overloadable built-in operators are des
ribed in a header �le/library 
ontaining 1584



CHAPTER 2. LANGUAGE DEFINITION 10

fun
tion de�nitions. Thus any variant of any of the built-in operators is available

for binding to an operation parameter.

The following ex
erpt from the \sea.h" header �le des
ribes part of the be-

haviour of the \C" binary + operator.

extern int op+ (int, int) __builtin("op+");

extern double op+ (int, double) __builtin("op+");

extern double op+ (double, int) __builtin("op+");

extern double op+ (double, double) __builtin("op+");

forall a : extern a *op+ (short, a *) __builtin("op+");

forall a : extern a *op+ (a *, short) __builtin("op+");

forall a : extern a *op+ (int, a *) __builtin("op+");

forall a : extern a *op+ (a *, int) __builtin("op+");

The __builtin attribute tells the 
ompiler that this fun
tion is equivalent to one

of \C"'s standard operators, and that it should use its inline version if possible.

2.5 Type Inferen
e/OverloadResolution Algorithm

The following algorithm has been adapted from the \For
eTwo" inferen
e algorithm

presented in [Corma
k 90℄.

As input the inferen
er takes a \Sea" expression tree in whi
h leaf nodes are

overloaded identi�ers and interior nodes are fun
tion appli
ations. Ea
h step in

the inferen
e pro
ess involves the appli
ation of one parameter, so we represent the

expression tree in 
urried form.

Ea
h leaf node is translated into a set of possible types for that identi�er. We

then �nd the set of possible types for ea
h appli
ation by unifying the set of pos-

sible types for the fun
tion parameter with the set of possible types for the a
tual

parameter. During this pass exist parameters are not resolved, but instead they

are promoted to the result type.

Ea
h potential solution now has a list of the exist parameters that it requires.

To resolve ea
h exist parameter we 1) 
onvert it into a normal parameter, 2) apply

the variable that has the same name as the exist parameter to this parameter and

then 3) re
ursively use the type-inferen
e/overload-resolution algorithm to �nd a

solution. Note that new exist parameters 
an be introdu
ed by this pro
ess.

It is possible to 
onstru
t expressions where we 
an never resolve all the exist

parameters. For example:
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forall a: void f(exists f(a*));

To prevent the inferen
er from not terminating, the language has a built-in limit

on the maximum size of an expression it will generate. While this is a major philo-

sophi
al bla
k mark on the inferen
er algorithm, it is not expe
ted to be signi�
ant

limitation when 
ompiling real programs.

For many expressions the inferen
er will �nd several sets of bindings for type

variables and overloaded identi�ers that ea
h result in a valid expression. In some


ir
umstan
es it is possible to 
hoose a best expression in a way that is both use-

ful and predi
table. If no su
h \best" solution 
an be found, the expression is


onsidered ambiguous and the inferen
er will fail.

Currently we only have one disambiguating rule: If both a monomorphi
 and a

polymorphi
 fun
tion are appli
able, then the monomorphi
 fun
tion will always be


hosen. If an expression has multiple su
h appli
ations, but no solution 
an be found

that in
orporates all of them, then the expression will be 
onsidered ambiguous.

If there are multiple polymorphi
 fun
tions that 
an supply the same fun
tion-

ality then the algorithm will fail. This situation o

urs often when we are designing

\abstra
t" polymorphi
 data stru
tures. (Polymorphi
 data stru
tures for whi
h

all operations are provided through overloaded fun
tions.) Often a single 
on
rete

data stru
ture will have the basi
 operations ne
essary to be manipulated as one of

several \abstra
t" data stru
tures. If two of these abstra
t data stru
tures have the

same operation de�ned then ambiguity will result. For example a sorted ve
tor

has a find operation that does a binary sear
h. Sorted ve
tor also has interfa
e

routines de�ned so that it 
an be used wherever a sorted sequen
e is required.

If we subsequently de�ne a find operation for sorted sequen
e, in terms of the

basi
 sorted sequen
e operations, then we will have two polymorphi
 find oper-

ations that 
an be applied to sorted ve
tors. Situations like these 
an usually

be avoided by 
areful design of sub-algebra relationships.

Size of Inferen
e Tree

At ea
h step in the inferen
e pro
ess, ea
h of the (partial) possible solutions for

the expression is represented as a separate node. For some expressions the number

of possible solutions 
an be very large. For example, given the following fun
tion

de�nitions:


har * f();
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har ** f();


har *** f();


har **** f();


har ***** f();


har ****** f();


har ******* f();


har ******** f();


har ********* f();


har ********** f();

void q(
har *, 
har *, 
har *, 
har *, 
har *,


har *, 
har *, 
har *, 
har *, 
har *);

forall t1,t2,t3,t4,t5,t6,t7,t8,t9,t10 :

void g(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

exists void q(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10));

The expression:

g(f(), f(), f(), f(), f(), f(), f(), f(), f(), f());

has 10^10 possible solutions before we apply the exist parameter q.

This is 
learly a manufa
tured example. In real programs large numbers of

intermediate solutions are generated when we use fun
tions that have many poly-

morphi
 de�nitions ea
h of whi
h is 
onstrained only by its operation parameters.

The inferen
er does not bind operation parameters until after it is �nished with

the basi
 expression; up until this point all these polymorphi
 fun
tions will be


onsidered as possible solutions. For these situations, the size of the inferen
e tree


ould be redu
ed 
onsiderably if we altered the inferen
e algorithm to �nd (partial)

bindings for exist parameters as they are introdu
ed into the solutions.

Rather than expanding our inferen
e tree until we are out of memory|whi
h 
an

result in very poor performan
e on ma
hines with virtual memory|the 
ompiler

has a pre-set (ma
hine-dependent) limit on the number of nodes it will allo
ate.

On the ma
hine whi
h was used to develop the \Sea" 
ompiler, we had a

ess to at

least 50Mb of real memory. Ea
h inferen
e node (in
luding one type binding) uses

about 200 bytes, so the inferen
e tree was allowed to grow to 250000 nodes. It is not

known whether this limit will be en
ountered often when 
ompiling real programs.

If a large number of nodes are a
tually required to 
ompile real programs, then
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this ma
hine-dependent limit will be a major portability problem: A program that


ompiles on a 25Mb 
omputer may not 
ompile on a 15Mb 
omputer.

The inferen
er 
ould be re-designed to use a data stru
ture where ea
h possible

solution does not have to be expli
itly represented as a separate node.

If we restri
t the language so that we ignore fun
tion return types when doing

type-inferen
e/overload-resolution then the inferen
e tree will never grow very large.

(This is what the designers of \C++" have ele
ted to do.) While there are many

examples of expressions that will not 
ompile with this restri
tion in pla
e, we do not

have enough experien
e with \Sea" programming to know whether the restri
ted

version would represent a useful and understandable language.



Chapter 3

The \Lake" Intermediate

Language

\Sea" fun
tion de
larations are overloaded and have expli
it type and operation

parameters. When these fun
tions are used the \Sea" type inferen
er will automat-

i
ally sele
t one of several overloaded versions and provide appropriate bindings for

the type and operation parameters.

\Lake" is a language very similar to \Sea" but without overloading and with

type and operation parameters expli
it at both the de
laration and the 
all site.

The \Sea" type inferen
er emits \Lake" 
ode as its output.

Be
ause \Lake" doesn't have overloading, the \Sea" 
ompiler assigns unique

names to overloaded fun
tions and the \Sea" overload resolver 
an then resolve uses

of an overloaded name to a spe
i�
 unique name. The a
tual renaming pro
ess is

fairly 
ompli
ated in order to support traditional \C" style separate 
ompilation;

for this se
tion unique names will be generated by adding a unders
ore followed by

a unique number to the end of the overloaded name.

A \Sea" polymorphi
 fun
tion supplies a new operation to every type that has

the required prerequisite operations. Before a polymorphi
 operation 
an be applied

to a spe
i�
 set of a
tual parameters, the type inferen
er spe
ializes it by binding

its type and operation parameters. If this only happened just before a polymorphi


fun
tion was applied, type and operation parameters 
ould be passed along with

the normal parameters. But in \Sea" we also spe
ialize polymorphi
 fun
tions in

order to generate the operations needed to satisfy the \exist" requirements of other

polymorphi
 fun
tions. In order to allow type and operation parameters to be

applied prior to the appli
ation of other parameters we borrow an idea from fun
-

tional programming languages and des
ribe all \Sea" fun
tions as fun
tions that

14
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take a tuple|
ontaining type and operation parameters|as their only argument,

and return a fun
tion that takes a tuple (the normal \C" argument list) to the �nal

return type.

We use \Sea" de
laration syntax to de
lare \Lake" fun
tions both be
ause the

\Sea" syntax has been 
arefully designed to be 
ompatible with normal \C" de
-

laration syntax and be
ause it makes it possible to translate a \Sea" program to a

\Lake" program without stru
tural 
hanges to the sour
e program. However using

\Sea" syntax for \Lake" does introdu
e one ambiguity; the type for monomorphi


fun
tions that don't take any type or operation parameters, but still require an

empty type and operation tuple, is indistinguishable from the type of a \Lake"

fun
tion that has already had its type and operation tuple applied. To avoid this


onfusion, fun
tion types that still require a type and operation tuple will always

be written using a \forall", even if the forall list is empty.

The �rst argument to a \Lake" fun
tion|the type and operation tuple|
an

be applied anytime before the regular arguments tuple is applied. To visually

distinguish these two tuples we use \<" and \>" to bra
ket the type and operation

tuple, and normal bra
kets to surround the regular arguments tuple. For example:

Given the following implementation of square :

forall t : t square(t x, exists t op*(t,t))

{

return x*x;

}

The \Sea" expression :

square(7)

Will get translated by the inferen
er to the \Lake" expression :

square_1<int, op*_1<>>(7)

A more general version of this me
hanism would allow for some type and opera-

tion parameters to be bound while others were left unbound. This is diÆ
ult and

expensive (in terms of performan
e) to implement and no appli
ations that 
ould

justify this 
ost were found.
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3.1 Non-
onstant Closures

The \Sea" inferen
er takes as input a expression tree 
onsisting entirely of 
on-

stants, non-overloaded identi�ers and overloaded identi�ers. \Sea" is stati
ally

s
oped so the set of bindings for the overloaded and non-overloaded identi�ers is a


ompile time 
onstant and, be
ause \Sea" is stati
ally typed, the type of ea
h of

these identi�ers is also a 
ompile time 
onstant. This is all the information needed

by the type inferen
er in order for inferen
e to be done entirely at 
ompile time.

While all the types and the set of operations are 
ompile time 
onstants, for

forall and exist parameters the a
tual value is not 
onstant. For example, within

square, x has the type a, and op* has the type \a (a,a)". However, the attributes

of type a, and the value of the op* parameter are not available at 
ompile time.

Non-
onstant 
losures are 
reated when these type and operation parameters are

used to 
onstru
t a 
losure. For example in the following fourth fun
tion a non-


onstant op* and type a are used to build a 
losure for square.

forall a : a square(a x, exists a op*(a, a))

{

return x*x;

}

forall a : a fourth(a x, exists a op*(a, a))

{

return square (square (x));

}

int f()

{

return fourth(7);

}

is translated by the inferen
er to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}
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forall a : a fourth_1(a x, exists a op*_p1(a, a))

{

return square_1<a, op*_p1> (square_1<a, op*_p1> (x));

}

forall : int f_1()

{

return fourth_1<int, op*_1>(7);

}

The 
losure <a, op*_p1> in fourth 1 is not a 
onstant.

The same phenomenon results when we write re
ursive polymorphi
 routines.

For example the \Sea" routine:

forall a : void print (list(a) l, exists void print(a))

{

if (l != NULL)

{

print (l->data);

print (l->next);

}

}

Is translated into the \Lake" routine:

forall a : void print_1 (list(a) l, exists void print_p1(a))

{

if (l != NULL)

{

print_p1 (l->data);

print_1<a, print_p1> (l->next);

}

}

<a, print_p1> is not 
onstant.

While the fourth example 
ould have been rewritten by adding exists square

to fourth's parameter list, there is no su
h 
onversion for re
ursive fun
tions. We
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ould de�ne print as requiring a print(list) exist parameter, but the print(list)

exist parameter would also require a print(list) operation parameter et
.

For simple re
ursive 
alls, like this one, where the 
losure required for the re-


ursive 
all to print is the same as the 
losure of the instan
e of print making

the re
ursive 
all, we 
an arrange things so that a fun
tion always re
eives its own


losure as one of its parameters and use this to make the re
ursive 
all, thereby not

needing to 
onstru
t a variable 
losure for the re
ursive 
all. However, this will not

work for all instan
es. For example, in the following re
ursive fun
tion the 
losure

for the re
ursive 
all to q is not the same as the 
losure for the instan
e of q making

the re
ursive 
all.

forall a, b : int q(a x, b y, exists int term(a), exists int term(b))

{

if (term(a))

return 0;

else

return q(y, x);

}

Is translated by the inferen
er to :

forall a, b : int q_1(a x, b y, exists int term_p1(a), exists int term_p2(b))

{

if (term_p1(a))

return 0;

else

return q_1<b, a, term_p2, term_p1>(y, x);

}

Mutually re
ursive fun
tions present a similar problem.

In the following se
tion we look at the impa
t of having to support these variable


losures on the range of implementation strategies available for \Sea". We then

present an algorithm that transforms a \Lake" program with non-
onstant 
losures

into one where all 
losures are 
onstant.
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3.1.1 Creating Closures at Runtime

Creating a non-
onstant 
losure at runtime is not very diÆ
ult, and takes about

the same amount of time as it takes to 
onstru
t a normal parameter list. Often,

in order to 
omplete one 
losure, other 
losures will need to be 
reated, and a large

tree of 
losures will get 
reated in order to generate one 
all. As long as all the

requested 
losures are used, despite the fa
t that they are all 
reated at on
e, this


ost is amortized a
ross many fun
tion 
alls, and the runtime 
ost as a per
entage of

exe
ution time remains a

eptable. However, if a style of programming is adopted

whereby large 
omplex 
losures are 
onstru
ted, but never 
ompletely used, or

where 
losures are 
reated prior to a majority of 
alls, 
losure 
onstru
tion 
ould

be a major runtime 
ost.

3.1.2 Non-Constant Operation Parameters

Non-
onstant operation parameters (ie. operation parameters from a non-
onstant


losure) are not very diÆ
ult to implement, and are not inordinately expensive at

runtime. The problem with non-
onstant operation parameters is that they 
annot

be inlined. Inlining is to an important optimization if we hope to get \C"-like

performan
e out of polymorphi
 programs. (see 
hapter 5)

If we want to add \C++"-style 
onstru
tors, destru
tors and overloaded assign-

ments to \Sea" then inlining be
omes vital. The inline expansion of a 
onstru
tor

that is bound to the default no-operation 
onstru
tor is no-
ode and no-overhead,

whereas a 
onstru
tor that is re
eived as a parameter must always be 
alled. This is

a problem be
ause there are so many pla
es in a \Sea" program where 
onstru
tors

must be 
alled.

For example when the following fun
tion was pro
essed by the AT&T \C++"


ompiler (bignum was de�ned with a 
onstru
tor, a destru
tor, and an overloaded

assignment operator) 16 
alls were generated to one of these fun
tions. Every \Sea"

fun
tion that has polymorphi
 arguments would su�er a similar explosion, even if,

as would usually be the 
ase, it was 
alled with null 
onstru
tors and destru
tors.

// ``bignum'' is defined as a 
lass with a 
onstru
tor, a destru
tor

// and an assignment operator.

bignum pythag(bignum x, bignum y)

{
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bignum r;

r=bignum_sqrt(x*x+y*y);

return r;

}

3.1.3 Non-Constant Type Parameters

\Sea" type parameters 
an be bound to any type. Di�erent types have di�erent

sizes and possibly di�erent alignment requirements. In order to support variable


losures we have to generate obje
t 
ode that is parameterized at runtime by the

size of its forall types. Supporting variables and parameters whose size is not known

at 
ompile time is diÆ
ult, not very eÆ
ient, and for
es us to use a less eÆ
ient


alling 
onvention for all \Sea" fun
tions (not just polymorphi
 fun
tions).

When type parameters in a \Lake" program are 
ompile time 
onstants then we


an use this to either 1) generate spe
ialized monomorphi
 versions of polymorphi


fun
tions or 2) 
ontinue generating one obje
t 
ode fun
tion per sour
e fun
tion, but

generate mu
h more elaborate 
losures that 
ontain information su
h as parameter

o�sets and sta
k layout for lo
al variables.

One \Sea" variant will only bind type parameters to pointer types. For this

variant no type attributes are required at runtime and it is possible to build an

eÆ
ient 
ompiler even in the presen
e of runtime 
losures.

More detail on the advantages and pitfalls of these various implementation te
h-

niques 
an be found in 
hapter 4.

3.1.4 Other Appli
ations

Transforming a \Lake" program so that all type and operation parameters are


onstant is also very helpful if we are going to 
onstru
t the \Sea" variant (des
ribed

at the end of this do
ument) where type and operation parameters do not have to

be spe
i�ed at the fun
tion de
laration site. With none of the parameter types

spe
i�ed, and none of the intermediate values 
onstrained, almost every fun
tion


all made in the body of a polymorphi
 fun
tion must be a separate operation

parameter. The style of programming en
ouraged by this \Sea" variant will involve

the 
onstru
tion of large numbers of large non-
onstant 
losures, and 
onstru
ting

these large 
losures at runtime will be prohibitively expensive.
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3.1.5 Eliminating non-
onstant 
losures

Within polymorphi
 fun
tion f that has been spe
ialized by 
losure 
, a new 
losure

z 
an be 
onstru
ted using 
onstant types, 
onstant operations, type parameters

from 
, type 
onstru
tors applied to type parameters from 
, and operation param-

eters from 
. If z is 
onstru
ted using any parts of 
 then z will be a non-
onstant


losure. Noti
e that any 
losure 
reated in f will 
onsist entirely of �elds from 


and 
onstants, thus all the values needed to 
onstru
t z are also available when 


is 
reated.

If z is a non-
onstant 
losure it 
an be eliminated by 
onverting it into an

additional �eld in 
, then modifying the pla
es where 
 is 
reated to 
onstru
t the

extra �eld z out of 
onstants and other members of 
.

So, for example, the fourth fun
tion de�ned earlier 
ould be 
onverted to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}

forall a : a fourth_1(a x, exists a op*_p1(a, a), exists a square_p1(a))

{

return square_p1 (square_p1 (x));

}

forall : int t_1()

{

return fourth_1<int, op*_1, square_1<int, op*_1>>(7);

}

The algorithm as des
ribed so far has two problems 1) it will not terminate if it

en
ounters a re
ursive polymorphi
 fun
tion and 2) we haven't de�ned the order in

whi
h expansions will be done when there are more than one non-
onstant 
losure

in a program. What follows is a more detailed version of this algorithm whi
h

addresses these issues.

Convert all the non-
onstant 
losures in the \Lake" program into operation

parameters. These are normal operation parameters that will be re
eived through

the normal 
losure me
hanism, but we introdu
e a new syntax both to highlight

their di�erent role, and to provide information to the 
aller detailing how this
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parameter is to be �lled in. Before the body of the fun
tion, in square bra
kets,

we add a list of expressions of the form \name=
losure body". \
losure body"

des
ribes how the 
losure is to be 
reated (in terms of 
onstants, type parameters,

operation parameters and type 
onstru
tors applied to type parameters). \name"

is then used in the body of the fun
tion to refer to this 
losure.

fourth would be translated to :

forall a : a fourth_1(a x, exists a op*_p1(a, a)) [ 
1=square_1<a, op*_p1> ℄

{

return 
1 (
1 (x));

}

Starting with the set of 
onstant 
losures, expand ea
h 
losure by adding the new

operation parameters required by the fun
tion to whi
h the 
losure refers. Re
ur-

sively expand any 
losures that are generated by this pro
ess. Ea
h time a new


losure is 
reated, before that 
losure is expanded, 
he
k whether an identi
al 
lo-

sure has already been expanded, and if so use the previous expansion rather than

generating a new one.

Che
king for dupli
ate 
losures not only redu
es the number of 
losures that

are 
reated, but also allows most polymorphi
 re
ursive fun
tions to be pro
essed.

(see later for details)

The fourth program would be pro
essed as follows :

The 
losure template expansion algorithm doesn't need fun
tion bodies of types,

only the set of 
onstant 
losures and the set of templates.

Constant Closures

fourth_1<int, op*_1>

Closure Templates

fourth_1 : [ 
1=square_1<a, op*_p1> ℄

Index Input Closure Expanded Closure

------------------------------------------------------------

#0 : {fourth_1, int, op*_1} -> {fourth_1, int, op*_1, #1}

#1 : {square_1, int, op*_1} -> {square_1, int, op*_1}

The following sample program will be used to demonstrate the algorithm. This is

a tri
ky example : f and g are mutually re
ursive fun
tions, and the order of the

parameters is swit
hed with ea
h iteration.
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int q(int x) { ... };

int q(double x) { ... };

forall a, b : extern int g(a x, b y, exists int q(a), exists int q(b));

forall a, b : int f(a x, b y, exists int q(a), exists int q(b))

{

g(y, x);

}

forall a, b : int g(a x, b y, exists int q(a), exists int q(b))

{

f(x, y);

}

int main()

{

print(f(5, 5.0));

}

Is translated by the inferen
er to :

forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

g_1<b, a, q_p2, q_p1>(y, x);

}

forall a, b : int g_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

f_1<a, b, q_p1, q_p2>(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

After non-
onstant 
losures have been turned into operation parameters :
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forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p1(b))

[ 
1=g_1<b, a, q_p2, q_p1> ℄

{


1(y, x);

}

forall a, b : int g_1(a x, exists int q_p1(a), exists int q_p1(b))

[ 
1=f_1<a, b, q_p1, q_p2> ℄

{


1(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

Constant Closures :

f_1<int, double, q_1, q_2>

Closure Templates :

f_1 : [ 
1=g_1<b, a, q_p2, q_p1> ℄

g_1 : [ 
1=f_1<a, b, q_p1, q_p2> ℄

The output of the algorithm is shown in the following table.

Index Input Closure Expanded Closure

------------------------------------------------------------------------

#0 : {f_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #1}

#1 : {g_1, double, int, q_2, q_1} -> {g_1, double, int, q_2, q_1, #2}

#2 : {f_1, double, int, q_2, q_1} -> {f_1, double, int, q_2, q_1, #3}

#3 : {g_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #0}

If no type generators are used, ea
h template 
an only rearrange its input type

and operation parameters, possibly introdu
ing some 
onstants. There is a �nite

number of arrangements of the initial 
losure and the 
onstants that are introdu
ed

in subsequent levels. So for re
ursive polymorphi
 fun
tions in whi
h type genera-

tors are not involved in the re
ursion, our algorithm will generate all the possible
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variants, then introdu
e a loop in the 
losure graph. We 
an then 
ompile this 
lass

of polymorphi
 re
ursive fun
tions.

It is possible for there to be a large number of versions generated before a 
y
le

is generated, but is felt that this will o

ur very seldom is real programs. The

following example fun
tion will 
ause 40320 
onstant 
losures to be generated.

/* 8*7*6*5*4*3*2*1 = 40320 versions */

stru
t s1 { int i; };

stru
t s8 { int i; };

int o(stru
t s1 x) { ... };

int o(stru
t s8 x) { ... };

forall t1, t2, t3, t4, t5, t6, t7, t8 :

int q(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6, t7 x7, t8 x8,

exists int o(t1), exists int o(t2), exists int o(t3), exists int o(t4),

exists int o(t5), exists int o(t6), exists int o(t7), exists int o(t8))

{

q(x1, x2, x3, x4, x5, x6, x7, x8);

q(x2, x1, x3, x4, x5, x6, x7, x8);

q(x2, x3, x1, x4, x5, x6, x7, x8);

q(x2, x3, x4, x1, x5, x6, x7, x8);

q(x2, x3, x4, x5, x1, x6, x7, x8);

q(x2, x3, x4, x5, x6, x1, x7, x8);

q(x2, x3, x4, x5, x6, x7, x1, x8);

q(x2, x3, x4, x5, x6, x7, x8, x1);

if (o(x1))

return 0;

}

main()

{

stru
t s1 v1;

stru
t s8 v8;

q(v1, v2, v3, v4, v5, v6, v7, v8);

}
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For re
ursive fun
tions where a type 
onstru
tor is involved in the re
ursion, there

is an in�nite number of types and therefore 
losures, and our algorithm will fail.

This is not felt to be a severe restri
tion. The following is an example of a fun
tion

we 
annot 
ompile.

// pow2 : 
al
ulates 2^n

int f(
har *x)

{

return 1;

}

forall a : int f(a *xp, exists int f(a))

{

return f(*xp) + f(*xp);

}

forall a : g(int n, a x, exists int f(a))

{

if (n>0)

return g(n-1, &x);

else

return f(x);

}

int pow2(int n)

{

return g(n, "dummy parameter");

}

The above program is interesting be
ause it makes use of the limited 
urried fun
-

tion parameter support|whi
h we introdu
ed to support inferred type and opera-

tion parameters|to 
onstru
t, at runtime, a fun
tion that 
al
ulates 2^n.

3.1.6 Separate Compilation Issues

To eliminate 
onstant 
losures the 
ompilermust have a

ess to the templates for all

polymorphi
 fun
tions in the program, and normal \C" prototypes do not provide
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this information. All the implementations we propose eliminate 
onstant 
losures

in a global pass just before linking. (see 
hapter 4)



Chapter 4

Implementation of \Lake"

In the following se
tion we present several ways of implementing \Lake". Ea
h of

the implementations has di�erent advantages, and pla
es di�erent 
onstraints on

the design of the language. \Lake" has been designed so as not to pre
lude any of

the major implementation strategies.

4.1 Implementation 1 : Polymorphi
 obje
t 
ode,

runtime variable 
losures

Ea
h sour
e-level polymorphi
 fun
tion is translated into a single polymorphi


obje
t-
ode fun
tion. This obje
t-
ode fun
tion takes, as its �rst parameter, a


losure 
ontaining bindings for its type and operation parameters, and uses this


losure at runtime, to spe
ialize its own behaviour.

This is the te
hnique that was used for our prototype \Sea" 
ompiler.

4.1.1 Overloading

The \Sea" language allows us to overload a single identi�er with multiple fun
-

tion de�nitions, ea
h with a di�erent type. Whenever this identi�er is used, the

inferen
er sele
ts the fun
tion de�nition with the most appropriate type.

As overloaded fun
tions are 
ompiled we must assign ea
h a unique name: the

overload resolver 
an then translate a referen
e to an overloaded name into the

28
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unique name that refers to the most appropriate fun
tion. In \Sea" fun
tion def-

initions 
an be 
ompiled separately from 
alls to those fun
tions, thus we have

no dire
t way of 
ommuni
ating the unique name generated when an overloaded

fun
tion is 
ompiled to the overload resolution algorithm pro
essing a fun
tion 
all

made from a separate �le.

For example, in �le 1 we have de�nitions for two print fun
tions:

void print(int x)

{

...

}

void print(double x)

{

...

}

And in �le 2 we attempt to use these :

extern void print(int);

extern void print(double);

main()

{

print(7);

}

In \Sea", every overloaded de�nition for a name must have a unique type, and

this type is available both when the fun
tion is 
ompiled and, through fun
tion

prototypes, when the fun
tion is 
alled. By generating a name from the overloaded

name as well as an en
oding of the type of the fun
tion, then this name will uniquely

refer to the appropriate fun
tion, and will be available everywhere the fun
tion

name and type are available (ie., at both the de�nition and the 
all site). We 
all

these \mangled" names. This te
hnique originated with Bjarn Stroustrups \C++"


ompiler.

The a
tual algorithm we use to generate mangled names is derived from the

name mangler in the GNU C++ 
ompiler.

Some sample mangled names:
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int op*(int x, int y);

Would be en
oded as (note that op* has been translated into something more

palatable to the assembler and linker) :

__multiply__FLiie_iZ

__multiply Original fun
tion name

__ Pun
tuation to separate name from type en
oding

F Begin fun
tion type 
onstru
tor

L Begin argument list

i First argument is integer

i Se
ond argument is integer

e End argument list

_ Pun
tuation to separate argument types from return type

i Return type is integer

Z End fun
tion type 
onstru
tor

and

forall a : a square(a x, exist a op*(a,a));

would be en
oded as:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

Refer to the 
ompiler do
umentation for a 
omplete dis
ussion of the algorithm.

In \Sea", \exist" parameters are part of the type of a fun
tion, and therefor

must be in
luded in the mangled fun
tion name. This 
an 
ause very large mangled

names to be generated, whi
h means the \Sea" 
ompiler will not be portable to

environments where the assembler or linker pla
e do not support long names. All

of the ma
hines that we tested allowed names to be at least 512 
hara
ters long,

whi
h should be enough for most programs.
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4.1.2 Closures

For ea
h \Lake" sour
e fun
tion, we generate a single obje
t 
ode fun
tion. A

\Lake" fun
tion that has not yet been spe
ialized by having its type and operation

parameters bound is represented by a pointer to obje
t 
ode. When a \Lake"

fun
tion is spe
ialized with type and operation parameters, we represent this by

building a 
losure 
ontaining a pointer to the fun
tion obje
t 
ode as well as the

supplied bindings for the type and operation parameters. When this 
losure is

then applied to list of regular arguments, we 
all the obje
t 
ode referen
ed by

the 
losure, and arrange that it will re
eive a pointer to the 
losure as its �rst

parameter. The polymorphi
 obje
t 
ode 
an then referen
e the 
ontents of the


losure to spe
ialize its own behaviour.

The stru
ture of this 
losure is as follows :

{Pointer to fun
tion obje
t 
ode,

Attributes of first type arg, ..., Attributes of nth type arg,

First operation parameter, ..., nth operation parameter}

For the 
urrent implementation the only attribute that is needed to des
ribe ea
h

type parameter is the size of the type.

As was dis
ussed in 
hapter 3, operation parameters are either pointers to an-

other 
losure, or a pointer to fun
tion obje
t 
ode, depending on whether or not

the operation parameter has been spe
ialized yet.

When the square fun
tion :

forall a : a square(a x, exist a op*(a,a)) { return x*x; }

is applied to an integer argument, it will be spe
ialized into the following 
losure :

; Closure for polymorphi
 square applied to an integer argument

LC1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ ; pointer to square fun
tion

.long 4 ; sizeof(int)

.long LC0 ; pointer to 
losure for integer multiply

; Closure for integer multiply (there are no type or operation parameters)

LC0:

.long _multiply__FLiie_iZ ; pointer to integer multiply fun
tion
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4.1.3 Operation Parameters

Operation parameters that have not yet been spe
ialized 
an be spe
ialized by

building a 
losure. Most operation parameters, however, have already been spe-


ialized, and are re
eived as pointers to 
losures.

Calling a 
losure is not a diÆ
ult or expensive operation. Details of the \Sea"


alling 
onvention 
an be found in the next se
tion.

The only problem with re
eiving operations as parameters is that these oper-

ations 
annot be inlined. This leads to signi�
antly worse performan
e for things

that are traditionally inlined like the basi
 integer and 
oating point operations.

4.1.4 Type Parameters

A \Sea" fun
tion 
an be de
lared with type parameters. These type parameters 
an

then be used as parameters to type 
onstru
tors, resulting in a family of variable-

sized types and pointers to variable-sized types. These types 
an then be used to

de
lare parameters and automati
 variables.

The operations that the 
ompiler must provide for these variables and parame-

ters are 1) assignment, 2) member a

ess for 
omplex types, and 3) fun
tion 
alls.

In this se
tion we look at the 
ompile-time and run-time me
hanisms that this

requires.

Representation of Type Parameters in the Closure

For the 
urrent implementation the only information that is 
ontained in a type

parameter is the size of the type it has been bound to.

Often, within our polymorphi
 routines, we need to 
al
ulate the size of a type

rounded up to the next alignment boundary. Be
ause our 
ode uses 
losures mu
h

more frequently than it 
reates them, it would have been better to do this 
al-


ulation at 
losure 
reation time and add the results to the 
losure as an extra

�eld.

4.1.5 Polymorphi
 Data Stru
tures

For 
ompatibility with system libraries, monomorphi
 stru
ts are laid out using the

host \C"'s stru
ture layout 
onventions. On many ar
hite
tures, it is too 
ompli-


ated to emulate these stru
ture layout rules at run-time for polymorphi
 types.
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So \Sea" stru
tures built using type parameters are not de�ned as having the same

layout as an equivalent monomorphi
 stru
ture de�nition; instead every �eld that


ould be instantiated with types with varying alignment requirements is given the

most 
onservative alignment. This is not in
ompatible with the \C" language def-

inition whi
h does not guarantee that stru
turally identi
al type de
larations have

identi
al layout. As in standard \C", the total size of a stru
ture is padded so that

if an array of stru
tures is started on the most 
onservative alignment boundary,

then every �eld in every stru
t in the array will have 
orre
t alignment.

If an appli
ation requires that both a polymorphi
 and a monomorphi
 routine


an work on the same \stru
t", then parameterized types|whi
h were expli
itly

designed for this purpose|must be used.

Parameterized Types

Type parameters are de�ned su
h that the most 
onservative alignment require-

ments are applied to every �eld whose alignment requirements may vary with dif-

ferent instantiations of the type generator. This makes it possible for monomorphi


and polymorphi
 fun
tions to a

ess the same data stru
ture without for
ing the

polymorphi
 routine to do 
ompli
ated and time-
onsuming alignment 
al
ulations.

For example :

stru
t {


har x;


har y; };

Would be laid out as :

Byte : 00 01

Contents : x y

stru
t {

t x;

t y; };

In a polymorphi
 routine where \t" was bound to \
har" would be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------
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Whereas the generated type :

type pair(type t)

{

return stru
t {

t x;

t y; };

}

Whether instantiated as pair(
har) or pair(t) (where t is bound to 
har) would

be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------

Arrays

Be
ause all \Sea" types are de�ned su
h that as long as the �rst element of the

array has 
orre
t alignment, all elements of the array have 
orre
t alignment, no

alignment 
onsiderations need to be taken into a

ount to lo
ate array members.

Thus polymorphi
 arrays require little runtime support and are 
ompatible with

monomorphi
 arrays.

Pointers

No additional runtime support is needed to allow pointers to point at polymorphi


obje
ts.

4.1.6 Calling Conventions

Be
ause there are few built-in operations for obje
ts with polymorphi
 type, almost

every operation must be done through 
alls to monomorphi
 fun
tions. Thus it is

important that we have eÆ
ient polymorphi
 
alling 
onventions.
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All Fun
tions Must Use The Same Calling Convention

Operation parameters to polymorphi
 fun
tions 
an be bound to either monomor-

phi
 fun
tions (spe
ialized by an empty 
losure) or polymorphi
 fun
tions. If dif-

ferent 
alling 
onventions were used for monomorphi
 and polymorphi
 fun
tions,

every time an operation parameter was 
alled we would have to sele
t one of two

di�erent 
alling 
onventions, and|as will be dis
ussed below|building a monomor-

phi
 argument list from within a polymorphi
 fun
tion 
an be very 
ostly. Every

fun
tion in a \Sea" program 
ould potentially be sele
ted as an operation param-

eter, so every fun
tion must use the same 
alling 
onvention. This makes it even

more 
ru
ial that our polymorphi
 
alling 
onventions be eÆ
ient.

For example :

// put integer

void put(FILE *f, int x)

{

fwrite(&x, sizeof(int), 1, f);

}

int f(int x)

{

put(stdout, 4);

}

However, lurking somewhere else in the system we may have :

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)

{

put(s, l->data);

l = l->next;

}

}

void g(list(int) l)



CHAPTER 4. IMPLEMENTATION OF \LAKE" 36

{

put(stdout, l);

}

put(integer) is passed as an operation parameter to put(list), so put(integer)

must be 
ompiled with standard 
alling 
onventions, whi
h means the 
all to

put(integer) in f has to use standard 
alling 
onventions.

Host \C" 
alling 
onventions

The \C" standard allows ma
hine designers and 
ompiler writers 
onsiderable free-

dom in the design of their 
alling 
onventions, and RISC ma
hines (almost every


urrent pro
essor design other than the i386) have highly tuned register-based 
all-

ing 
onventions.

It would be very good, for both performan
e and portability, if \Sea" 
ould use

these 
alling 
onventions. The following is a typi
al RISC 
alling 
onvention :

For Ea
h Arg :

If Arg is Integer Then

If more registers are available

Put in next available Register

else

Put on sta
k (aligned to 32 bits)

endif

endif

If Arg is Double or Float Then

If more floating point registers are available then

Put in next available Floating Point Register

else

Put on Sta
k (aligned to 64 bits)

endif

endif

If Arg is stru
t or union Then

Put as many words of stru
t as will fit in rest of register file

Put balan
e on sta
k

Endif
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et
.

EndFor

While it is possible to implement su
h an algorithm at runtime, the resulting 
ode

would require many 
onditional bran
hes per argument, and would have a diÆ
ult

time even loading the registers. (There is no way to a

ess the register �le via an

index on most ma
hines, so the 
ode would have to build an image of the register

�le in memory, then load the image|thereby defeating the whole point of passing

arguments in registers.)

Many 
ompilers/libraries are 
apable of unpa
king their parameter lists at run-

time in order to support 
alling vararg fun
tions like printf when no prototype

has been supplied. The 
ode to do this is not 
ompa
t, eÆ
ient or pretty.

Return 
onventions are also 
omplex and parameterized by type, and thus pose

similar problems.

Be
ause \Sea" 
annot use the native 
alling 
onventions on all ma
hines, we

do not de�ne the \Sea" language as having 
ompatible 
alling 
onventions with

the host \C". Instead we have provided the \
de
l" me
hanism that allows \Sea"

and \C" programs to 
all ea
h other. This is not mu
h of a loss be
ause \Sea"

overloaded fun
tion de�nitions were in a di�erent linker name spa
e (by virtue or

their mangled names) than \C" fun
tions.

Sta
k-Based 
alling 
onventions

Using sta
k-based 
alling 
onventions would make \Sea" perform signi�
antly (per-

haps a fa
tor of 3) worse than \C" on RISC ma
hines.

Variable-sized argument lists are simple to 
onstru
t. Ea
h parameter is either

pushed or 
opied onto the sta
k.

If the pro
essor has stri
t alignment requirements for any type, we 
an either 1)

add type alignment information to our 
losures and 
al
ulate appropriate alignment

for ea
h polymorphi
 parameter as they are pushed (or retrieved) at the 
ost of


onsiderable runtime overhead for ea
h parameter, or 2) push all parameters with

the stri
test alignment (remember we gave up on being 
ompatible with host 
alling


onventions) whi
h redu
es overhead when pushing polymorphi
 parameters, but

for
es us to push an extra word of padding every time a monomorphi
 routine wants

to pass an \int" or a pointer.
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\GCC" has some built in support for sta
k-based variable-sized arguments,

however this 
ode is not operational in the distributed 
ompiler. We �xed this 
ode

to the point where we 
ould experiment with it and got the following results :

int g(int w, stru
t { 
har 
[w℄; int m; } kk,

stru
t { 
har 
[w℄; int m; } kkk, int q)

{

printf("w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\n", w, &w, &kk, &kkk, &q);

return 0;

}

Compiled to about 100 lines of assembly. However, most of this was repeated


al
ulations, so when we re-
ompiled with optimization we got the following output

:

LC1:

.as
ii "w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\12\0"

.align 1

.globl _g

_g:

.word 0x0

movl 4(ap),r0

addl3 r0,$3,r1

movl $2,r3

movl $30,r4

extzv r3,r4,r1,r2

in
l r2

moval 3[r2℄,r2

extzv r3,r4,r2,r2

moval 0[r2℄,r2

extzv r3,r4,r1,r1

in
l r1

moval 3[r1℄,r1

extzv r3,r4,r1,r1

moval 8(r2)[r1℄,r1

addl3 ap,r1,-(sp)

pushab 8(ap)[r2℄

addl3 ap,$8,-(sp)
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addl3 ap,$4,-(sp)

pushl r0

pushab LC1


alls $6,_printf


lrl r0

ret

Most of this 
ode is needed to 
al
ulate the o�sets of the input parameters in the

sta
k frame, similar 
al
ulations are required when a polymorphi
 parameter list is

being passed. These 
al
ulations 
ould be simpli�ed 
onsiderably if we provided,

in the 
losure, the size for ea
h type rounded up to the next word boundary, rather

than having the generated 
ode do this 
al
ulation at runtime.

On ma
hines with stri
t alignment requirements, the 
al
ulations needed to

build and disassemble a variable-sized parameter list get even more 
ompli
ated.

On su
h ma
hines \GCC" 
urrently gives up and 
alls abort().

We were going to use this 
alling 
onvention for the �rst version of \Sea" so

as to get a working 
ompiler more rapidly. However as work progressed it be
ame

apparent that \GCC"'s support for variable sized arguments had many subtle prob-

lems, and it was felt that it would be qui
ker to implement the more eÆ
ient 
alling


onvention we wanted for the �nal version of our 
ompiler than to tra
k down and

repair all the problems with the existing system.

The problems with this 
alling 
onvention are :

1. Sta
k-based 
alling 
onventions are a big loss for RISC ma
hines.

2. When passing polymorphi
 arguments, the 
aller does 
omplex 
al
ulations

in order to pla
e all the parameters in the parameter list, and then the 
alled

fun
tion repeats the same 
al
ulations in order to a

ess the arguments.

3. There are few built-in operations for polymorphi
 types. Polymorphi
 fun
-

tions do most of their a
tual work by 
alling monomorphi
 fun
tions. Most

of the time and 
ode in polymorphi
 fun
tions is spent doing variable-sized


opies of input parameters to subfun
tion parameters. It would be useful if

there were some way to redu
e the number of su
h 
opies done.

4. On ma
hines with stri
t alignment requirements there is even more runtime

overhead.
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\Sea" Calling Conventions

With the following goals in mind we set out to design a new 
alling 
onvention for

the \Sea" language. This should:

1. Use register-based 
alling 
onventions on RISC ma
hines.

2. Not be mu
h slower than the native 
alling 
onventions for monomorphi


fun
tions.

3. Be as fast as possible for polymorphi
 fun
tions. This is done primarily by

avoiding 
onditions that must 
he
ked at runtime and by redu
ing the number

of variable-sized 
opies needed.

For the following dis
ussion we assume that \int"s and pointers are 32 bits

and that \longs" and \doubles" are 64 bits. The same dis
ussion applies to other

ma
hines, however some of the parti
ulars will be slightly di�erent.

� The �rst parameter to a fun
tion is always a pointer to the 
losure that


ontains bindings for any type or operation parameters. If there are no �elds

in the 
losure (apart from the pointer to the fun
tions obje
t 
ode) then this

parameter does not have to be valid.

� The se
ond parameter is a pointer to the stash in whi
h to write the return

value. If no su
h stash is required then this parameter 
an be indeterminate.

(More details on the use of this \return value pointer" will be given later).

Usually, the above two parameters will be passed in registers, thus if valid

values are not required there will be no 
ost apart from the loss of two register

parameters.

� For ea
h argument we do the following:

{ If an argument is the size of a word then we pass it dire
tly.

{ If an argument is not the size of a word then we store the argument

in memory (If it is not already stored there) and pass a pointer to the

argument. We 
all the pla
e where the argument resides in memory the

\stash".

So every parameter is a word, 
ontaining either the a
tual value or a

pointer to the a
tual value. We 
all this type of parameter a MA. (Mul-

tiplexed Argument)
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Having every parameter in the same format|regardless of type|allows

us to use RISC register-based 
alling 
onventions to pass these parame-

ters.

This 
alling 
onvention is as eÆ
ient as the host 
alling 
onvention for

pointers and integers, the two most 
ommon types in \Sea" programs.

Unfortunately performan
e for \
hars", \shorts", \longs", and \doubles"

is signi�
antly degraded.

{ The 
aller must guarantee that the stash areas referen
ed by the param-

eters it is passing be 
onstant until either 1) the fun
tion returns or 2)

all or part of the stash area is overwritten be
ause it is the return area

for the same 
all.

{ The 
allee must not modify any stash areas referen
ed by its input pa-

rameters. If an input parameter is in danger of being modi�ed, the


ompiler must make a 
opy of the input parameter, and use this 
opy in

pla
e of the original.

These two rules allow many parameters to be passed without having to


opy their data to a stash. In parti
ular they allow parameters to be

used as parameters to subsequent fun
tion 
alls with very little overhead.

This is very important be
ause almost every operation a polymorphi


fun
tion wants to perform on its arguments must be done through a

fun
tion 
all.

With this s
heme when 
opies are done they tend to be done either in

the monomorphi
 fun
tion that made the initial polymorphi
 
all, or in

the monomorphi
 fun
tions that do the a
tual operations. It is mu
h


heaper to 
opy an obje
t in a monomorphi
 fun
tion|when its size

and layout are known|than in a polymorphi
 fun
tion.

� To return a value from a fun
tion:

{ The 
allee must assume that the area referred to by the return area

pointer may be an alias for any memory in the system, in
luding the

stashes of its input parameters.

This rule allows expressions of the form \var=fun
(...)" to be 
om-

piled so that the return value of \fun
" 
an be written dire
tly into

\var". This is a useful optimization in polymorphi
 fun
tions, be
ause

allo
ating and 
opying variable-sized temporaries is so expensive.

{ Return values that are the size of a word are returned in the return value

register.
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{ Return values that are not the size of a word are written to the stash

referen
ed by the \return value stash pointer" input parameter. The

\return value stash pointer" is then 
opied to the \return value register".

Having values returned in the same format that is required for subsequent

fun
tion 
alls (or storage in a lo
al variable), allows the return value of

one fun
tion 
all to be used as a parameter to a subsequent fun
tion 
all

with a minimum of overhead.

Also, returning small values dire
tly in registers is very important if we

want to have \C"-like performan
e for monomorphi
 pointer and integer

fun
tions.

� Polymorphi
 lo
al variables (and temporaries) are represented by a word that


ontains either 1) For types that are the size of a word: the variable's value

or 2) For other types: a pointer to a separately allo
ated stash that 
ontains

the variable's value.

This is the same format that is required for parameters (and return values) by

our new 
alling 
onventions. Keeping variables in this format saves us from

having to do an expensive run-time 
onversion prior to every 
all (or every

use as a return area).

The following examples are written in the assembly language of a �
titious pro-


essor that 
ombines the instru
tion set of the VAXwith the register windows of the

SPARC. (This was done to demonstrate the algorithm's pro�
ien
y with register-

based 
alling 
onventions, while retaining a human-readable assembly language.)

Performan
e for monomorphi
 fun
tions

For parameters that are a word or smaller in size, apart from the loss of two registers,

our new 
alling 
onvention performs identi
ally to the host 
alling 
onvention on

most ma
hines.

int add3(int x, int y, int z)

{

return x+y+z;

}

int g()

{
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int q;

q = add3(1,2,3);

return q;

}

_add3__FLiiie_iZ:

addl i2,i3 ; add up parameters re
eived in regs and

addl i3,i4,i1 ; leave result in return reg (i1)

ret

_g__Fle_iZ:

movl 1,o2 ; pass arguments in output registers

movl 2,o3

movl 3,o4


all _add3__FLiiie_iZ

movl o1,l1 ; 
opy return from ``add3'' to ``q''

movl l1,i1 ; return ``q'' in return reg

ret

For double and long parameters (whi
h are typi
ally larger than a word), we

have to pass and return values via pointers, resulting in signi�
ant performan
e

degradation.

double add3(double x, double y, double z)

{

return x+y+z;

}

double g()

{

double q;

q = add3(1.0, 2.0, 3.0);

return q;

}

_add3__FLddde_dZ:

addf (i2),(i3),f0 ; a

ess parameter values indire
tly

addf (i4),f0,(i1) ; write return value into area pointed by i1

ret
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_g__Fle_dZ:

subl 8,sp ; allo
ate spa
e for ``q'' (
an't use regs)

movl sp,l1 ; store pointer to ``q'' in reg

subl sp,24 ; allo
ate spa
e for stash

movl sp,l2 ; we will use ``l2'' to fill stash

movd 1.0,(l2) ; put float value 1.0 in stash

movl l2,o2 ; pass pointer to stashed ``1.0'' as first arg

addl 8,l2 ; advan
e stash pointer

movd 2.0,(l2) ; stash and pass 2.0 as se
ond arg

movl l2,o3

addl 8,l2

movd 3.0,(l2) ; stash and pass 3.0 as third arg

movl l2,o4

addl 8,l2

movl o1,l1 ; pass pointer to pla
e to store return value


all _add3__FLddde_dZ ; 
all fun
tion

movd (l1),(i1) ; 
opy ``q'' to return area pointer by i1

ret

The same fun
tion 
ompiled using normal \C" 
alling 
onventions might read as

follows: (SPARC's use very ineÆ
ient 
oating point 
alling 
onventions that would

probably perform even worse than our new 
alling 
onventions. This example is


ompiled using well tuned 
oating point 
alling 
onventions.)

_add3__FLddde_dZ:

addf f1,f2,f5 ; add up parameters re
eived in regs and

addf f5,f3,f0 ; leave result in f0

ret

_g__Fle_dZ:
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movd 1.0,f1 ; pass arguments in output registers

movd 2.0,f2

movd 3.0,f3


all _add3__FLddde_dZ ; 
all fun
tion

movd f0,f16 ; 
opy return from ``add3'' to ``q''

movd f16,f0 ; return ``q'' in floating return reg

ret

The add3 program is 20 instru
tions long when 
ompiled using our new 
alling


onventions and 10 instru
tions long when 
ompiled using more 
onventional 
alling


onventions.

The above example represents the worst 
ase example for monomorphi
 
oating-

point 
ode. There are a number of simple optimizations we 
an apply to 
ommon


ases: 1) Constant parameters (like the above) 
an be stashed at 
ompile time as


onstant data 2) we 
an often pass the address of 
oating point parameters and

variables without having to re-stash them and 3) if we set up a number of stash

lo
ations we 
an often re-use them for several 
alls.

One solution to this problem of expensive 
oating point parameters would be to

alter our 
alling 
onvention to pass all values less than the size of a double dire
tly.

We have 
hosen not to do this be
ause it degrades performan
e substantially for

integer and pointer 
ode (by either wasting half the registers for a register-based


alling 
onvention, or by for
ing us to push garbage words for a sta
k-based 
alling


onvention as well as numerous other 
ompli
ations|see later for details).

For stru
t parameters, whi
h are seldom used in normal \C" programs, our

new 
alling 
onventions are at least as eÆ
ient as the usual host 
alling 
onventions.

So for monomorphi
 fun
tions our 
alling 
onvention is as eÆ
ient as the host

\C" 
alling 
onvention for all types ex
ept doubles and longs. Programs that make

extensive use of double or long parameters may experien
e signi�
ant performan
e

degradation.

Examples of Polymorphi
 Fun
tions

First we show the assembly 
ode for the simple square fun
tion we have been using

as an example throughout this do
ument.

forall a : a square(a x, exists a op*(a,a))

{
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return x*x;

}

void f()

{

print(square(5));

print(square(5.0));

}

Is 
ompiled to:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

movl i2,o2 ; pass MA for ``x'' as first arg to op*

movl i2,o3 ; pass MA for ``x'' as se
ond arg to op*

movl i1,o1 ; pass our return area pointer to ``op*''


all *12(i0) ; 
all ``op*'' operation parameter

movl o1,i1 ; return MA that was returned by ``op*''

ret

_
losure_0:

.long _multiply__FLiie_iZ

_
losure_1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long _
losure_0

_
losure_2:

.long _multiply__FLdde_dZ

_
losure_3:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long _
losure_1

LC0:

.double 5.0
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_f__FLe_Z:

movl 5,o2 ; pass integer 5 in MA

movab _
losure_1,o0 ; pass pointer to 
losure for square(int)


all *(o0) ; 
all ``square'' via pointer in 
losure

movl o1,o2 ; pass MA returned from square(int)


all _print__FLie_iZ ; 
all print(int)

movab LC0,o2 ; pass pointer to stashed ``5.0'' as first arg

subl sp,8 ; allo
ate spa
e to stash ``square'' return

movl sp,l2

movl l2,o1 ; and pass as return area

movab _
losure_1,o0 ; pass pointer to 
losure for square(double)


all *(o0) ; 
all ``square'' via pointer in 
losure

movl l2,o2 ; pass stash 
ontaining ``square'' return


all _print__FLde_iZ ; 
all print(double)

ret

While these examples demonstrate good performan
e for small-sample polymorphi


routines, they get this performan
e through an array of optimizations that 
annot

be applied in all 
ases. One way to 
ompare 
alling 
onventions would be to 
ompile,

then ben
hmark a large program using ea
h of the proposed 
alling 
onventions.

This te
hnique, however, does not provide mu
h insight into how to design a good


alling 
onvention.

Fortunately, it is possible to enumerate all the sour
es of polymorphi
 values,

and all the operations that 
an be performed on these values. This in a useful tool

when designing and evaluating 
alling 
onventions.

The following are all the sour
es of variable-sized values :

1. Input parameter

2. Automati
 variable

3. Fun
tion return value
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4. Dereferen
ed value (In
ludes pointer, array and �eld a

ess)

These are all the operations that 
an be applied to a variable sized value :

1. Pass as Parameter

2. Return from fun
tion

3. Assign to variable

4. Assign to parameter

5. Assign to Dereferen
ed lvalue (In
ludes pointer, array and �eld a

ess)

6. Take address of

In the following table we explore all the transa
tions that a \Sea" 
ompiler is

required to support, and how a 
ompiler using our new 
alling 
onventions would

implement them:

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

We 
reate polymorphi
 lo
al variables in the same format (using a stash for

obje
ts that are not a word in size) that is used for parameters. This allows

polymorphi
 lo
al variables to be eÆ
iently 1) passed as parameters and 2)

used to store the results of fun
tion 
alls.

The following 
ode sample 
reates a lo
al variable with stash size spe
i�ed

by a �eld in the 
losure. The MA for the lo
al variable is stored in register

\l0", and the stash is allo
ated from the sta
k.

addl 8(i0),sp

movl sp,l0

We exe
ute the same 
ode for word-sized variables, but in this 
ase the stash

area will never be used. We do this be
ause it is 
onsiderably 
heaper to

allo
ate a bogus stash than it is to 
he
k(at run-time) whether a stash is

really needed.
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2. Input parameter or automati
 variable passed as parameter

If the stash for a lo
al variable or parameter 
annot be guaranteed 
onstant

for the duration of the 
all (usually be
ause a pointer to the variable has been

passed outside the fun
tion), then the 
ompiler must make a safe 
opy of the

variable before passing it.

On
e we have a safe variable in MA form, our 
alling 
onvention allows us to

pass just the MA, without making a new 
opy of the stash (if there is one).

The 
ode that is required to pass the MA is the same as would be required

to pass a word-sized argument using the host \C"'s 
alling 
onvention. For

our assembly language this is:

movl i2,o2

3. Input parameter or Automati
 variable returned from fun
tion

if sizeof(t) == sizeof(int)

return variable's MA in return reg

else


opy variable's stash to area pointed by "return area pointer"

4. Input parameter or automati
 variable assigned to variable or parameter

if sizeof(t) == sizeof(int)


opy MA

else


opy stash

5. Input parameter or Automati
 variable assigned to dereferen
ed lvalue

if sizeof(t) == sizeof(int)


opy MA to target

else


opy area referen
ed by MA to target

6. Fun
tion return value passed as Parameter
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Allo
ate stash for return value (re-use same stash for multiple 
alls)

Pass pointer to stash as return value area

Call first fun
tion

Pass return register as parameter to se
ond fun
tion (It will either


ontain a value if the sizeof(t) == sizeof(int) or it will 
ontain a

pointer to the already allo
ated stash, and the value will have been

written in this stash.)

addl 8(10),sp

movl sp,i2


all _fun


movl i2,i3


all _fun
2

7. Fun
tion return value returned from fun
tion

By passing the \return area pointer" on to a subfun
tion, and then 
opying

the subfun
tion's \return register" to the 
urrent fun
tion's \return register",

it 
an be arranged that the 
urrent fun
tion does not have to re
opy and

stash-based portion of the return value.

movl i1,o1


all f

movl o1,i1

ret

8. Fun
tion return value assigned to variable or parameter

Pass the MA for the variable or pointer as the ``return area pointer''

Call the fun
tion

Store the return register from the fun
tion in the MA for the variable

(If sizeof(t) == sizeof(int) the return register will 
ontain a

value, otherwise it will 
ontain the original stash pointer)

movl l1,o1 ; l1 is the MA for the variable


all f

movl o1,l1 ; o1 will either 
ontain a value, or

; will still 
ontain l1

9. Fun
tion return value assigned to dereferen
ed lvalue
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all fun
tion with pointer to lvalue as return area pointer

if (sizeof(t) == sizeof(int))


opy return value reg to lvalue

10. Dereferen
ed value passed as parameter

If we 
an determine that there are no aliases to the obje
t then we 
an avoid


opying the obje
t's data:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

load address of obje
t into MA

If there may be aliases to the obje
t then we must 
opy the obje
t's data:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

allo
ate stash for pointed to obje
t


opy obje
t into stash

load address of stash into MA

11. Dereferen
ed value returned from fun
tion

if (sizeof(t) == sizeof(int))

return value in return register

else


opy value to area pointer by "return value pointer"

12. Dereferen
ed value assigned to variable or parameter

if (sizeof(t) == sizeof(int))


opy value to MA

else


opy value to stash

13. Dereferen
ed value assigned to Dereferen
ed lvalue
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opy value

14. Take address of parameter or variable

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return 
ontents of MA

Evaluation of our Calling Convention

Putting word sized values inside the MA has little e�e
t on the performan
e of

polymorphi
 fun
tions: it for
es us to add many 
onditionals, but these probably

improve performan
e by allowing a very 
ommon 
ase (word size arguments) to

exe
ute without having to do do a 
all to \b
opy" (the variable-sized 
opy fun
tion.

For monomorphi
 fun
tions, however, allowing word sized arguments to be passed

and returned dire
tly in registers 
an improve performan
e signi�
antly.

Our elaborate rules to redu
e the need for 
opying arguments allow the following


ases to be implemented very 
heaply (No 
onditionals and no variable-sized 
opies):

2. Input parameter or automati
 variable passed as parameter (no alias 
ase)

6. Fun
tion return value passed as parameter

7. Fun
tion return value returned from fun
tion

8. Fun
tion return value assigned to variable or parameter

These 
ases 
an be implemented with one 
onditional:

10. Dereferen
ed value passed as parameter (no alias 
ase)

9. Fun
tion return value assigned to dereferen
ed lvalue

The following 
ases still need to do a variable sized 
opy:

3. Input parameter or automati
 variable returned from fun
tion

4. Input parameter or automati
 variable assigned to variable or parameter
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5. Input parameter or automati
 variable assigned to dereferen
ed lvalue

11. Dereferen
ed value returned from fun
tion

12. Dereferen
ed value assigned to variable or parameter

13. Dereferen
ed value assigned to Dereferen
ed lvalue

No 
opies are required under either s
heme for the following transa
tions:

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

14. Take address of parameter or variable

Note that all the 
ases that still need to do a variable-sized 
opy are either

assignment statements or return statements. Unless we depart from \C"'s model

of \a variable is a name for a region of storage" it is impossible to eliminate 
opies

for assignment or return statements (Although there are some tri
ks we 
an play

with return statements: for example see \returning a return value".)

So we have eÆ
ient 
alling 
onventions for monomorphi
 
ode, we have redu
ed

the number of variable sized 
opies to an absolute minimum, and we have very low

overhead for the various glue operations like lo
ating input parameters.

Comparison Of Calling Conventions

Calling 
onventions 
an be 
ompared by 
omparing the run-time algorithms they

require to implement ea
h of the above 14 points.

In the following list we 
ompare our new 
alling 
onvention with the simpler

\always 
opy, no MA" 
alling 
onvention, whi
h is the same as our 
alling 
onven-

tion ex
ept that arguments are always 
opied prior to a 
all and values are never

stored in the MA:

Mu
h Better (No 
onditionals and no variable-sized 
opies regardless of type)

2. Input parameter or automati
 variable passed as parameter

6. Fun
tion return value passed as parameter

7. Fun
tion return value returned from fun
tion

8. Fun
tion return value assigned to variable or parameter
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Similar (Che
k for MA-sized argument allows this 
ommon 
ase to exe
ute

faster)

9. Fun
tion return value assigned to dereferen
ed lvalue

3. Input parameter or automati
 variable returned from fun
tion

4. Input parameter or automati
 variable assigned to variable or parameter

5. Input parameter or automati
 variable assigned to dereferen
ed lvalue

10. Dereferen
ed value passed as parameter

11. Dereferen
ed value returned from fun
tion

12. Dereferen
ed value assigned to variable or parameter

Identi
al

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

13. Dereferen
ed value assigned to Dereferen
ed lvalue

Slightly Worse

14. Take address of parameter or variable

Monomorphi
 
ode uses the same 
alling 
onventions as polymorphi
 
ode, but


an have quite di�erent 
hara
teristi
s be
ause all 
onditionals are evaluated at


ompile time. For monomorphi
 
ode our new 
alling 
onventions provide the same

performan
e as the host \C" 
alling 
onventions for integer and pointer types, and

perform the same as the \always 
opy, no MA" 
alling 
onventions.

In summary our new 
alling 
onvention never performs mu
h worse than the

\always 
opy, no MA" 
alling 
onvention, and in many important 
ases it gives

mu
h better performan
e.
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Why we use the stash for less-then-word-sized arguments

It is possible to put less-than-word-sized arguments inside a word and pass them

inside the MA rather than using the stash.

If we only allow word-sized arguments to be stored in the MA, then whenever we

assign a polymorphi
 variable to a non stash-format obje
t we have to, at run-time,

exe
ute the following 
onditional 
ode.

if (sizeof(t) == sizeof(int))


opy MA word to target

else


opy stash to target

If we allow less-than-word-sized arguments to be stored in the MA, then this 
ondi-

tional be
omes mu
h more 
omplex, signi�
antly degrading both performan
e and


ode size.

if (sizeof(t) == sizeof(int))


opy MA word to target

else if (sizeof(t) == 1)


opy low order byte of MA to target

else if (sizeof(t) == 2)


opy low order 2 bytes of MA to target

else if (sizeof(t) == 3)


opy low order 3 bytes of MA to target

else


opy stash to target

When we pass less-than-word-sized integers in registers it is desirable to pass them

in the a format that the pro
essors integer instru
tions 
an operate on. Usually

this means we want to pass small integers in the integer registers, as if they were

full width integers.

With pro
essors that store the most signi�
ant byte of a word in the lowest

numbered address (big-endian ma
hines) the layout in storage of a small integer

stored in a full width integer and a native small integer are di�erent :

The integer \42" stored at memory lo
ation 10
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Address : 10 11 12 13

Value : 00 00 00 42

The \short integer" 42 stored at memory lo
ation 10

Address : 10 11 12 13

Value : 00 42 XX XX (XX = don't 
are)

The di�erent storage formats be
ome a problem when the address of a polymorphi


variable is taken. If we only allow word-sized arguments to be stored in the MA,

then the address of a polymorphi
 variable is either the address of the MA or the


ontents of the MA:

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return 
ontents of MA

If we allow less-than-word-sized arguments to be stored in the MA, then we must

add 
ode to 
al
ulate the o�set of the argument within the MA:

if (sizeof(t) == sizeof(int))

return address of MA + (4 - sizeof(t)) (may have to move MA first)

else

return 
ontents of MA

Whenever we want to use the result of a pointer dereferen
e (pointers, arrays,

or �eld a

esses) another set of 
ompli
ations arises. The 
urrent version of the


ompiler has to do the following:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

allo
ate stash for pointed to obje
t


opy obje
t into stash

load address of stash into MA

While a version that allows less-than-word-sized obje
ts to be stored in the MA

would have to do:
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if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else if (sizeof(t) == 1)

load one byte into low order bytes of MA

else if (sizeof(t) == 2)

load two bytes into low order bytes of MA

else if (sizeof(t) == 3)

load three bytes into low order bytes of MA

else

allo
ate stash for pointed to obje
t


opy obje
t into stash

load address of stash into MA

Keep in mind that these algorithms must be evaluated|at run-time|whenever a

polymorphi
 memory obje
t is a

essed.

If we allow small obje
ts to be loaded in the MA we must load small stru
tures

into the MA in the same manner that we would load small integers. Otherwise

we would have to add extra 
onditions to the unpa
king and address 
al
ulation

routines.

Less-than-word-sized arguments are rarely used in \C" programs; instead they

are 
onverted to integers before being passed. So having a less eÆ
ient 
alling


onvention for smaller arguments is not expe
ted to have mu
h impa
t on the

performan
e \Sea" programs.

One way to get better performan
e for double parameters would be to expand

the MA to the size of a double. However if this were done, the above 
ompli
ations

would for
e us to pass int's and pointers using the stash.

4.1.7 A
tual Code Samples

When we were implementing the 
alling 
onvention for our \Sea" 
ompiler the

priority was on getting a working 
ompiler, and the eÆ
ien
y of the �rst version

was a lesser 
on
ern. Thus the 
urrent implementation of the polymorphi
 
alling


onvention generates fairly ineÆ
ient 
ode. The following is the VAX 
ode emitted

by our 
ompiler for a polymorphi
 square program.

/* square.d */
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forall a : a square(a x, exist a op*(a,a))

{

return x*x;

}


de
l int main()

{

print (square (5));

print (square (5.0));

return 1;

}

#NO_APP

g

_
ompiled.:

.text

.align 1

.globl _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

.word 0x0

movl *4(ap),r0 ; load the pointer to our return area into r0

movl *8(ap),r1 ; load the pointer to our 
losure into r1

subl2 $24,sp ; allo
ate spa
e for stashing arguments

movl 8(r1),r1 ; get pointer to ``op*'' 
losure through r1

movl 12(ap),12(sp) ; pass MA for ``x'' as first arg to ``op*''

movl 12(ap),8(sp) ; pass MA for ``x'' as se
ond arg to ``op*''

movl r1,20(sp) ; pass pointer to ``op*'' 
losure to ``op*''

movl r0,16(sp) ; pass our return area pointer to ``op*''


alls $10,*(r1) ; 
all ``op*'' using ``op*'' 
losure

ret ; return value that was returned by ``op*''

.align 2

LC0: ; 
losure for int op*(int,int)

.long _multiply__FLiie_iZ

.align 2

LC1: ; 
losure for square spe
ialized to int square(int)

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long LC0
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.align 2

LC2:

.long _print__FLie_iZ

.align 2

LC3:

.long _multiply__FLdde_dZ

.align 2

LC4:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long LC3

.align 2

LC5:

.long _print__FLde_iZ

.align 1

.globl _main

_main:

.word 0x3
0

subl2 $20,sp

subl3 $4,fp,r8

movl sp,r7

subl2 $24,sp

movl sp,r9

subl2 $24,sp

movl $5,20(sp)

addl3 sp,$20,8(sp)

movab LC1,16(sp)

addl3 sp,$16,4(sp)

subl3 $8,fp,12(sp)

addl3 sp,$12,(sp)

movab _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ,r6


alls $9,(r6)

movl r9,sp

movl -8(fp),20(sp)
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addl3 sp,$20,8(sp)

movab LC2,16(sp)

addl3 sp,$16,4(sp)

movl r8,12(sp)

addl3 sp,$12,(sp)


alls $9,_print__FLie_iZ

movl r7,sp

subl3 $12,fp,r7

subl2 $28,sp

movl sp,r8

subl2 $28,sp

movd $0d5.00000000000000000000e+00,20(sp)

addl3 sp,$20,8(sp)

movab LC4,16(sp)

addl3 sp,$16,4(sp)

subl3 $20,fp,12(sp)

addl3 sp,$12,(sp)


alls $10,(r6)

movl r8,sp

movd -20(fp),20(sp)

addl3 sp,$20,8(sp)

movab LC5,16(sp)

addl3 sp,$16,4(sp)

movl r7,12(sp)

addl3 sp,$12,(sp)


alls $10,_print__FLde_iZ

movl $1,r0

ret

Longer examples are given in the appendi
es.

For 
omparison purposes, the following is a monomorphi
 version of the same

fun
tions. If we had written square int and square double using the inline *

operator the resulting 
ode would have been even better.

/* square.
 */

int square_int(int x)

{

return multiply_int(x, x);
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}

double square_double(double x)

{

return multiply_double(x, x);

}

int main()

{

print_int (square_int (5));

print_double (square_double (5.0));

return 1;

}

#NO_APP

g

_
ompiled.:

.text

.globl _square_int

_square_int:

.word 0x0

movl 4(ap),r0

pushl r0

pushl r0


alls $2,_multiply_int

ret

.align 1

.globl _square_double

_square_double:

.word 0x0

movd 4(ap),r0

movd r0,-(sp)

movd r0,-(sp)


alls $4,_multiply_double

ret

.align 1

.globl _main

_main:
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.word 0x0

pushl $5


alls $1,_square_int

pushl r0


alls $1,_print_int

movd $0d5.00000000000000000000e+00,-(sp)


alls $2,_square_double

movd r0,-(sp)


alls $2,_print_double

movl $1,r0

ret

A 
ompiler that utilizes the above implementation strategy 
an use normal \C"

style separate 
ompilation :

.
+.h .
+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| |

| |

| .o | .o

| |

| |

V V

------------------------

| |

| Standard Linker |

| |

------------------------

|

|

|

|
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V

a.out

4.2 Implementation 2 : Polymorphi
 obje
t 
ode,

all 
losures 
onstant

For this implementation we use the algorithm proposed in 
hapter 3 to transform

the \Lake" program so that all 
losures are 
onstant.

A 
losure 
ontains a pointer to a fun
tion as well as a set of type and opera-

tion parameters bindings for a spe
i�
 invo
ation of that fun
tion. If 
losures are

known at 
ompile time then we 
an apply, at 
ompile time, the 
losure to the poly-

morphi
 fun
tion and thereby generate a spe
ialized version of the polymorphi


fun
tion. While it is possible to 
ompletely spe
ialize the polymorphi
 fun
tion to

be a monomorphi
 fun
tion (and this is explored in the next se
tion), this is not the

only form of spe
ialization that is possible. We propose retaining one obje
t-
ode

fun
tion that is referen
ed by all 
losures, but spe
ializing bits of this fun
tion by

moving 
onstant 
al
ulations and bits of 
ode to the 
losure.

When reading 
ode generated by our \Sea" 
ompiler, it was observed that many


omplex expressions, 
onsisting entirely of 
onstants and 
losure �elds, were being

evaluated at runtime. These expressions are used to a

ess parameters, lay out

lo
al variables, lo
ate �elds in parameterized types, and during the 
onstru
tion of

parameter lists.

For example : (a and b are type parameters)

(((sizeof(a)+3)/4)*4)*2 + ((sizeof(b)+3)/4)*4 + 8

Instead of generating runtime 
ode for su
h expressions, we propose repla
ing these

expressing with referen
es to new 
losure members. We then add notes to the fun
-

tion de�nition detailing the (
ompile-time) 
al
ulations we want done. As 
onstant


losures are generated we 
an look up these notes, do the requested 
al
ulations,

and store the results as new 
losure �elds.

Pointers to 
hunks of 
ode, like 
opy operations, 
an be similarly moved in the


losure.

An additional bene�t of having all 
losures 
onstant is that we don't have to


reate 
losures at runtime. This 
an result in signi�
ant runtime savings for some

styles of programming that involve the 
onstru
tion of many non-
onstant 
losures.
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A 
ompiler that utilizes this te
hnique needs a global \Closure Pro
essing" pass

before linking. This pass uses a simple, fast algorithm, and does not have to pro
ess

mu
h data, so it is not expe
ted to add signi�
antly to 
ompile time.

As ea
h \.
" �le is 
ompiled to a \.o" �le the 
ompiler also outputs a \.
lo" �le

that 
ontains : 1) 
onstant 
losures that have been 
reated during the 
ompilation

of that �le 2) \
losure expansion templates" for all polymorphi
 fun
tions de
lared

in that �le and 3) for ea
h polymorphi
 fun
tion, a list of expressions that 
an be

expanded at 
ompile time.

.
+.h .
+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| | | |

|.o |.
lo .
lo| .o|

| | | |

| V V |

| --------------- |

| | Closure | |

| | Pro
essor | |

| | | |

| --------------- |

| | |

| |.o |

| | |

V V V

---------------------------------

| |

| Standard Linker |

| |

---------------------------------

|

|

|
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|

V

a.out

\.
lo" �les 
ontain 
onstant 
losures, 
losure expansion templates, and whatever

information is needed about polymorphi
 fun
tions to allow us to 
al
ulate sta
k

o�sets for polymorphi
 automati
 variables, et
.

4.3 Implementation 3 : Translation to monomor-

phi
 obje
t 
ode

On
e we have transformed a \Lake" program so that all 
losures are 
onstant, we

apply these 
onstant 
losures to the original polymorphi
 fun
tions and generate

spe
ialized monomorphi
 versions.

A 
ompiler using this te
hnique would read ea
h \Sea" program �le, do all

type-
he
king and type inferen
e, output a �le 
ontaining 
losure information, and

output a �le 
ontaining \Lake" parse trees for every fun
tion. The \
losure pro
es-

sor" global pass would then 
al
ulate the 
onstant 
losures for the program. These


onstant 
losures 
an then be 
ombined with the polymorphi
 fun
tion represented

as a \Lake" parse tree to generate a spe
ialized \Lake" fun
tion. This fun
tion 
an

then be 
ompiled to obje
t 
ode.

Spe
ialized \Lake" fun
tions would be standard \C" fun
tions, and 
ould be


ompiled using standard \C" 
ompilation te
hniques, or, in fa
t, we 
ould output

these \Lake" fun
tions as \C" 
ode and feed this through the sto
k \C" 
ompiler.

This would result in a portable, high performan
e (in exe
ution time) 
ompiler.

Be
ause a large body of \Sea" 
ode has not been written, it is unknown how

many spe
ialized versions of polymorphi
 fun
tions would be generated by typi
al

programs. Be
ause we repli
ate all the 
ode for ea
h version this algorithm 
ould

potentially generate very large exe
utable �les.

If we generated obje
t 
ode for spe
ialized versions of polymorphi
 fun
tions

anew with every 
ompile (in
luding for libraries) we 
ould not use this 
ompiler on

large systems. The solution is to 
a
he obje
t 
ode for already expanded versions of

fun
tions. Every expansion is added to this 
a
he after it is generated, and all the

expansions generated from a spe
i�
 �le are 
ushed when the parse-tree generated

from that �le 
hanges.
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A 
ompiler with parse trees for all the fun
tions in a system would also be able

to inline any fun
tion.

As was dis
ussed earlier, this is the only 
ompilation s
heme that 
an eÆ
iently

support \C++"-style 
onstru
tors and destru
tors.

Another advantage of this 
ompilation s
heme is that it would for
e library

distributors to distribute their libraries in something 
lose to sour
e form.

The stru
ture of a 
ompiler employing this te
hnique would be as follows :
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.
+.h .
+.h

| |

V V

-------------- --------------

| Compiler | | Compiler |

-------------- --------------

|.t |.
lo .
lo| .t|

| | | |

| V V |

| ----------------- |

| | Closure | |

| | Pro
essor | |

| ----------------- |

| | |

V V V

---------------------------------

| Fun
tion Expander |

---------------------------------

^ |.


|expansion |

|queries V

| ------------------

| | `C' 
ompiler |

| ------------------

| |.o

V V

---------------------------------

| Expansion Ca
he |

---------------------------------

|.o+.a

V

---------------------------------

| Standard Linker |

---------------------------------

|

V

a.out

\.t" �les 
ontain \Lake" parse trees. \.
lo" �les 
ontain 
losure information.
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4.4 Implementation 4 : Only pointer types 
an

be bound to type parameters

Almost all the 
omplexity in our polymorphi
 obje
t 
ode 
ompiler is there in order

to support parameters, return values, and aggregate type members whose size is

not a 
ompile-time 
onstant. For a variant of \Sea" where only (data) pointer types


an be bound to type variables (and typegen parameters), all polymorphi
 obje
ts

have the same representation, and the resulting language system is mu
h simpler,

more reliable, more portable, and more eÆ
ient.

In the next 
hapter we will demonstrate that, due to the way \C" variables are

de�ned, we derive surprisingly little advantage out of allowing types other than

pointer to be bound to type parameters. We will then argue that the advantages

of a \pointers only" de�nition outweigh the bene�ts of the more 
omplete system.

What follows is a dis
ussion of how a \pointers only" \Sea" 
ompiler 
ould be

implemented :

The �rst step in 
ompiling \pointers only" \Sea" is to do type inferen
e and

overload resolution, translating the \Sea" program into a \Lake" program. For

example, the following \Sea" program fragment:

// Type generator for ``list''

type list(type elem) {

return stru
t {

list(elem) *next;

elem data; } *;

}

// put string

void put(FILE *f, 
har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)
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{

put(s, l->data);

l = l->next;

}

}

// test fun
tion

void g(list(
har *) l)

{

put(stdout, l);

}

Would be translated by the inferen
er to the following \Lake" program: (a real

translation would use the mangled names des
ribed for implementation 1)

// Type generator for ``list''

type list(type elem) {

return stru
t {

list(elem) *next;

elem data; } *;

}

// put integer

void put_1(FILE *f, 
har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put_2(stream s, list(elem) l, exists void put_p1(stream, elem))

{

while (l)

{

put_p1(s, l->data);

l = l->next;

}

}
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// test fun
tion

void g_1(list(
har *) l)

{

put_2<FILE *, 
har *, put_1<>>(stdout, l);

}

\Lake" has two features that are missing from \C":

1. Polymorphi
 \Lake" fun
tions are spe
ialized to be monomorphi
 \Lake"

fun
tion by the appli
ation of a tuple of type and operation parameters.

An unspe
ialized \Lake" fun
tion 
an be represented in \C" as a pointer to

a \C" fun
tion, that is prepared to take, as its �rst parameter, a pointer

to a stru
ture 
ontaining bindings for its type and operation parameters.

A spe
ialized \Lake" fun
tion is represented in \C" as a 
losure 
ontaining

a pointer to the polymorphi
 \C" fun
tion, as well as bindings for all its

operation parameters. When a spe
ialized \C" 
losure is applied to a set of

a
tual arguments, we 
all the polymorphi
 fun
tion mentioned in the 
losure,

supplying a pointer to the 
losure as its �rst parameter. The polymorphi


fun
tion 
an then spe
ialize its own behaviour by referring to the 
ontents of

the 
losure. No runtime support is needed for type parameters be
ause we

have restri
ted all type parameters to one representation.

We de
lare a new 
losure \stru
t" for ea
h polymorphi
 fun
tion de�nition,

be
ause this allows us to give types to the 
losure members, drasti
ally re-

du
ing the number of type 
asts we have to do.

2. Type generators

Type generators 
an be expanded to \C" types by applying, at 
ompile time,

the type generator parameters to the type generator de�nition. This trans-

lation loses the spe
ial type equivalen
y rules de�ned for type generators,

fortunately all types generated from a single typegen will have the same rep-

resentation (in \only pointers" \Sea"), and 
an be made type 
ompatible

when appropriate, through judi
ious appli
ation of type 
asts.

In addition to these two translations, a liberal sprinkling of (void *) 
asts is

required to keep the \C" type-
he
ker quiet. The resulting \C" program is:

typedef stru
t _list_poly {

stru
t list *next;
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void *data; } *list_poly;

typedef stru
t _list_int {

stru
t _list_int *next;


har *data; } list_int;

/* The first parameter to every fun
tion is a pointer to its 
losure. */

/* put integer */

stru
t put_1_
losure {

void (*obj)(stru
t put_1_
losure *, FILE *, 
har *);

};

void put_1(put_1_
losure *
, FILE *f, 
har *x)

{

fputs(x, f);

}

/* put list */

stru
t put_2_
losure {

void (*obj)(stru
t put_2_
losure *, void *);

void (**put_p1)(void *, void *, void *);

};

void put_2(stru
t put_2_
losure *
, list_poly l)

{

while(l)

{

*
->put_p1((void *)
->put_p1, s, l->data);

l = l->next;

}

}

stru
t put_1_
losure C1 = {put_1};

stru
t put_2_
losure C2 = {put_2,

void (**)(void *, void *, void *)&C1};
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/* test fun
tion */

void g_1(void *
, list_int l)

{

C2->obj(&C2, (void *)stdout, l);

}

Whi
h 
an then be run through the host \C" 
ompiler.

4.4.1 Why not allow integers as well as pointers ?

Integers usually have the same representation as pointers, so for most ma
hines it is

possible, without 
ompromising eÆ
ien
y, to allow both integer and pointer types

to be bound to type parameters.

Two minor 
ompatibility problems would be introdu
ed by this 
hange:

1. We would not be able to 
ompile \Sea" programs on ma
hines that used a

di�erent representation for pointers and integers. Fortunately, however, su
h

ma
hines are rapidly be
oming extin
t.

2. On a ma
hine that has separate integer and pointer registers (ie. the Motorola

68000), a register based 
alling 
onvention might load integer parameters into

integer registers and pointer parameters in pointer registers. Thus if we at-

tempted to 
all a monomorphi
 fun
tion from within a polymorphi
 fun
tion,

passing the integer arguments as if they were pointers, these arguments 
ould

end up in the wrong registers. The solution to this problem is to pass all

integer arguments as if they were pointers, but this is a nuisan
e.

We are opposed to this addition be
ause it adds little power to the language

while adding 
onfusion to the language de�nition.

A more interesting variant would allow all the built-in types as well as pointers,

to be bound to type parameters. This would provide most of the power of our

truly polymorphi
 version, without having to support runtime variable parameters

larger than a double. We 
ould implement this variant by passing all parameters

as �xed sized 
hunks large enough to hold a value of any of the basi
 types. See

the se
tion entitled \Why we use the stash for less-then-word-sized arguments" for

a dis
ussion of the pitfalls of this te
hnique. (In short, this ends up being just as


ompli
ated, and ineÆ
ient as the fully general 
ase.)



Chapter 5

Experien
e Using \Sea"

After implementing the prototype \Sea" 
ompiler we attempted to write a number

of libraries and sample programs to test the expressiveness of the new features.

In this se
tion we explore the limitations we ran into as well as some unexpe
ted


apabilities that emerged.

5.1 Values

The following se
tion is an exploration of how \values" are 
reated and manipulated

in \C", and the impli
ations of this for \Sea".

A \C" variable or parameter of type T is a name for a region of storage large

enough to hold a value of type T.

Obje
t : \A region of data storage in the exe
ution environment, the 
ontents

of whi
h 
an represent values ..." ANSI 1.6

\A de
laration that also 
auses storage to be reserved for an obje
t or fun
tion

named by an identi�er is a de�nition" ANSI 3.5

Parameter : \An obje
t de
lared as part of a fun
tion de
laration or de�nition

that a
quires a value on entry to the fun
tion ..." ANSI 1.6

\If a return statement with an expression is exe
uted, the value of the expression

is returned to the 
aller as the value of the fun
tion 
all expression ..." ANSI 3.6.6.4

So values of any \C" type 
an be stored in variables, passed as fun
tion param-

eters, and returned from fun
tions.

73
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Unfortunately \C" variables are not 
apable of representing very 
omplex values.

They work �ne for integers, 
oating point numbers, pointers, and small �xed-size

stru
tures (like those that might be used to represent 
omplex numbers). A \C"

variable has a size that is �xed at 
ompile time, 
annot be very big or it will be too

expensive to pass as a parameter, and 
an only have a very limited substru
ture

(e.g. no re
ursively de�ned substru
ture).

So straight \C" is a very limited language that 
annot represent 
omplex values

like \matri
es" and \lists". In pra
ti
e this problem is 
ir
umvented by building


omplex values out of multiple 
hunks of storage allo
ated from areas of memory

that are not used by the \C" language system, and then a

essing these 
hunks of

storage as typed obje
ts through \C" pointers.

While this te
hnique does allow us to represent 
omplex abstra
tions in \C",

be
ause they are being 
reated outside of the 
ontrol of the language, the language's

built-in operations are oblivious to this substru
ture, so assignment, parameter

passing and value return all operate only on the top-level value. So when the

\C" programmer wants to work with a large value (like a matrix) he or she must

expli
itly allo
ate and release storage for the value, expli
itly 
reate temporaries to

hold intermediate values, and take into a

ount when the sharing of the body of

the value will be a problem and expli
itly make 
opies.

We were able to write polymorphi
 routines that manipulated the small (in stor-

age requirements and 
omplexity) values that 
an �t within a single \C" variable.

We were also able to write routines that modi�ed the state of large polymorphi


heap-based data stru
tures (like linked lists). However, when we tried to implement

routines that operated on large heap-based values (like strings, bignums or matri-


es), we found that our routines be
ame polluted with expli
it storage-management

operations, value-
opying operations, return value 
onventions, parameter-passing


onventions, and sharing assumptions that were di�erent for ea
h abstra
tion.

The following 
ode samples show a number of di�erent ways a simple sample

fun
tion 
ould be implemented in \C". Ea
h uses slightly di�erent storage manage-

ment 
onventions.

/* If a bignum 
an fit within a single `C' variable then we 
an implement

``pythag'' as follows.

*/

bignum pythag(bignum x, bignum y)

{

bignum r;
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r=bignum_sqrt(x*x+y*y);

return r;

}

/* Conventions :

1) Return values are stored on the heap and deallo
ation is the

responsibility of the 
aller.

2) Input parameters are never modified by fun
tions (unless expli
itly

stated).

*/

bignum pythag(bignum x, bignum y)

{

bignum t1, t2, t3, t4;

t1 = bignum_mult(x, x);

t2 = bignum_mult(y, y);

t3 = bignum_add(t1, t2);

bignum_free(t1);

bignum_free(t2);

t4 = bignum_sqrt(t3);

bignum_free(t3);

return t4;

}

/* Conventions :

1) A pointer to an already 
reated bignum will be passed in for

storing a return value. We may also 
hoose to stipulate that this

output parameter not point to the same area as any of the input

parameters.

2) Input parameters are never modified by fun
tions (unless expli
itly

stated).

This version generates fewer 
alls to the storage manager (the previous

version needed at least one mallo
/free per fun
tion 
all to handle

the return value.)

Note :
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Although there has only been a minor 
hange in the 
onventions sin
e

the previous version, every line of 
ode is different.

*/

void pythag(bignum out, bignum x, bignum y)

{

bignum a, t1, t2, t3;

bignum_init(a);

bignum_init(t1);

bignum_init(t2);

bignum_init(t3);

bignum_mult(t1, x, x);

bignum_mult(t2, y, y);

bignum_add(t3, x, y);

bignum_sqrt(a, t3);

bignum_
opy(out, a);

bignum_free(t3);

bignum_free(t2);

bignum_free(t1);

bignum_free(a);

return out;

}

5.2 Constru
tors and Destru
tors

When 
onfronted with a similar problem, the designers of \C++" 
reated a system

of overloaded 
onstru
tors, overloaded destru
tors and an overloaded assignment

operator that allows the programmer to exe
ute a 
ode stub every time an obje
t|

of a spe
i�
 type|is 
reated, 
opied, or goes out of s
ope. The \C++" programmer

typi
ally uses these hooks to either 1) maintain a separate deep substru
ture for

ea
h variable or parameter, and re
over the storage o

upied by this substru
ture

when the variable or parameter goes out of s
ope, or 2) implement a referen
e


ounting system for the obje
t so multiple top-level obje
ts 
an share one substru
-
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ture, yet the storage o

upied by the substru
ture 
an be re
laimed when there are

no more referen
es to it.

`C++"s de�nition of 
onstru
tors and destru
tors is 
omplex, 
onfusing, and

full of grey areas. However, most of this 
omplexity appears to be the result of

integrating the system into an already existing language (\C"). Rather than at-

tempting to repeat their perilous (design) journey, thereby 
reating a fresh set of

subtle problems, \Sea" will use \C++"'s 
onstru
tor/destru
tor system.

If 
onstru
tors/destru
tors were applied to every obje
t in a system the result-

ing program would run very slowly, mu
h slower than if garbage 
olle
tion (a more

general, fully automati
, storage re
lamation system) had been used. The advan-

tage to 
onstru
tors/destru
tors is that there is no 
ost unless they are a
tually

used, whi
h is typi
ally for only a few types in a system. Another advantage of


onstru
tors over garbage 
olle
tion is that they allow for the re
lamation of system

resour
es like �le handles.

\C++" 
onstru
tors are de�ned as part of 
lass, whereas \Sea" 
onstru
tors

are de�ned as separate overloaded fun
tions that take a pointer to the type they

are meant to 
onstru
t.

We 
an use \Sea"s polymorphi
 overloading system to de�ne 
onstru
tors/destru
tors

that work for any type that provides the base operations required for that style of


onstru
tor/destru
tor. For example, the following library implements a referen
e-


ounting 
onstru
tor, destru
tor, and assignment operator for any type that has a

\referen
e 
ount" �eld.

forall a : void 
onstru
t(a *target,

exists void first_
onstru
t(a *), exists int *referen
e_
ount(a *))

{

*referen
e_
ount(target)++;


reate(target);

}

forall a : void init(a *target, a *sour
e,

exists int *referen
e_
ount(a *))

{

*referen
e_
ount(sour
e)++;

*target = *sour
e;

}

forall a : void op=(a *target, a sour
e,
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exists int *referen
e_
ount(a *))

{

*referen
e_
ount(&sour
e)++;

*target = sour
e;

}

forall a : void destroy(a *target,

exists void final_destroy(a *), exists int *referen
e_
ount(a *))

{

if(!--*referen
e_
ount(target))

final_destroy(target);

}

Then when we want to de�ne a referen
e-
ounted \bignum" type, we 
an provide

just the basi
 de�nitions required by the above library. In \C++" programs, the

basi
 referen
e-
ounting algorithm must be re-implemented for ea
h new type.

typedef stru
t _bignum {

int referen
e_
ount;


har *digits;

} *bignum;

void first_
onstru
t(bignum *x)

{

*x->digits = NULL;

}

void final_destroy(bignum *x)

{

if (*x->digits != NULL)

free (*x->digits);

}

int *referen
e_
ount(bignum *x)

{

return &(*x->referen
e_
ount);

}

Unfortunately, 
onstru
tors and destru
tors are in
ompatible with the preferred

implementation strategies for \Sea", as will be illustrated by the following example:
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We 
an de�ne a polymorphi
 version of the pythag fun
tion in \Sea" as follows:

forall a : a pythag(a x, a y,

exists a op*(a,a), exists a op+(a,a), exists a sqrt(a))

{

a r;

r=sqrt(x*x+y*y);

return r;

}

After the 
ompiler adds the impli
it 
onstru
tor and destru
tor operation parame-

ters pythag will read:

(We are using the same 
onstru
tor/destru
tor system as \C++", so in order

to a

urately generate the following example we de�ned a pythag fun
tion for a


lass that had a 
onstru
tor, destru
tor, and a assignment operator, and ran this

program through the \
front" (the AT&T \C++" to \C" translator.))

(Constru
tors and destru
tors are integrated into the fun
tion 
alling 
onven-

tions, so it is not possible to do a truly a

urate sour
e-level representation of a

\Sea" fun
tion with 
onstru
tors and destru
tors in pla
e. For the following ex-

ample we have repla
ed parts of the fun
tion 
alling and return 
onventions with

similar sour
e level 
onstru
ts.)

forall a : void pythag(a *result, a x, a y,

exists void mult(a *, a, a), exists void add(a *, a, a),

exists void sqrt(a *, a),

exists void 
onstru
t(a *), exists void init(a *, a),

exists void assign(a *, a), exists void destroy(a *))

{

a result;

a 1r;

a V4;

a V5;

a R6;

a V7;

a V8;

a R9;

a R10;

a R11;
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onstru
t (&1r);

mult (&R6, init (&V4, x), init (&V5, x));

mult (&R9, init (&V7, y), init (&V8, y));

plus (&R10, &R6, &R7);

sqrt (&R11, &R10);

assign (&1r, &R11);

destroy (&R11);

destroy (&R10);

destroy (&R9);

destroy (&V8);

destroy (&V7);

destroy (&R6);

destroy (&V5);

destroy (&V4);

init (result, &1r);

destroy (&1r);

return;

}

Often, when pythag is 
alled, no 
onstru
tors or destru
tors will be de�ned for the

polymorphi
 type a. (For example no 
onstru
tors or destru
tors are de�ned for

int.) In this 
ase the operation parameters 
onstru
t, init, destroy and assign

will be bound to the default no-operation 
onstru
tor.

A \Sea" 
ompiler that translated polymorphi
 \Sea" programs into equivalent

monomorphi
 programs (Implementation 3), 
ould remove all these null fun
tion


alls resulting in no performan
e degradation ex
ept when 
onstru
tors were a
tu-

ally used. (as in \C++")

Unfortunately, with any of the \Sea" implementations where operation parame-

ters are re
eived at runtime, for every variable de
laration, every parameter passed,

every return value, and every assignment operator we would have to generate a 
all

to a (possibly null) operation parameter. (Or, more eÆ
iently, evaluate a 
on-

ditional to determine if the 
all is really needed.) Thus the performan
e of all

polymorphi
 fun
tions would su�er tremendously.



CHAPTER 5. EXPERIENCE USING \SEA" 81

5.2.1 Garbage Colle
tion

A garbage 
olle
tor does automated storage re
lamation by releasing the storage

o

upied by all obje
ts that a program 
annot rea
h though any 
hain of pointer

dereferen
es. Be
ause the program had no way of a

essing this data, the fa
t that

it is not longer available 
an have no e�e
t on the program exe
ution.

Traditional garbage 
olle
tors �nd all live data by marking all the data a

es-

sible from the program's variables (the roots), then re
ursively marking all data

a

essible from 
urrently marked obje
ts. (The a
tual algorithms that are used are

mu
h more 
omplex, but they are all based on this shell.)

In order for this type of garbage 
olle
tor to operate it must be able to: 1)

identify all the \root" pointers in program variables 2) identify all the pointers in

ea
h heap obje
t.

In many languages pointers are lo
ated either by storing pointers in a spe
ial

format that no other data obje
t 
an have (tagged pointers) or by tagging every

data obje
t (in
luding sta
k frames) with enough type information to lo
ate all

pointers within that obje
t.

Tagging Data Obje
ts

A te
hnique des
ribed by [DMH92℄ for tagging the runtime sta
k in a GCC-based

Modula-3 
ompiler 
an also be used for \C". As fun
tions are 
ompiled we generate

a data stru
ture that des
ribes, for ea
h point in a fun
tion's exe
ution, the lo
ation

of all pointers or derived pointers. When a garbage 
olle
tion is then done, pointers


an be lo
ated by walking up the 
all 
hain, and for ea
h fun
tion, looking in the

table asso
iated with its 
urrent state of exe
ution (as identi�ed by the 
urrent

value of the program 
ounter within that fun
tion.) (There are limitations and


ompli
ations asso
iated with this te
hnique; see [DMH92℄ for details.)

To lo
ate pointers in the heap, the 
ompiler 
an be modi�ed to generate tables

des
ribing the lo
ation of pointers in every type. These tables 
an be asso
iated

with ea
h type through our overloading system. We 
an then write a polymorphi


allo
 fun
tion that will tag ea
h allo
ated blo
k with a referen
e to the appropriate

pointer layout table.

Stati
 data 
an be tagged using a method similar to that we propose for the

heap, ex
ept that the tagging will be done at 
ompile time.

There is no way for the garbage 
olle
tor to determine whi
h a

ess path into

a union was last used. Thus we must either add a tag bit to unions or we 
annot
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allow unions that have pointers in di�erent lo
ations in di�erent arms.

If the garbage 
olle
tion algorithm is designed su
h that pointers that do not

point into a heap obje
t are left alone, then the garbage-
olle
ted heap 
an 
o-exist

with a 
onventional \C" heap. Members of the \C" heap would not be allowed

to point into the garbage 
olle
ted heap. Allowing the two heaps to 
o-exist is

important if we want to have a

ess to the large library of \C" 
ode available,

mu
h of whi
h will not play by our new rules.

\C" pointers regularly point into the middle of obje
ts, and therefore, our

garbage 
olle
tor must be 
apable of re
ognising su
h referen
es.

Using the above tagging information it would be possible to use most of the

high-performan
e garbage 
olle
tors des
ribed in the literature.

Unfortunately, this te
hnique requires substantial 
ompiler support, so it is not

appropriate if we want to use \C" as an intermediate language.

Tagged Pointers

Tagging \C" pointers is not pra
ti
al be
ause there is no way we 
ould reserve spe-


i�
 bit patterns for pointers only, without severe (and in
ompatible) modi�
ations

to how aggregate data stru
tures are 
onstru
ted and manipulated.

In response to these problems Hans Boehm invented 
onservative pointer-�nding

garbage 
olle
tors. The observation he made was that a garbage 
olle
tor 
an

be written even with a pointer-identi�er that o

asionally mistakes non-pointers

for pointers, and that su
h a pointer-identi�er 
an be implemented simply and

eÆ
iently by 
he
king if the prospe
tive word points to the beginning of a heap

obje
t.

The runtime heap has to be spe
ially 
onstru
ted so that we 
an rapidly identify

words pointing to the beginning of an allo
ated heap obje
t. The way we do this

is by de�ning a table that has an entry pointing to the beginning of every heap

obje
t. Sear
hing this table as we are trying to identify pointers would be too time


onsuming, so we pla
e a pointer in the header of ea
h allo
ated obje
t that points

to its entry in the table. To 
he
k if a word points to the beginning of a heap

obje
t, we 
he
k if the pointer in the header of the obje
t points into the table,

and if it does, we 
he
k if the pointer in the table refers ba
k into the heap obje
t.

(This is a simpli�
ation of the algorithm presented in [Boehm℄ that uses slightly

more memory, but runs faster and does not require a 
ustom storage allo
ator.)
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Now that we have a way of identifying pointers we 
an implement a 
onventional

mark-sweep garbage 
olle
tor with every word in the sta
k and external variable

area as the set of roots.

Be
ause we will identify some non-pointers as pointers, we 
annot use any of the

garbage 
olle
tion te
hniques that move data. (Without elaborate virtual memory

tri
ks.) This is parti
ularly disappointing be
ause we would like to use our garbage


olle
tor data stru
tures to store and retrieve data stru
tures from se
ondary stor-

age.

The addition of garbage 
olle
tion makes \C" a mu
h more powerful and pleas-

ant language to program in. For example we 
an provide a mu
h better string

abstra
tion if we don't have to worry about storage re
lamation:


har *
on
at(
har *a, 
har *b)

{


har *
 = mallo
(strlen(a)+strlen(b)+1);

str
py(
, a);

str
at(
, b);

return 
;

}

We 
an then evaluate expressions like \a = 
on
at(
on
at("a", "b"))" with no

storage management 
onsiderations.

Su
h strings 
an be passed as parameters, returned from fun
tions, and stored

in variables, all without expli
it storage allo
ation grief. See above for a dis
ussion

of why this is parti
ularly important when we are de�ning polymorphi
 fun
tions.

There are several problems with adding garbage 
olle
tion to \Sea" :

1. Pauses in exe
ution: There is a signi�
ant pause in exe
ution while the

garbage 
olle
tor sear
hes the heap to �nd and mark live data. The du-

ration and frequen
y of these pauses depends on the appli
ation, 
omputer,

and amount of memory. Many \C" appli
ations are intera
tive or real-time

in nature and any pauses are una

eptable.

2. Signi�
ant time overhead: The exa
t overhead depends on the program and

the amount of memory available.

3. Large memory requirements: Garbage-
olle
ted programs that do a lot of

storage allo
ation (as is the preferred style with garbage 
olle
tion) should

expe
t to use several times more storage than they have live data.
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4. Portability: The 
urrent versions of Boehm's 
onservative garbage 
olle
tor

are not 
ompatible with the optimizations done by most modern 
ompilers

when they are told to generate \optimized 
ode". Not using 
ompiler opti-

mizations on modern RISC ma
hines leads to signi�
ant performan
e degra-

dation. This is only an issue if our 
ompiler generates \C" 
ode (Eventually

someone will add a GC-friendly swit
h to GCC).

For the above reasons, rather than making garbage 
olle
tion a standard part

of the \Sea" language de�nition, we propose two variants of \Sea": \Sea level 1"

would not have garbage 
olle
tion and would be suitable for appli
ations where

performan
e or real-time 
onsiderations were an issue, and \Sea" level 2 would

have garbage 
olle
tion, and would feature mu
h more powerful polymorphi
 (and

non-polymorphi
) libraries.

5.2.2 Expli
it Storage Management

It should be noted that even in the absen
e of some form of storage re
lamation,

many interesting polymorphi
 routines 
an still be written. For example most

data-stru
ture libraries (like lists or di
tionaries) and data-stru
ture manipulation

routines (like sort) operate on a large, already existing stru
ture, and thus 
an

usually be implemented without mu
h storage management.

It is also possible to write routines that work for any type that use one spe
i�


style of storage allo
ation, and then standardize on this style for most types. For

example, we 
an de�ne \pythag" for any type that has a storage \release" routine:

forall a : a pythag(a x, a y,

exists a mult(a,a), exists a add(a,a),

exists a sqrt(a), exists void release(a))

{

a t1, t2, t3, t4;

t1 = mult(x, x);

t2 = mult(y, y);

t3 = add(t1, t2);

release(t1);

release(t2);

t4 = sqrt(t3);

release(t3);
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return t4;

}

This is mu
h less elaborate (and limited) than the full 
onstru
tor/destru
tor

s
heme, but it does not 
reate the same implementation problems.

5.2.3 Implementation Sele
tion

As has already been dis
ussed, we propose 2 levels of the \Sea" language 1) without

garbage 
olle
tion, suitable for limited memory environments or appli
ations with

real-time 
onstraints and 2) with garbage 
olle
tion, a mu
hmore powerful language

with mu
h more powerful libraries. We de�ne these as two di�erent variants of the

language so that the real-time programmer 
an know whi
h libraries are safe for

his or her appli
ations.

Earlier, we introdu
ed a variant of \Sea" in whi
h only pointer types 
an be

bound to type variables. A 
ompiler for this variant 
an be implemented as a

translator to \C", and su
h a 
ompiler 
ould probably be written in 15000-20000

lines of portable \C" 
ode.

Be
ause of the elaborate 
alling 
onventions and data-stru
ture layout rules

required for an eÆ
ient, unrestri
ted implementation of \Sea", a 
ompiler for su
h

a language has to 
ompile dire
tly to the target assembly language. To make su
h

a 
ompiler portable to a wide range of ma
hines requires 
onsiderable additional

work. Our 
urrent \Sea" 
ompiler is portable and, with some tuning, 
an generate

high-performan
e 
ode. It is implemented as 175000 lines of \C" 
ode. (almost all

of this is sto
k GCC).

Whi
h implementation is preferred depends on the appli
ation. The appli
ations

of early, experimental versions of \Sea" are as follows:

1. Developmental : Experiment with and re�ne language features.

\Sea" is one of the �rst languages to use \overloading polymorphism", so

as the language is used it is expe
ted that the language design will evolve

rapidly. This rapid evolution makes now a bad time to invest too heavily in

implementation te
hnology.

2. Evangeli
al : Allow other programmers/resear
hers to experiment with this

style of programming.
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It is mu
h easier to get other people to experiment with a small, reliable,

totally portable pre-pro
essor than it is to get them to install and experiment

with a 175000 line 
ompiler.

3. Software Development : Use to 
onstru
t a
tual programs that are meant to

be useful in their own right.

If someone writes a program in \pointers-only" \Sea" their program will be

easy to port to any environment that has a \C"-
ompiler. All that is required

is that the user �rst 
ompile a small, totally portable pre-pro
essor.

A program written in full \Sea" will be dependent on a 175000 line 
ompiler

that takes 
onsiderable time and spa
e (20Mb) to bring up on one of the

supported ar
hite
tures.

So for early, experimental versions of \Sea"-like languages we would argue that

the pointers-only implementation is more appropriate. We make this argument be-


ause the implementors of this proje
t feel that it would have been a more useful

experiment to have written a small portable 
ompiler, and experimented with lan-

guage features, than to have devoted so mu
h e�ort to making the 
ompiler fully

polymorphi
.

5.3 Language Usage

5.3.1 Polymorphi
 Data Stru
tures

The following is a sample polymorphi
 data-stru
ture implementation:

type list(type elem)

{

return stru
t {

list(elem) *next;

elem data; } *;

}

type hashnode(type key, type 
ontents)

{

return stru
t {

key k;
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ontents 
; } *;

}

type hashtable(type key, type 
ontents)

{

return stru
t {

list(hashnode(key,
ontents)) *table;

int size;

int (*hash)(key); } *;

}

forall key,
ontents:

hashtable(key, 
ontents) 
reate(int hashsize, int (*hash)(key))

{

hashtable(key,elem) h;

h = allo
(1);

h->table = allo
(hashsize);

h->size = hashsize;

h->hash = hash;

return h;

}

forall key,
ontents:

int lookup(hashtable(key,
ontents) d, key k, 
ontents *ep,

exists int 
ompare(key, key))

{

int hash;

list(hashnode(key,
ontents) l;

hash = d->hash(k) % d->hashsize;

for (l = h->table[hash℄; l != NULL; l = l->next)

{

if (
ompare(l->data->k, k) == 0)

*ep = l->data->
;

return 1;

}

return 0;
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}

forall key,
ontents:

void insert(hashtable(key,
ontents) d, key k, elem e)

{

...

}

forall key,
ontents:

void print(hashtable(key,elem) d,

exists void print(key), exists void print(elem))

{

...

}

forall key,
ontents:

void destroy(hashtable(key,
ontents) d,

void (*free_key)(key *), void (*free_
ontents)(
ontents *))

{

int i;

list(hashnode(key,
ontents) l,t;

// Free storage o

upied table, hashlists, hashnodes and hashtable

for (i=0; i<h->size; i++)

{

for (l = h->table[i℄; l != NULL; l = t)

{

t = l->next;

free_key (&l->k);

free_
ontents (&l->
);

free(l->data);

free(l);

}

}

free(h->table);

free(h);

}

Notes:
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1. This data stru
ture will work with \pointers-only" \Sea". In order to a

om-

modate the \only pointers" restri
tion, we 
ouldn't store the key and 
ontents

dire
tly in the list node. This for
ed us to add an extra level of indire
tion,

with the asso
iated extra overhead and extra storage management a
tivity.

2. The garbage-
olle
ted version of \Sea" is not required in order to use this

abstra
tion. We have had to parameterize the hashtable destroy fun
tion

with storage release fun
tions for the types stored in the table.

3. We 
ould have made the \hash" fun
tion an \exist" parameter. But in that


ase it would be more diÆ
ult if we wanted to use a di�erent hash fun
tion,

for the same type, in a di�erent 
ontext (perhaps we want a di�erent hash

fun
tion for a keyword symbol table that we do for an identi�er symbol table).

Be
ause \Sea" 
urrently la
ks nested fun
tions the only way we 
ould de�ne

two di�erent overloaded hash fun
tions for the same type would be to 
ompile

them in separate \.
" �les, ea
h with stati
 visibility. (This is also why the

free fun
tion parameters to destroy were not made into exist parameters.)

4. The print fun
tion above is an example of a type of overloaded utility fun
-

tion we propose providing for all built-in types and library data stru
tures. It

is expe
ted that many data stru
tures in \Sea" programs will be stored using

the polymorphi
 data-stru
ture libraries. If su
h data stru
tures 
ould be

read and written in text and binary this would be a substantial 
onvenien
e

for the programmer. (Note how easily fun
tions like print 
an be de�ned

for 
omplex data stru
tures in terms of the print fun
tions for their mem-

ber types. For example to print a hashtable where ea
h element was also a

hashtable would require no additional 
ode.)

5. All the basi
 operations required for the \hashtable" fun
tions are provided by

the \hashtable" type generator. This makes it very 
onvenient to pass a poly-

morphi
 hashtable as a fun
tion parameter. (Compare this with \Abstra
t

Polymorphi
 Data Stru
tures" des
ribed below.)

Polymorphi
 versions of all the basi
 data stru
tures 
an be similarly de�ned.

This single addition makes \C" a mu
h more powerful language.

5.3.2 Abstra
t Polymorphi
 Data Stru
tures

Abstra
t polymorphi
 data-stru
ture parameters are de�ned entirely in terms of

their operations. Using this te
hnique we 
an write polymorphi
 routines in terms
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of the 
hara
teristi
s they require from their data-stru
ture parameters, rather than

in terms of a spe
i�
 data stru
ture.

For example, the following browse routine will operate on any \sequen
e" that


an be stepped through in both dire
tions:

forall seq,pos,elem: void browse(seq s, pos p,

exists pos next(seq, pos, elem *),

exists pos prev(seq, pos, elem *),

exists void format(
har *, elem),

exists int browse_view(elem))

{

...

}

Using this browser we 
an browse:

Array of menu options

Doubly linked list of field definitions in a database stru
ture editor.

B-tree of filenames mat
hing sear
h 
riterion

Lines in the password file

Student re
ords from a database server

Fun
tions in a `C' file

Chunks of ``help'' text from a ``help'' file

Filenames in 
urrent dire
tory

A 
opy of the operating systems run-able pro
ess queue

Abstra
t input/output devi
es have similar broad appli
ation.

5.3.3 Polymorphi
 \printf"

In [OCD 92℄ a polymorphi
 variable-argument-length print fun
tion is des
ribed.

The following is a translation of this fun
tion into \Sea":

void print()

{

return;

}
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forall a,b: a print(b x, exists void put(b), exists a print)

{

put(x);

return print;

}

int main()

{

put(4)(5.0)("red");

return 0;

}

Unfortunately, be
ause our overload resolution algorithm is restri
ted so that it will

only 
onsider external fun
tion de�nitions or exist parameters (in order to allow

for programs to be transformed so that all 
losures are 
onstant), this program will

not 
ompile under \Sea".

For \Sea" we will borrow the \streams" pa
kage from \C++".
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Con
lusions

We have integrated \overloading polymorphism" with \C"; no fundamental in
om-

patibilities were en
ountered.

In most polymorphi
 programming languages, all values are 
onstants on a

garbage-
olle
ted heap, and fun
tion parameters and return values are pointers to

these 
onstants. Be
ause all fun
tion parameters and return values have the same

representation (a pointer) regardless of type, polymorphi
 
alling 
onventions for

these languages are not 
omplex.

\C"/\Sea" is de�ned in su
h a way that passing a parameter to a fun
tion or

returning a value from a fun
tion involve passing the value dire
tly (usually by


opying it). This is a substantial 
ontributor to the high performan
e of \C", be-


ause we don't need an additional level of indire
tion to a

ess every value. De�ning

an eÆ
ient polymorphi
 
alling 
onvention that 
an work within the 
onstraints of

\C" was a major 
hallenge.

Our new 
alling 
onvention results in 1) slightly worse performan
e for monomor-

phi
 fun
tions, and 2) polymorphi
 fun
tions that, apart from the e�e
ts of no in-

lined arithmeti
 fun
tions, perform not mu
h worse than equivalent monomorphi


fun
tions.

We had expe
ted to use \C++"-style 
onstru
tors/destru
tors for storage man-

agement. However, it was dis
overed that if we were generating polymorphi
 ob-

je
t 
ode, we would not know until runtime whi
h type parameters had 
onstru
-

tors/destru
tors de�ned for them. Allowing for this 
exibility at runtime would

have had a large negative impa
t on the performan
e of polymorphi
 \Sea" fun
-

tions. So the only storage management alternatives available for \Sea" are expli
it

storage management or garbage 
olle
tion.

92
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In early experimentation with the \Sea" language we found we were able to

write de�ne a large 
lass of useful fun
tions without having to spe
ify them in

terms of a spe
i�
 type. The prin
ipal problem that arose was that the list of

operation parameters was 
umbersome to 
onstru
t, easy to get slightly wrong

(thereby limiting the domain of the fun
tion), and not very useful to a human

reader attempting to determine whether a spe
i�
 type has the required operations.
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