
Adding \Overloading Polymorphism" to \C"

by

David Ziegler

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Ba
helor of Independent Studies

in

Independent Studies

Waterloo, Ontario, Canada, 1992

David Ziegler 1992

Contents

1 Introdu
tion 1

2 Language De�nition 3

2.1 Overloading : 3

2.2 Overloaded Polymorphi
 Fun
tions : : : : : : : : : : : : : : : : : : 4

2.2.1 Syntax : 5

2.3 Type Generators : 6

2.4 Overloaded Operators : 7

2.5 Type Inferen
e/Overload Resolution Algorithm : : : : : : : : : : : 10

3 The \Lake" Intermediate Language 14

3.1 Non-
onstant Closures : 16

3.1.1 Creating Closures at Runtime : : : : : : : : : : : : : : : : : 19

3.1.2 Non-Constant Operation Parameters : : : : : : : : : : : : : 19

3.1.3 Non-Constant Type Parameters : : : : : : : : : : : : : : : : 20

3.1.4 Other Appli
ations : 20

3.1.5 Eliminating non-
onstant
losures : : : : : : : : : : : : : : : 21

3.1.6 Separate Compilation Issues : : : : : : : : : : : : : : : : : : 26

4 Implementation of \Lake" 28

4.1 Implementation 1 : Polymorphi
 obje
t
ode, runtime variable
losures 28

4.1.1 Overloading : 28

ii

4.1.2 Closures : 31

4.1.3 Operation Parameters : 32

4.1.4 Type Parameters : 32

4.1.5 Polymorphi
 Data Stru
tures : : : : : : : : : : : : : : : : : 32

4.1.6 Calling Conventions : 34

4.1.7 A
tual Code Samples : 57

4.2 Implementation 2 : Polymorphi
 obje
t
ode, all
losures
onstant : 63

4.3 Implementation 3 : Translation to monomorphi
 obje
t
ode : : : : 65

4.4 Implementation 4 : Only pointer types
an be bound to type param-

eters : 68

4.4.1 Why not allow integers as well as pointers ? : : : : : : : : : 72

5 Experien
e Using \Sea" 73

5.1 Values : 73

5.2 Constru
tors and Destru
tors : 76

5.2.1 Garbage Colle
tion : 81

5.2.2 Expli
it Storage Management : : : : : : : : : : : : : : : : : 84

5.2.3 Implementation Sele
tion : 85

5.3 Language Usage : 86

5.3.1 Polymorphi
 Data Stru
tures : : : : : : : : : : : : : : : : : 86

5.3.2 Abstra
t Polymorphi
 Data Stru
tures : : : : : : : : : : : : 89

5.3.3 Polymorphi
 \printf" : 90

6 Con
lusions 92

Bibliography 94

iii

Chapter 1

Introdu
tion

In \C" programs, new fun
tions are de�ned in terms of spe
i�
 types and the

fun
tions that are already de�ned for those types. Often programmers want to

provide the same fun
tion for several di�erent types (e.g, fun
tions to manipulate

matri
es of int and fun
tions to manipulate matri
es of double). \C" programmers

have no
hoi
e but to write separate
opies of ea
h fun
tion for ea
h type.

\C" fun
tions
an be made more general by parameterizing them by type and by

operation. Unfortunately, in systems where these fun
tions are used extensively|

parti
ularly as operation parameters to other su
h fun
tions|it be
omes
ompli-

ated and tedious to supply the type and operation parameters expli
itly. In this pa-

per we propose a variant of \C"|
alled \Sea"|that has fun
tions that are expli
-

itly parameterized by type and operation. It then uses the type-inferen
e/overload-

resolution algorithm des
ribed in [Corma
k 90℄ to automati
ally infer bindings for

these type and operation parameters at the appli
ation site.

For example in \C" we
an de�ne a square fun
tion that takes a double ar-

gument, uses the double multiply operator and returns a double result. Using

\Overloading Polymorphism" we
an de�ne a square fun
tion that operates on

any type that has a multiply operator:

forall a : a square(a x, exists a op*(a,a))

{

return x*x;

}

square(5) -> 5.0

square(5.0) -> 25.0

1

CHAPTER 1. INTRODUCTION 2

The goals of this proje
t are to integrate the \overloading polymorphism" type

system with \C", explore implementation issues by building a
ompiler, and then

to experiment with the resulting language.

Chapter 2

Language De�nition

As the integration of the type system with \C" progressed, it be
ame apparent that,

while it would be easy to design a new language that was mostly
ompatible with

\C", it would take a major design e�ort to get every feature of the new language

exa
tly
ompatible with \C"'s already
omplex language de�nition. Be
ause we

wanted to explore implementation issues, and be
ause there is a separate, parallel

proje
t where the integration of a similar type system with \C" is a major fo
us

[Dit
h�eld 92℄, we have ele
ted to use a mostly
ompatible language de�nition. The

stru
ture of this do
ument re
e
ts this
hoi
e, with little attention paid to designing

an exa
tly
ompatible language de�nition and
onsiderable spa
e devoted to the

implementation and use of this style of language.

2.1 Overloading

All de
larations of obje
ts with \Sea" fun
tion type are overloaded. De
larations of

any other type of obje
t (in
luding pointers to \Sea" fun
tions) use \C"'s normal

de
laration system. There are only two
ontexts in whi
h the \Sea" fun
tion type

o

urs 1) external \Sea" fun
tion de
larations and 2) operation parameters. By

restri
ting the language so that only \Sea" fun
tions
an be overloaded, we make

it possible to transform \Sea" programs so that no run-time
losures are required.

(see
hapter 3)

Two overloaded de
larations with the exa
t same name and type intera
t in the

same way as normal \C" de
larations with the same name. Thus overloaded de
-

larations
an be supplied with prototypes, and
an be re-de
lared at inner s
opes.

3

CHAPTER 2. LANGUAGE DEFINITION 4

Note that in \Sea", unlike in \C++", we
an de
lare overloaded fun
tions that

di�er only in their return type.

The de
laration of a normal (non-overloaded) name at an inner s
ope hides all

overloaded de�nitions for that name. This is ne
essary to prevent the addition of a

new external overloaded name from breaking the internal operation of an already

de�ned fun
tion. An overloaded de
laration for a name that already has a normal

de
laration (either at the
urrent or an outer s
ope) is an error.

Overload resolution is done by the type inferen
er; the algorithm used will be

dis
ussed in another se
tion of this paper.

2.2 Overloaded Polymorphi
 Fun
tions

We
all the set of operations de�ned for a type its \algebra" (from the language

Russell [DD 85℄).

Using overloaded fun
tion de�nitions we
an build algebras for di�erent types

that have a
ommon set of operations in a
ommon form.

The algebra for int is:

[int op*(int,int), int op+(int,int) ...℄

The algebra for double is:

[double op*(double, double), double op+(double,double)...℄

Both int and double have a multipli
ation operator of the form \t op*(t,t)"

where t is either int or double.

\Sea" polymorphi
 fun
tions are parameterized by a set of type variables and

a list of operation parameters. The type variables
an be bound to any type as

long as the algebras for these types
ontain the operations required to satisfy the

operation parameters. Thus the algebra des
ribed by the operation parameters for

ea
h type variable must be a subset of the algebra for the type we are binding to the

type variable. (We
onsider operation parameters involving multiple type variables

as des
ribing an operation that is required for ea
h of the type variables.)

The following square fun
tion
an be applied to a parameter of any type a,

provided that a's algebra
ontains \[a op*(a,a)℄".

forall a : a square(a x, exists a op*(a,a))

CHAPTER 2. LANGUAGE DEFINITION 5

{

return x*x;

}

The square fun
tion
an be applied to both ints and doubles, so the square fun
tion

extends the algebras for both ints and doubles.

The algebra for int is now:

[int op*(int,int), int op+(int,int), int square(int) ...℄

The algebra for double is now:

[double op*(double, double), double op+(double,double),

double square(double)...℄

The spe
ialized square fun
tion is now available to satisfy the requirements of

another polymorphi
 fun
tion. Note that we stored a spe
ialized version of square

in the int and double algebras; in order to generate this spe
ialized square we need

some sort of
losure me
hanism (see
hapter 3.)

The
ompiler never a
tually has a list of all the operations in an algebra. Su
h

a list would often not be �nite in length. Instead, the type inferen
er re
ursively

onstru
ts algebras on demand in order to satisfy the requirements of polymorphi

fun
tion spe
ializations. (Either due to an appli
ation to a
tual arguments, or in

an attempt to
reate an algebra to satisfy a spe
ialization already under way.)

2.2.1 Syntax

The syntax for a polymorphi
 fun
tion de
laration is as follows: (Simpli�ed version-

the syntax be
omes
onsiderably more
omplex after integration with all of \C"'s

artifa
ts.)

"forall" typevarlist : return_type fun
tion_name(parm_or_exist_de
l, ...)

parm or exist de
l is either a normal parameter de
laration or:

"exists" fun
tion_de
laration

The type parameter de
laration list was put at the beginning of the fun
tion de
-

laration so that the type parameters will be available for de
laring the fun
tion

return value.

CHAPTER 2. LANGUAGE DEFINITION 6

2.3 Type Generators

Every type other than void has a base set of operations. (If a type has no operations

then it is equivalent to void.) The built-in types are de�ned with arithmeti
 and

logi
al operations. For user-de�ned types, ea
h type
onstru
tor has an asso
iated

set of \a

ess" operations. In \C" these a

ess operations are not normal fun
tions,

and as su
h are not part of the algebra of a type.

We would like to be able to write polymorphi
 fun
tions that
ould operate over

all
onstru
ted types with a similar stru
ture (i.e. all ve
tors). One way to do this

would be to make these a

ess fun
tions available as normal fun
tions.

Using this te
hnique we
ould write a binary sear
h routine that would operate

on any type of ve
tor:

forall elem,elem_ptr : int binary_sear
h(elem_ptr x, int len,

exists elem op*(elem_ptr),

exists int
ompare(elem,elem));

Or a print list routine that operated on any type that had a next and a data �eld:

forall list_ptr, elem : print(list_ptr list_head,

exists list_ptr get_next(list_ptr),

exists elem get_data(list_ptr),

exists void print(elem));

This is not a very
onvenient way to write polymorphi
 data stru
ture manipulation

routines.

Instead, in \Sea", parameter types
an be de
lared in terms of type
onstru
tors

applied to type parameters. The type inferen
er will make sure the stru
ture of

the argument type mat
hes the stru
ture of the parameter type. Be
ause type

onstru
tors are used to build the parameter type, appropriate polymorphi
 a

ess

fun
tions are automati
ally available. The above fun
tions
an now be rewritten

as follows:

forall elem: int binary_sear
h(elem *x, int len,

exists int
ompare(elem,elem));

forall elem : print(stru
t l { l *next; elem data; } *list_head,

exists void print(elem));

CHAPTER 2. LANGUAGE DEFINITION 7

Print is not a valid \Sea" fun
tion be
ause \C"/\Sea" do not re
ognise stru
turally

equivalent re
ords as being the same type. We
ould alter \Sea" to re
ognise

stru
tural equivalen
e. A better solution, whi
h also saves us from having to repeat

the entire type de
laration whenever it is used, is parameterized types. We
all these

\type generators"; two generated types are equivalent if the parameters to the type

generator are equivalent.

type list(type elem)

{

return stru
t {

list(elem) next;

elem data; } *;

}

forall elem : print(list(elem) list_head, exists void print(elem));

Type generators use �eld layout
onventions that are optimized for a

ess by poly-

morphi
 fun
tions. (See
hapter 3.)

Extensible typegens, allowing for single inheritan
e, would be a useful addition.

2.4 Overloaded Operators

\C" has a large number of heavily overloaded built-in operators. It is desirable to

treat these operators as if they were fun
tions so that 1) overloaded polymorphi

fun
tions
an be de�ned in terms of these operations, 2) the fun
tionality repre-

sented by the operator symbols
an be applied to new types and 3) the inferen
er

an be simpli�ed by not having to in
orporate spe
ial rules for ea
h of the built-in

operators.

It is not possible to dire
tly translate all \C" in�x operators into a fun
tion
all

form be
ause many operators have de�nitions that
annot be a

ommodated using

normal fun
tion
all semanti
s.

The following operators
an be translated dire
tly:

a+b -> op+(a,b)

a-b -> op-(a,b)

a*b -> op*(a,b)

CHAPTER 2. LANGUAGE DEFINITION 8

a/b -> op/(a,b)

a%b -> op%(a,b)

a>>b -> op>>(a,b)

a<<b -> op<<(a,b)

a>b -> op>(a,b)

a<b -> op<(a,b)

a>=b -> op>=(a,b)

a<=b -> op<=(a,b)

a==b -> op==(a,b)

a!=b -> op!=(a,b)

a&b -> op&(a,b)

a|b -> op|(a,b)

a^b -> op^(a,b)

-a -> op-(a)

+a -> op+(a)

~a -> op~(a)

!a -> op!(a)

The logi
al && and || operators
an be translated dire
tly, but user versions will

not provide short-
ir
uit evaluation.

&& -> op&&(a,b)

|| -> op||(a,b)

The array indexing operator returns an lvalue whi
h is not possible for a normal

\C" fun
tion. We translate op[℄ so that the de�ner is expe
ted to return a pointer

to the assignable value, and then we add a dereferen
e operator to translate this

into an lvalue.

a[b℄ -> *op[℄(a,b)

Two transformations are done to the assignment operators 1) They are given the

address of the parameter that they are expe
ted to modify and 2) Rather than

having the assignment fun
tion return the assigned value (as de�ned in \C") we

have the
ompiler arrange for a

ess to this value. This is an optimization to avoid

the
ost of returning a value that is usually ignored.

CHAPTER 2. LANGUAGE DEFINITION 9

x=y -> (op=(&x,y),val(x))

x*=y -> (op*=(&x,y),val(x))

x/=y -> (op/=(&x,y),val(x))

x%=y -> (op%=(&x,y),val(x))

x+=y -> (op+=(&x,y),val(x))

x-=y -> (op-=(&x,y),val(x))

x<<=y -> (op<<=(&x,y),val(x))

x>>=y -> (op>>=(&x,y),val(x))

x&=y -> (op&=(&x,y),val(x))

x^=y -> (op^=(&x,y),val(x))

x|=y -> (op|=(&x,y),val(x))

It should be noted that the system header �les
ontain a fully polymorphi
 version

of the op= operator, and that unless the user expli
itly makes op= an operation

parameter to a polymorphi
 fun
tion, the default fully polymorphi
 assignment

operator will be used.

In
rement and de
rement operators require treatment similar to that given to

assignment operators:

++x -> (op++(&x),val(x))

x++ -> (oldx=x,op++(&val(x)),oldx)

--x -> (op++(&x),val(x))

x-- -> (oldx=x,op++(&val(x)),oldx)

There is no fun
tional form for the following operators:

&a -> spe
ial

*a -> spe
ial

sizeof(a) -> spe
ial

sizeof(typename) -> spe
ial

(typename)a -> spe
ial

a.fieldname -> spe
ial

a->fieldname -> spe
ial

a?b:
 -> spe
ial

a,b -> spe
ial

\C" built-in operators are heavily overloaded. All the possible versions of all the

overloadable built-in operators are des
ribed in a header �le/library
ontaining 1584

CHAPTER 2. LANGUAGE DEFINITION 10

fun
tion de�nitions. Thus any variant of any of the built-in operators is available

for binding to an operation parameter.

The following ex
erpt from the \sea.h" header �le des
ribes part of the be-

haviour of the \C" binary + operator.

extern int op+ (int, int) __builtin("op+");

extern double op+ (int, double) __builtin("op+");

extern double op+ (double, int) __builtin("op+");

extern double op+ (double, double) __builtin("op+");

forall a : extern a *op+ (short, a *) __builtin("op+");

forall a : extern a *op+ (a *, short) __builtin("op+");

forall a : extern a *op+ (int, a *) __builtin("op+");

forall a : extern a *op+ (a *, int) __builtin("op+");

The __builtin attribute tells the
ompiler that this fun
tion is equivalent to one

of \C"'s standard operators, and that it should use its inline version if possible.

2.5 Type Inferen
e/OverloadResolution Algorithm

The following algorithm has been adapted from the \For
eTwo" inferen
e algorithm

presented in [Corma
k 90℄.

As input the inferen
er takes a \Sea" expression tree in whi
h leaf nodes are

overloaded identi�ers and interior nodes are fun
tion appli
ations. Ea
h step in

the inferen
e pro
ess involves the appli
ation of one parameter, so we represent the

expression tree in
urried form.

Ea
h leaf node is translated into a set of possible types for that identi�er. We

then �nd the set of possible types for ea
h appli
ation by unifying the set of pos-

sible types for the fun
tion parameter with the set of possible types for the a
tual

parameter. During this pass exist parameters are not resolved, but instead they

are promoted to the result type.

Ea
h potential solution now has a list of the exist parameters that it requires.

To resolve ea
h exist parameter we 1)
onvert it into a normal parameter, 2) apply

the variable that has the same name as the exist parameter to this parameter and

then 3) re
ursively use the type-inferen
e/overload-resolution algorithm to �nd a

solution. Note that new exist parameters
an be introdu
ed by this pro
ess.

It is possible to
onstru
t expressions where we
an never resolve all the exist

parameters. For example:

CHAPTER 2. LANGUAGE DEFINITION 11

forall a: void f(exists f(a*));

To prevent the inferen
er from not terminating, the language has a built-in limit

on the maximum size of an expression it will generate. While this is a major philo-

sophi
al bla
k mark on the inferen
er algorithm, it is not expe
ted to be signi�
ant

limitation when
ompiling real programs.

For many expressions the inferen
er will �nd several sets of bindings for type

variables and overloaded identi�ers that ea
h result in a valid expression. In some

ir
umstan
es it is possible to
hoose a best expression in a way that is both use-

ful and predi
table. If no su
h \best" solution
an be found, the expression is

onsidered ambiguous and the inferen
er will fail.

Currently we only have one disambiguating rule: If both a monomorphi
 and a

polymorphi
 fun
tion are appli
able, then the monomorphi
 fun
tion will always be

hosen. If an expression has multiple su
h appli
ations, but no solution
an be found

that in
orporates all of them, then the expression will be
onsidered ambiguous.

If there are multiple polymorphi
 fun
tions that
an supply the same fun
tion-

ality then the algorithm will fail. This situation o

urs often when we are designing

\abstra
t" polymorphi
 data stru
tures. (Polymorphi
 data stru
tures for whi
h

all operations are provided through overloaded fun
tions.) Often a single
on
rete

data stru
ture will have the basi
 operations ne
essary to be manipulated as one of

several \abstra
t" data stru
tures. If two of these abstra
t data stru
tures have the

same operation de�ned then ambiguity will result. For example a sorted ve
tor

has a find operation that does a binary sear
h. Sorted ve
tor also has interfa
e

routines de�ned so that it
an be used wherever a sorted sequen
e is required.

If we subsequently de�ne a find operation for sorted sequen
e, in terms of the

basi
 sorted sequen
e operations, then we will have two polymorphi
 find oper-

ations that
an be applied to sorted ve
tors. Situations like these
an usually

be avoided by
areful design of sub-algebra relationships.

Size of Inferen
e Tree

At ea
h step in the inferen
e pro
ess, ea
h of the (partial) possible solutions for

the expression is represented as a separate node. For some expressions the number

of possible solutions
an be very large. For example, given the following fun
tion

de�nitions:

har * f();

CHAPTER 2. LANGUAGE DEFINITION 12

har ** f();

har *** f();

har **** f();

har ***** f();

har ****** f();

har ******* f();

har ******** f();

har ********* f();

har ********** f();

void q(
har *,
har *,
har *,
har *,
har *,

har *,
har *,
har *,
har *,
har *);

forall t1,t2,t3,t4,t5,t6,t7,t8,t9,t10 :

void g(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

exists void q(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10));

The expression:

g(f(), f(), f(), f(), f(), f(), f(), f(), f(), f());

has 10^10 possible solutions before we apply the exist parameter q.

This is
learly a manufa
tured example. In real programs large numbers of

intermediate solutions are generated when we use fun
tions that have many poly-

morphi
 de�nitions ea
h of whi
h is
onstrained only by its operation parameters.

The inferen
er does not bind operation parameters until after it is �nished with

the basi
 expression; up until this point all these polymorphi
 fun
tions will be

onsidered as possible solutions. For these situations, the size of the inferen
e tree

ould be redu
ed
onsiderably if we altered the inferen
e algorithm to �nd (partial)

bindings for exist parameters as they are introdu
ed into the solutions.

Rather than expanding our inferen
e tree until we are out of memory|whi
h
an

result in very poor performan
e on ma
hines with virtual memory|the
ompiler

has a pre-set (ma
hine-dependent) limit on the number of nodes it will allo
ate.

On the ma
hine whi
h was used to develop the \Sea"
ompiler, we had a

ess to at

least 50Mb of real memory. Ea
h inferen
e node (in
luding one type binding) uses

about 200 bytes, so the inferen
e tree was allowed to grow to 250000 nodes. It is not

known whether this limit will be en
ountered often when
ompiling real programs.

If a large number of nodes are a
tually required to
ompile real programs, then

CHAPTER 2. LANGUAGE DEFINITION 13

this ma
hine-dependent limit will be a major portability problem: A program that

ompiles on a 25Mb
omputer may not
ompile on a 15Mb
omputer.

The inferen
er
ould be re-designed to use a data stru
ture where ea
h possible

solution does not have to be expli
itly represented as a separate node.

If we restri
t the language so that we ignore fun
tion return types when doing

type-inferen
e/overload-resolution then the inferen
e tree will never grow very large.

(This is what the designers of \C++" have ele
ted to do.) While there are many

examples of expressions that will not
ompile with this restri
tion in pla
e, we do not

have enough experien
e with \Sea" programming to know whether the restri
ted

version would represent a useful and understandable language.

Chapter 3

The \Lake" Intermediate

Language

\Sea" fun
tion de
larations are overloaded and have expli
it type and operation

parameters. When these fun
tions are used the \Sea" type inferen
er will automat-

i
ally sele
t one of several overloaded versions and provide appropriate bindings for

the type and operation parameters.

\Lake" is a language very similar to \Sea" but without overloading and with

type and operation parameters expli
it at both the de
laration and the
all site.

The \Sea" type inferen
er emits \Lake"
ode as its output.

Be
ause \Lake" doesn't have overloading, the \Sea"
ompiler assigns unique

names to overloaded fun
tions and the \Sea" overload resolver
an then resolve uses

of an overloaded name to a spe
i�
 unique name. The a
tual renaming pro
ess is

fairly
ompli
ated in order to support traditional \C" style separate
ompilation;

for this se
tion unique names will be generated by adding a unders
ore followed by

a unique number to the end of the overloaded name.

A \Sea" polymorphi
 fun
tion supplies a new operation to every type that has

the required prerequisite operations. Before a polymorphi
 operation
an be applied

to a spe
i�
 set of a
tual parameters, the type inferen
er spe
ializes it by binding

its type and operation parameters. If this only happened just before a polymorphi

fun
tion was applied, type and operation parameters
ould be passed along with

the normal parameters. But in \Sea" we also spe
ialize polymorphi
 fun
tions in

order to generate the operations needed to satisfy the \exist" requirements of other

polymorphi
 fun
tions. In order to allow type and operation parameters to be

applied prior to the appli
ation of other parameters we borrow an idea from fun
-

tional programming languages and des
ribe all \Sea" fun
tions as fun
tions that

14

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 15

take a tuple|
ontaining type and operation parameters|as their only argument,

and return a fun
tion that takes a tuple (the normal \C" argument list) to the �nal

return type.

We use \Sea" de
laration syntax to de
lare \Lake" fun
tions both be
ause the

\Sea" syntax has been
arefully designed to be
ompatible with normal \C" de
-

laration syntax and be
ause it makes it possible to translate a \Sea" program to a

\Lake" program without stru
tural
hanges to the sour
e program. However using

\Sea" syntax for \Lake" does introdu
e one ambiguity; the type for monomorphi

fun
tions that don't take any type or operation parameters, but still require an

empty type and operation tuple, is indistinguishable from the type of a \Lake"

fun
tion that has already had its type and operation tuple applied. To avoid this

onfusion, fun
tion types that still require a type and operation tuple will always

be written using a \forall", even if the forall list is empty.

The �rst argument to a \Lake" fun
tion|the type and operation tuple|
an

be applied anytime before the regular arguments tuple is applied. To visually

distinguish these two tuples we use \<" and \>" to bra
ket the type and operation

tuple, and normal bra
kets to surround the regular arguments tuple. For example:

Given the following implementation of square :

forall t : t square(t x, exists t op*(t,t))

{

return x*x;

}

The \Sea" expression :

square(7)

Will get translated by the inferen
er to the \Lake" expression :

square_1<int, op*_1<>>(7)

A more general version of this me
hanism would allow for some type and opera-

tion parameters to be bound while others were left unbound. This is diÆ
ult and

expensive (in terms of performan
e) to implement and no appli
ations that
ould

justify this
ost were found.

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 16

3.1 Non-
onstant Closures

The \Sea" inferen
er takes as input a expression tree
onsisting entirely of
on-

stants, non-overloaded identi�ers and overloaded identi�ers. \Sea" is stati
ally

s
oped so the set of bindings for the overloaded and non-overloaded identi�ers is a

ompile time
onstant and, be
ause \Sea" is stati
ally typed, the type of ea
h of

these identi�ers is also a
ompile time
onstant. This is all the information needed

by the type inferen
er in order for inferen
e to be done entirely at
ompile time.

While all the types and the set of operations are
ompile time
onstants, for

forall and exist parameters the a
tual value is not
onstant. For example, within

square, x has the type a, and op* has the type \a (a,a)". However, the attributes

of type a, and the value of the op* parameter are not available at
ompile time.

Non-
onstant
losures are
reated when these type and operation parameters are

used to
onstru
t a
losure. For example in the following fourth fun
tion a non-

onstant op* and type a are used to build a
losure for square.

forall a : a square(a x, exists a op*(a, a))

{

return x*x;

}

forall a : a fourth(a x, exists a op*(a, a))

{

return square (square (x));

}

int f()

{

return fourth(7);

}

is translated by the inferen
er to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 17

forall a : a fourth_1(a x, exists a op*_p1(a, a))

{

return square_1<a, op*_p1> (square_1<a, op*_p1> (x));

}

forall : int f_1()

{

return fourth_1<int, op*_1>(7);

}

The
losure <a, op*_p1> in fourth 1 is not a
onstant.

The same phenomenon results when we write re
ursive polymorphi
 routines.

For example the \Sea" routine:

forall a : void print (list(a) l, exists void print(a))

{

if (l != NULL)

{

print (l->data);

print (l->next);

}

}

Is translated into the \Lake" routine:

forall a : void print_1 (list(a) l, exists void print_p1(a))

{

if (l != NULL)

{

print_p1 (l->data);

print_1<a, print_p1> (l->next);

}

}

<a, print_p1> is not
onstant.

While the fourth example
ould have been rewritten by adding exists square

to fourth's parameter list, there is no su
h
onversion for re
ursive fun
tions. We

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 18

ould de�ne print as requiring a print(list) exist parameter, but the print(list)

exist parameter would also require a print(list) operation parameter et
.

For simple re
ursive
alls, like this one, where the
losure required for the re-

ursive
all to print is the same as the
losure of the instan
e of print making

the re
ursive
all, we
an arrange things so that a fun
tion always re
eives its own

losure as one of its parameters and use this to make the re
ursive
all, thereby not

needing to
onstru
t a variable
losure for the re
ursive
all. However, this will not

work for all instan
es. For example, in the following re
ursive fun
tion the
losure

for the re
ursive
all to q is not the same as the
losure for the instan
e of q making

the re
ursive
all.

forall a, b : int q(a x, b y, exists int term(a), exists int term(b))

{

if (term(a))

return 0;

else

return q(y, x);

}

Is translated by the inferen
er to :

forall a, b : int q_1(a x, b y, exists int term_p1(a), exists int term_p2(b))

{

if (term_p1(a))

return 0;

else

return q_1<b, a, term_p2, term_p1>(y, x);

}

Mutually re
ursive fun
tions present a similar problem.

In the following se
tion we look at the impa
t of having to support these variable

losures on the range of implementation strategies available for \Sea". We then

present an algorithm that transforms a \Lake" program with non-
onstant
losures

into one where all
losures are
onstant.

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 19

3.1.1 Creating Closures at Runtime

Creating a non-
onstant
losure at runtime is not very diÆ
ult, and takes about

the same amount of time as it takes to
onstru
t a normal parameter list. Often,

in order to
omplete one
losure, other
losures will need to be
reated, and a large

tree of
losures will get
reated in order to generate one
all. As long as all the

requested
losures are used, despite the fa
t that they are all
reated at on
e, this

ost is amortized a
ross many fun
tion
alls, and the runtime
ost as a per
entage of

exe
ution time remains a

eptable. However, if a style of programming is adopted

whereby large
omplex
losures are
onstru
ted, but never
ompletely used, or

where
losures are
reated prior to a majority of
alls,
losure
onstru
tion
ould

be a major runtime
ost.

3.1.2 Non-Constant Operation Parameters

Non-
onstant operation parameters (ie. operation parameters from a non-
onstant

losure) are not very diÆ
ult to implement, and are not inordinately expensive at

runtime. The problem with non-
onstant operation parameters is that they
annot

be inlined. Inlining is to an important optimization if we hope to get \C"-like

performan
e out of polymorphi
 programs. (see
hapter 5)

If we want to add \C++"-style
onstru
tors, destru
tors and overloaded assign-

ments to \Sea" then inlining be
omes vital. The inline expansion of a
onstru
tor

that is bound to the default no-operation
onstru
tor is no-
ode and no-overhead,

whereas a
onstru
tor that is re
eived as a parameter must always be
alled. This is

a problem be
ause there are so many pla
es in a \Sea" program where
onstru
tors

must be
alled.

For example when the following fun
tion was pro
essed by the AT&T \C++"

ompiler (bignum was de�ned with a
onstru
tor, a destru
tor, and an overloaded

assignment operator) 16
alls were generated to one of these fun
tions. Every \Sea"

fun
tion that has polymorphi
 arguments would su�er a similar explosion, even if,

as would usually be the
ase, it was
alled with null
onstru
tors and destru
tors.

// ``bignum'' is defined as a
lass with a
onstru
tor, a destru
tor

// and an assignment operator.

bignum pythag(bignum x, bignum y)

{

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 20

bignum r;

r=bignum_sqrt(x*x+y*y);

return r;

}

3.1.3 Non-Constant Type Parameters

\Sea" type parameters
an be bound to any type. Di�erent types have di�erent

sizes and possibly di�erent alignment requirements. In order to support variable

losures we have to generate obje
t
ode that is parameterized at runtime by the

size of its forall types. Supporting variables and parameters whose size is not known

at
ompile time is diÆ
ult, not very eÆ
ient, and for
es us to use a less eÆ
ient

alling
onvention for all \Sea" fun
tions (not just polymorphi
 fun
tions).

When type parameters in a \Lake" program are
ompile time
onstants then we

an use this to either 1) generate spe
ialized monomorphi
 versions of polymorphi

fun
tions or 2)
ontinue generating one obje
t
ode fun
tion per sour
e fun
tion, but

generate mu
h more elaborate
losures that
ontain information su
h as parameter

o�sets and sta
k layout for lo
al variables.

One \Sea" variant will only bind type parameters to pointer types. For this

variant no type attributes are required at runtime and it is possible to build an

eÆ
ient
ompiler even in the presen
e of runtime
losures.

More detail on the advantages and pitfalls of these various implementation te
h-

niques
an be found in
hapter 4.

3.1.4 Other Appli
ations

Transforming a \Lake" program so that all type and operation parameters are

onstant is also very helpful if we are going to
onstru
t the \Sea" variant (des
ribed

at the end of this do
ument) where type and operation parameters do not have to

be spe
i�ed at the fun
tion de
laration site. With none of the parameter types

spe
i�ed, and none of the intermediate values
onstrained, almost every fun
tion

all made in the body of a polymorphi
 fun
tion must be a separate operation

parameter. The style of programming en
ouraged by this \Sea" variant will involve

the
onstru
tion of large numbers of large non-
onstant
losures, and
onstru
ting

these large
losures at runtime will be prohibitively expensive.

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 21

3.1.5 Eliminating non-
onstant
losures

Within polymorphi
 fun
tion f that has been spe
ialized by
losure
, a new
losure

z
an be
onstru
ted using
onstant types,
onstant operations, type parameters

from
, type
onstru
tors applied to type parameters from
, and operation param-

eters from
. If z is
onstru
ted using any parts of
 then z will be a non-
onstant

losure. Noti
e that any
losure
reated in f will
onsist entirely of �elds from

and
onstants, thus all the values needed to
onstru
t z are also available when

is
reated.

If z is a non-
onstant
losure it
an be eliminated by
onverting it into an

additional �eld in
, then modifying the pla
es where
 is
reated to
onstru
t the

extra �eld z out of
onstants and other members of
.

So, for example, the fourth fun
tion de�ned earlier
ould be
onverted to :

forall a : a square_1(a x, exists a op*_p1(a, a))

{

return op*_p1(x,x);

}

forall a : a fourth_1(a x, exists a op*_p1(a, a), exists a square_p1(a))

{

return square_p1 (square_p1 (x));

}

forall : int t_1()

{

return fourth_1<int, op*_1, square_1<int, op*_1>>(7);

}

The algorithm as des
ribed so far has two problems 1) it will not terminate if it

en
ounters a re
ursive polymorphi
 fun
tion and 2) we haven't de�ned the order in

whi
h expansions will be done when there are more than one non-
onstant
losure

in a program. What follows is a more detailed version of this algorithm whi
h

addresses these issues.

Convert all the non-
onstant
losures in the \Lake" program into operation

parameters. These are normal operation parameters that will be re
eived through

the normal
losure me
hanism, but we introdu
e a new syntax both to highlight

their di�erent role, and to provide information to the
aller detailing how this

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 22

parameter is to be �lled in. Before the body of the fun
tion, in square bra
kets,

we add a list of expressions of the form \name=
losure body". \
losure body"

des
ribes how the
losure is to be
reated (in terms of
onstants, type parameters,

operation parameters and type
onstru
tors applied to type parameters). \name"

is then used in the body of the fun
tion to refer to this
losure.

fourth would be translated to :

forall a : a fourth_1(a x, exists a op*_p1(a, a)) [
1=square_1<a, op*_p1> ℄

{

return
1 (
1 (x));

}

Starting with the set of
onstant
losures, expand ea
h
losure by adding the new

operation parameters required by the fun
tion to whi
h the
losure refers. Re
ur-

sively expand any
losures that are generated by this pro
ess. Ea
h time a new

losure is
reated, before that
losure is expanded,
he
k whether an identi
al
lo-

sure has already been expanded, and if so use the previous expansion rather than

generating a new one.

Che
king for dupli
ate
losures not only redu
es the number of
losures that

are
reated, but also allows most polymorphi
 re
ursive fun
tions to be pro
essed.

(see later for details)

The fourth program would be pro
essed as follows :

The
losure template expansion algorithm doesn't need fun
tion bodies of types,

only the set of
onstant
losures and the set of templates.

Constant Closures

fourth_1<int, op*_1>

Closure Templates

fourth_1 : [
1=square_1<a, op*_p1> ℄

Index Input Closure Expanded Closure

--

#0 : {fourth_1, int, op*_1} -> {fourth_1, int, op*_1, #1}

#1 : {square_1, int, op*_1} -> {square_1, int, op*_1}

The following sample program will be used to demonstrate the algorithm. This is

a tri
ky example : f and g are mutually re
ursive fun
tions, and the order of the

parameters is swit
hed with ea
h iteration.

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 23

int q(int x) { ... };

int q(double x) { ... };

forall a, b : extern int g(a x, b y, exists int q(a), exists int q(b));

forall a, b : int f(a x, b y, exists int q(a), exists int q(b))

{

g(y, x);

}

forall a, b : int g(a x, b y, exists int q(a), exists int q(b))

{

f(x, y);

}

int main()

{

print(f(5, 5.0));

}

Is translated by the inferen
er to :

forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

g_1<b, a, q_p2, q_p1>(y, x);

}

forall a, b : int g_1(a x, b y, exists int q_p1(a), exists int q_p2(b))

{

f_1<a, b, q_p1, q_p2>(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

After non-
onstant
losures have been turned into operation parameters :

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 24

forall a, b : int f_1(a x, b y, exists int q_p1(a), exists int q_p1(b))

[
1=g_1<b, a, q_p2, q_p1> ℄

{

1(y, x);

}

forall a, b : int g_1(a x, exists int q_p1(a), exists int q_p1(b))

[
1=f_1<a, b, q_p1, q_p2> ℄

{

1(x, y);

}

int main()

{

print_1 (f_1<int, double, q_1, q_2>(5));

}

Constant Closures :

f_1<int, double, q_1, q_2>

Closure Templates :

f_1 : [
1=g_1<b, a, q_p2, q_p1> ℄

g_1 : [
1=f_1<a, b, q_p1, q_p2> ℄

The output of the algorithm is shown in the following table.

Index Input Closure Expanded Closure

--

#0 : {f_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #1}

#1 : {g_1, double, int, q_2, q_1} -> {g_1, double, int, q_2, q_1, #2}

#2 : {f_1, double, int, q_2, q_1} -> {f_1, double, int, q_2, q_1, #3}

#3 : {g_1, int, double, q_1, q_2} -> {f_1, int, double, q_1, q_2, #0}

If no type generators are used, ea
h template
an only rearrange its input type

and operation parameters, possibly introdu
ing some
onstants. There is a �nite

number of arrangements of the initial
losure and the
onstants that are introdu
ed

in subsequent levels. So for re
ursive polymorphi
 fun
tions in whi
h type genera-

tors are not involved in the re
ursion, our algorithm will generate all the possible

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 25

variants, then introdu
e a loop in the
losure graph. We
an then
ompile this
lass

of polymorphi
 re
ursive fun
tions.

It is possible for there to be a large number of versions generated before a
y
le

is generated, but is felt that this will o

ur very seldom is real programs. The

following example fun
tion will
ause 40320
onstant
losures to be generated.

/* 8*7*6*5*4*3*2*1 = 40320 versions */

stru
t s1 { int i; };

stru
t s8 { int i; };

int o(stru
t s1 x) { ... };

int o(stru
t s8 x) { ... };

forall t1, t2, t3, t4, t5, t6, t7, t8 :

int q(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6, t7 x7, t8 x8,

exists int o(t1), exists int o(t2), exists int o(t3), exists int o(t4),

exists int o(t5), exists int o(t6), exists int o(t7), exists int o(t8))

{

q(x1, x2, x3, x4, x5, x6, x7, x8);

q(x2, x1, x3, x4, x5, x6, x7, x8);

q(x2, x3, x1, x4, x5, x6, x7, x8);

q(x2, x3, x4, x1, x5, x6, x7, x8);

q(x2, x3, x4, x5, x1, x6, x7, x8);

q(x2, x3, x4, x5, x6, x1, x7, x8);

q(x2, x3, x4, x5, x6, x7, x1, x8);

q(x2, x3, x4, x5, x6, x7, x8, x1);

if (o(x1))

return 0;

}

main()

{

stru
t s1 v1;

stru
t s8 v8;

q(v1, v2, v3, v4, v5, v6, v7, v8);

}

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 26

For re
ursive fun
tions where a type
onstru
tor is involved in the re
ursion, there

is an in�nite number of types and therefore
losures, and our algorithm will fail.

This is not felt to be a severe restri
tion. The following is an example of a fun
tion

we
annot
ompile.

// pow2 :
al
ulates 2^n

int f(
har *x)

{

return 1;

}

forall a : int f(a *xp, exists int f(a))

{

return f(*xp) + f(*xp);

}

forall a : g(int n, a x, exists int f(a))

{

if (n>0)

return g(n-1, &x);

else

return f(x);

}

int pow2(int n)

{

return g(n, "dummy parameter");

}

The above program is interesting be
ause it makes use of the limited
urried fun
-

tion parameter support|whi
h we introdu
ed to support inferred type and opera-

tion parameters|to
onstru
t, at runtime, a fun
tion that
al
ulates 2^n.

3.1.6 Separate Compilation Issues

To eliminate
onstant
losures the
ompilermust have a

ess to the templates for all

polymorphi
 fun
tions in the program, and normal \C" prototypes do not provide

CHAPTER 3. THE \LAKE" INTERMEDIATE LANGUAGE 27

this information. All the implementations we propose eliminate
onstant
losures

in a global pass just before linking. (see
hapter 4)

Chapter 4

Implementation of \Lake"

In the following se
tion we present several ways of implementing \Lake". Ea
h of

the implementations has di�erent advantages, and pla
es di�erent
onstraints on

the design of the language. \Lake" has been designed so as not to pre
lude any of

the major implementation strategies.

4.1 Implementation 1 : Polymorphi
 obje
t
ode,

runtime variable
losures

Ea
h sour
e-level polymorphi
 fun
tion is translated into a single polymorphi

obje
t-
ode fun
tion. This obje
t-
ode fun
tion takes, as its �rst parameter, a

losure
ontaining bindings for its type and operation parameters, and uses this

losure at runtime, to spe
ialize its own behaviour.

This is the te
hnique that was used for our prototype \Sea"
ompiler.

4.1.1 Overloading

The \Sea" language allows us to overload a single identi�er with multiple fun
-

tion de�nitions, ea
h with a di�erent type. Whenever this identi�er is used, the

inferen
er sele
ts the fun
tion de�nition with the most appropriate type.

As overloaded fun
tions are
ompiled we must assign ea
h a unique name: the

overload resolver
an then translate a referen
e to an overloaded name into the

28

CHAPTER 4. IMPLEMENTATION OF \LAKE" 29

unique name that refers to the most appropriate fun
tion. In \Sea" fun
tion def-

initions
an be
ompiled separately from
alls to those fun
tions, thus we have

no dire
t way of
ommuni
ating the unique name generated when an overloaded

fun
tion is
ompiled to the overload resolution algorithm pro
essing a fun
tion
all

made from a separate �le.

For example, in �le 1 we have de�nitions for two print fun
tions:

void print(int x)

{

...

}

void print(double x)

{

...

}

And in �le 2 we attempt to use these :

extern void print(int);

extern void print(double);

main()

{

print(7);

}

In \Sea", every overloaded de�nition for a name must have a unique type, and

this type is available both when the fun
tion is
ompiled and, through fun
tion

prototypes, when the fun
tion is
alled. By generating a name from the overloaded

name as well as an en
oding of the type of the fun
tion, then this name will uniquely

refer to the appropriate fun
tion, and will be available everywhere the fun
tion

name and type are available (ie., at both the de�nition and the
all site). We
all

these \mangled" names. This te
hnique originated with Bjarn Stroustrups \C++"

ompiler.

The a
tual algorithm we use to generate mangled names is derived from the

name mangler in the GNU C++
ompiler.

Some sample mangled names:

CHAPTER 4. IMPLEMENTATION OF \LAKE" 30

int op*(int x, int y);

Would be en
oded as (note that op* has been translated into something more

palatable to the assembler and linker) :

__multiply__FLiie_iZ

__multiply Original fun
tion name

__ Pun
tuation to separate name from type en
oding

F Begin fun
tion type
onstru
tor

L Begin argument list

i First argument is integer

i Se
ond argument is integer

e End argument list

_ Pun
tuation to separate argument types from return type

i Return type is integer

Z End fun
tion type
onstru
tor

and

forall a : a square(a x, exist a op*(a,a));

would be en
oded as:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

Refer to the
ompiler do
umentation for a
omplete dis
ussion of the algorithm.

In \Sea", \exist" parameters are part of the type of a fun
tion, and therefor

must be in
luded in the mangled fun
tion name. This
an
ause very large mangled

names to be generated, whi
h means the \Sea"
ompiler will not be portable to

environments where the assembler or linker pla
e do not support long names. All

of the ma
hines that we tested allowed names to be at least 512
hara
ters long,

whi
h should be enough for most programs.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 31

4.1.2 Closures

For ea
h \Lake" sour
e fun
tion, we generate a single obje
t
ode fun
tion. A

\Lake" fun
tion that has not yet been spe
ialized by having its type and operation

parameters bound is represented by a pointer to obje
t
ode. When a \Lake"

fun
tion is spe
ialized with type and operation parameters, we represent this by

building a
losure
ontaining a pointer to the fun
tion obje
t
ode as well as the

supplied bindings for the type and operation parameters. When this
losure is

then applied to list of regular arguments, we
all the obje
t
ode referen
ed by

the
losure, and arrange that it will re
eive a pointer to the
losure as its �rst

parameter. The polymorphi
 obje
t
ode
an then referen
e the
ontents of the

losure to spe
ialize its own behaviour.

The stru
ture of this
losure is as follows :

{Pointer to fun
tion obje
t
ode,

Attributes of first type arg, ..., Attributes of nth type arg,

First operation parameter, ..., nth operation parameter}

For the
urrent implementation the only attribute that is needed to des
ribe ea
h

type parameter is the size of the type.

As was dis
ussed in
hapter 3, operation parameters are either pointers to an-

other
losure, or a pointer to fun
tion obje
t
ode, depending on whether or not

the operation parameter has been spe
ialized yet.

When the square fun
tion :

forall a : a square(a x, exist a op*(a,a)) { return x*x; }

is applied to an integer argument, it will be spe
ialized into the following
losure :

; Closure for polymorphi
 square applied to an integer argument

LC1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ ; pointer to square fun
tion

.long 4 ; sizeof(int)

.long LC0 ; pointer to
losure for integer multiply

; Closure for integer multiply (there are no type or operation parameters)

LC0:

.long _multiply__FLiie_iZ ; pointer to integer multiply fun
tion

CHAPTER 4. IMPLEMENTATION OF \LAKE" 32

4.1.3 Operation Parameters

Operation parameters that have not yet been spe
ialized
an be spe
ialized by

building a
losure. Most operation parameters, however, have already been spe-

ialized, and are re
eived as pointers to
losures.

Calling a
losure is not a diÆ
ult or expensive operation. Details of the \Sea"

alling
onvention
an be found in the next se
tion.

The only problem with re
eiving operations as parameters is that these oper-

ations
annot be inlined. This leads to signi�
antly worse performan
e for things

that are traditionally inlined like the basi
 integer and
oating point operations.

4.1.4 Type Parameters

A \Sea" fun
tion
an be de
lared with type parameters. These type parameters
an

then be used as parameters to type
onstru
tors, resulting in a family of variable-

sized types and pointers to variable-sized types. These types
an then be used to

de
lare parameters and automati
 variables.

The operations that the
ompiler must provide for these variables and parame-

ters are 1) assignment, 2) member a

ess for
omplex types, and 3) fun
tion
alls.

In this se
tion we look at the
ompile-time and run-time me
hanisms that this

requires.

Representation of Type Parameters in the Closure

For the
urrent implementation the only information that is
ontained in a type

parameter is the size of the type it has been bound to.

Often, within our polymorphi
 routines, we need to
al
ulate the size of a type

rounded up to the next alignment boundary. Be
ause our
ode uses
losures mu
h

more frequently than it
reates them, it would have been better to do this
al-

ulation at
losure
reation time and add the results to the
losure as an extra

�eld.

4.1.5 Polymorphi
 Data Stru
tures

For
ompatibility with system libraries, monomorphi
 stru
ts are laid out using the

host \C"'s stru
ture layout
onventions. On many ar
hite
tures, it is too
ompli-

ated to emulate these stru
ture layout rules at run-time for polymorphi
 types.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 33

So \Sea" stru
tures built using type parameters are not de�ned as having the same

layout as an equivalent monomorphi
 stru
ture de�nition; instead every �eld that

ould be instantiated with types with varying alignment requirements is given the

most
onservative alignment. This is not in
ompatible with the \C" language def-

inition whi
h does not guarantee that stru
turally identi
al type de
larations have

identi
al layout. As in standard \C", the total size of a stru
ture is padded so that

if an array of stru
tures is started on the most
onservative alignment boundary,

then every �eld in every stru
t in the array will have
orre
t alignment.

If an appli
ation requires that both a polymorphi
 and a monomorphi
 routine

an work on the same \stru
t", then parameterized types|whi
h were expli
itly

designed for this purpose|must be used.

Parameterized Types

Type parameters are de�ned su
h that the most
onservative alignment require-

ments are applied to every �eld whose alignment requirements may vary with dif-

ferent instantiations of the type generator. This makes it possible for monomorphi

and polymorphi
 fun
tions to a

ess the same data stru
ture without for
ing the

polymorphi
 routine to do
ompli
ated and time-
onsuming alignment
al
ulations.

For example :

stru
t {

har x;

har y; };

Would be laid out as :

Byte : 00 01

Contents : x y

stru
t {

t x;

t y; };

In a polymorphi
 routine where \t" was bound to \
har" would be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------

CHAPTER 4. IMPLEMENTATION OF \LAKE" 34

Whereas the generated type :

type pair(type t)

{

return stru
t {

t x;

t y; };

}

Whether instantiated as pair(
har) or pair(t) (where t is bound to
har) would

be laid out as :

Byte : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Contents : x ------Padding------- y ------Padding-------

Arrays

Be
ause all \Sea" types are de�ned su
h that as long as the �rst element of the

array has
orre
t alignment, all elements of the array have
orre
t alignment, no

alignment
onsiderations need to be taken into a

ount to lo
ate array members.

Thus polymorphi
 arrays require little runtime support and are
ompatible with

monomorphi
 arrays.

Pointers

No additional runtime support is needed to allow pointers to point at polymorphi

obje
ts.

4.1.6 Calling Conventions

Be
ause there are few built-in operations for obje
ts with polymorphi
 type, almost

every operation must be done through
alls to monomorphi
 fun
tions. Thus it is

important that we have eÆ
ient polymorphi

alling
onventions.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 35

All Fun
tions Must Use The Same Calling Convention

Operation parameters to polymorphi
 fun
tions
an be bound to either monomor-

phi
 fun
tions (spe
ialized by an empty
losure) or polymorphi
 fun
tions. If dif-

ferent
alling
onventions were used for monomorphi
 and polymorphi
 fun
tions,

every time an operation parameter was
alled we would have to sele
t one of two

di�erent
alling
onventions, and|as will be dis
ussed below|building a monomor-

phi
 argument list from within a polymorphi
 fun
tion
an be very
ostly. Every

fun
tion in a \Sea" program
ould potentially be sele
ted as an operation param-

eter, so every fun
tion must use the same
alling
onvention. This makes it even

more
ru
ial that our polymorphi

alling
onventions be eÆ
ient.

For example :

// put integer

void put(FILE *f, int x)

{

fwrite(&x, sizeof(int), 1, f);

}

int f(int x)

{

put(stdout, 4);

}

However, lurking somewhere else in the system we may have :

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)

{

put(s, l->data);

l = l->next;

}

}

void g(list(int) l)

CHAPTER 4. IMPLEMENTATION OF \LAKE" 36

{

put(stdout, l);

}

put(integer) is passed as an operation parameter to put(list), so put(integer)

must be
ompiled with standard
alling
onventions, whi
h means the
all to

put(integer) in f has to use standard
alling
onventions.

Host \C"
alling
onventions

The \C" standard allows ma
hine designers and
ompiler writers
onsiderable free-

dom in the design of their
alling
onventions, and RISC ma
hines (almost every

urrent pro
essor design other than the i386) have highly tuned register-based
all-

ing
onventions.

It would be very good, for both performan
e and portability, if \Sea"
ould use

these
alling
onventions. The following is a typi
al RISC
alling
onvention :

For Ea
h Arg :

If Arg is Integer Then

If more registers are available

Put in next available Register

else

Put on sta
k (aligned to 32 bits)

endif

endif

If Arg is Double or Float Then

If more floating point registers are available then

Put in next available Floating Point Register

else

Put on Sta
k (aligned to 64 bits)

endif

endif

If Arg is stru
t or union Then

Put as many words of stru
t as will fit in rest of register file

Put balan
e on sta
k

Endif

CHAPTER 4. IMPLEMENTATION OF \LAKE" 37

et
.

EndFor

While it is possible to implement su
h an algorithm at runtime, the resulting
ode

would require many
onditional bran
hes per argument, and would have a diÆ
ult

time even loading the registers. (There is no way to a

ess the register �le via an

index on most ma
hines, so the
ode would have to build an image of the register

�le in memory, then load the image|thereby defeating the whole point of passing

arguments in registers.)

Many
ompilers/libraries are
apable of unpa
king their parameter lists at run-

time in order to support
alling vararg fun
tions like printf when no prototype

has been supplied. The
ode to do this is not
ompa
t, eÆ
ient or pretty.

Return
onventions are also
omplex and parameterized by type, and thus pose

similar problems.

Be
ause \Sea"
annot use the native
alling
onventions on all ma
hines, we

do not de�ne the \Sea" language as having
ompatible
alling
onventions with

the host \C". Instead we have provided the \
de
l" me
hanism that allows \Sea"

and \C" programs to
all ea
h other. This is not mu
h of a loss be
ause \Sea"

overloaded fun
tion de�nitions were in a di�erent linker name spa
e (by virtue or

their mangled names) than \C" fun
tions.

Sta
k-Based
alling
onventions

Using sta
k-based
alling
onventions would make \Sea" perform signi�
antly (per-

haps a fa
tor of 3) worse than \C" on RISC ma
hines.

Variable-sized argument lists are simple to
onstru
t. Ea
h parameter is either

pushed or
opied onto the sta
k.

If the pro
essor has stri
t alignment requirements for any type, we
an either 1)

add type alignment information to our
losures and
al
ulate appropriate alignment

for ea
h polymorphi
 parameter as they are pushed (or retrieved) at the
ost of

onsiderable runtime overhead for ea
h parameter, or 2) push all parameters with

the stri
test alignment (remember we gave up on being
ompatible with host
alling

onventions) whi
h redu
es overhead when pushing polymorphi
 parameters, but

for
es us to push an extra word of padding every time a monomorphi
 routine wants

to pass an \int" or a pointer.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 38

\GCC" has some built in support for sta
k-based variable-sized arguments,

however this
ode is not operational in the distributed
ompiler. We �xed this
ode

to the point where we
ould experiment with it and got the following results :

int g(int w, stru
t {
har
[w℄; int m; } kk,

stru
t {
har
[w℄; int m; } kkk, int q)

{

printf("w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\n", w, &w, &kk, &kkk, &q);

return 0;

}

Compiled to about 100 lines of assembly. However, most of this was repeated

al
ulations, so when we re-
ompiled with optimization we got the following output

:

LC1:

.as
ii "w=%X, &w=%X, &kk=%X, &kkk=%X, &q=%X\12\0"

.align 1

.globl _g

_g:

.word 0x0

movl 4(ap),r0

addl3 r0,$3,r1

movl $2,r3

movl $30,r4

extzv r3,r4,r1,r2

in
l r2

moval 3[r2℄,r2

extzv r3,r4,r2,r2

moval 0[r2℄,r2

extzv r3,r4,r1,r1

in
l r1

moval 3[r1℄,r1

extzv r3,r4,r1,r1

moval 8(r2)[r1℄,r1

addl3 ap,r1,-(sp)

pushab 8(ap)[r2℄

addl3 ap,$8,-(sp)

CHAPTER 4. IMPLEMENTATION OF \LAKE" 39

addl3 ap,$4,-(sp)

pushl r0

pushab LC1

alls $6,_printf

lrl r0

ret

Most of this
ode is needed to
al
ulate the o�sets of the input parameters in the

sta
k frame, similar
al
ulations are required when a polymorphi
 parameter list is

being passed. These
al
ulations
ould be simpli�ed
onsiderably if we provided,

in the
losure, the size for ea
h type rounded up to the next word boundary, rather

than having the generated
ode do this
al
ulation at runtime.

On ma
hines with stri
t alignment requirements, the
al
ulations needed to

build and disassemble a variable-sized parameter list get even more
ompli
ated.

On su
h ma
hines \GCC"
urrently gives up and
alls abort().

We were going to use this
alling
onvention for the �rst version of \Sea" so

as to get a working
ompiler more rapidly. However as work progressed it be
ame

apparent that \GCC"'s support for variable sized arguments had many subtle prob-

lems, and it was felt that it would be qui
ker to implement the more eÆ
ient
alling

onvention we wanted for the �nal version of our
ompiler than to tra
k down and

repair all the problems with the existing system.

The problems with this
alling
onvention are :

1. Sta
k-based
alling
onventions are a big loss for RISC ma
hines.

2. When passing polymorphi
 arguments, the
aller does
omplex
al
ulations

in order to pla
e all the parameters in the parameter list, and then the
alled

fun
tion repeats the same
al
ulations in order to a

ess the arguments.

3. There are few built-in operations for polymorphi
 types. Polymorphi
 fun
-

tions do most of their a
tual work by
alling monomorphi
 fun
tions. Most

of the time and
ode in polymorphi
 fun
tions is spent doing variable-sized

opies of input parameters to subfun
tion parameters. It would be useful if

there were some way to redu
e the number of su
h
opies done.

4. On ma
hines with stri
t alignment requirements there is even more runtime

overhead.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 40

\Sea" Calling Conventions

With the following goals in mind we set out to design a new
alling
onvention for

the \Sea" language. This should:

1. Use register-based
alling
onventions on RISC ma
hines.

2. Not be mu
h slower than the native
alling
onventions for monomorphi

fun
tions.

3. Be as fast as possible for polymorphi
 fun
tions. This is done primarily by

avoiding
onditions that must
he
ked at runtime and by redu
ing the number

of variable-sized
opies needed.

For the following dis
ussion we assume that \int"s and pointers are 32 bits

and that \longs" and \doubles" are 64 bits. The same dis
ussion applies to other

ma
hines, however some of the parti
ulars will be slightly di�erent.

� The �rst parameter to a fun
tion is always a pointer to the
losure that

ontains bindings for any type or operation parameters. If there are no �elds

in the
losure (apart from the pointer to the fun
tions obje
t
ode) then this

parameter does not have to be valid.

� The se
ond parameter is a pointer to the stash in whi
h to write the return

value. If no su
h stash is required then this parameter
an be indeterminate.

(More details on the use of this \return value pointer" will be given later).

Usually, the above two parameters will be passed in registers, thus if valid

values are not required there will be no
ost apart from the loss of two register

parameters.

� For ea
h argument we do the following:

{ If an argument is the size of a word then we pass it dire
tly.

{ If an argument is not the size of a word then we store the argument

in memory (If it is not already stored there) and pass a pointer to the

argument. We
all the pla
e where the argument resides in memory the

\stash".

So every parameter is a word,
ontaining either the a
tual value or a

pointer to the a
tual value. We
all this type of parameter a MA. (Mul-

tiplexed Argument)

CHAPTER 4. IMPLEMENTATION OF \LAKE" 41

Having every parameter in the same format|regardless of type|allows

us to use RISC register-based
alling
onventions to pass these parame-

ters.

This
alling
onvention is as eÆ
ient as the host
alling
onvention for

pointers and integers, the two most
ommon types in \Sea" programs.

Unfortunately performan
e for \
hars", \shorts", \longs", and \doubles"

is signi�
antly degraded.

{ The
aller must guarantee that the stash areas referen
ed by the param-

eters it is passing be
onstant until either 1) the fun
tion returns or 2)

all or part of the stash area is overwritten be
ause it is the return area

for the same
all.

{ The
allee must not modify any stash areas referen
ed by its input pa-

rameters. If an input parameter is in danger of being modi�ed, the

ompiler must make a
opy of the input parameter, and use this
opy in

pla
e of the original.

These two rules allow many parameters to be passed without having to

opy their data to a stash. In parti
ular they allow parameters to be

used as parameters to subsequent fun
tion
alls with very little overhead.

This is very important be
ause almost every operation a polymorphi

fun
tion wants to perform on its arguments must be done through a

fun
tion
all.

With this s
heme when
opies are done they tend to be done either in

the monomorphi
 fun
tion that made the initial polymorphi

all, or in

the monomorphi
 fun
tions that do the a
tual operations. It is mu
h

heaper to
opy an obje
t in a monomorphi
 fun
tion|when its size

and layout are known|than in a polymorphi
 fun
tion.

� To return a value from a fun
tion:

{ The
allee must assume that the area referred to by the return area

pointer may be an alias for any memory in the system, in
luding the

stashes of its input parameters.

This rule allows expressions of the form \var=fun
(...)" to be
om-

piled so that the return value of \fun
"
an be written dire
tly into

\var". This is a useful optimization in polymorphi
 fun
tions, be
ause

allo
ating and
opying variable-sized temporaries is so expensive.

{ Return values that are the size of a word are returned in the return value

register.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 42

{ Return values that are not the size of a word are written to the stash

referen
ed by the \return value stash pointer" input parameter. The

\return value stash pointer" is then
opied to the \return value register".

Having values returned in the same format that is required for subsequent

fun
tion
alls (or storage in a lo
al variable), allows the return value of

one fun
tion
all to be used as a parameter to a subsequent fun
tion
all

with a minimum of overhead.

Also, returning small values dire
tly in registers is very important if we

want to have \C"-like performan
e for monomorphi
 pointer and integer

fun
tions.

� Polymorphi
 lo
al variables (and temporaries) are represented by a word that

ontains either 1) For types that are the size of a word: the variable's value

or 2) For other types: a pointer to a separately allo
ated stash that
ontains

the variable's value.

This is the same format that is required for parameters (and return values) by

our new
alling
onventions. Keeping variables in this format saves us from

having to do an expensive run-time
onversion prior to every
all (or every

use as a return area).

The following examples are written in the assembly language of a �
titious pro-

essor that
ombines the instru
tion set of the VAXwith the register windows of the

SPARC. (This was done to demonstrate the algorithm's pro�
ien
y with register-

based
alling
onventions, while retaining a human-readable assembly language.)

Performan
e for monomorphi
 fun
tions

For parameters that are a word or smaller in size, apart from the loss of two registers,

our new
alling
onvention performs identi
ally to the host
alling
onvention on

most ma
hines.

int add3(int x, int y, int z)

{

return x+y+z;

}

int g()

{

CHAPTER 4. IMPLEMENTATION OF \LAKE" 43

int q;

q = add3(1,2,3);

return q;

}

_add3__FLiiie_iZ:

addl i2,i3 ; add up parameters re
eived in regs and

addl i3,i4,i1 ; leave result in return reg (i1)

ret

_g__Fle_iZ:

movl 1,o2 ; pass arguments in output registers

movl 2,o3

movl 3,o4

all _add3__FLiiie_iZ

movl o1,l1 ;
opy return from ``add3'' to ``q''

movl l1,i1 ; return ``q'' in return reg

ret

For double and long parameters (whi
h are typi
ally larger than a word), we

have to pass and return values via pointers, resulting in signi�
ant performan
e

degradation.

double add3(double x, double y, double z)

{

return x+y+z;

}

double g()

{

double q;

q = add3(1.0, 2.0, 3.0);

return q;

}

_add3__FLddde_dZ:

addf (i2),(i3),f0 ; a

ess parameter values indire
tly

addf (i4),f0,(i1) ; write return value into area pointed by i1

ret

CHAPTER 4. IMPLEMENTATION OF \LAKE" 44

_g__Fle_dZ:

subl 8,sp ; allo
ate spa
e for ``q'' (
an't use regs)

movl sp,l1 ; store pointer to ``q'' in reg

subl sp,24 ; allo
ate spa
e for stash

movl sp,l2 ; we will use ``l2'' to fill stash

movd 1.0,(l2) ; put float value 1.0 in stash

movl l2,o2 ; pass pointer to stashed ``1.0'' as first arg

addl 8,l2 ; advan
e stash pointer

movd 2.0,(l2) ; stash and pass 2.0 as se
ond arg

movl l2,o3

addl 8,l2

movd 3.0,(l2) ; stash and pass 3.0 as third arg

movl l2,o4

addl 8,l2

movl o1,l1 ; pass pointer to pla
e to store return value

all _add3__FLddde_dZ ;
all fun
tion

movd (l1),(i1) ;
opy ``q'' to return area pointer by i1

ret

The same fun
tion
ompiled using normal \C"
alling
onventions might read as

follows: (SPARC's use very ineÆ
ient
oating point
alling
onventions that would

probably perform even worse than our new
alling
onventions. This example is

ompiled using well tuned
oating point
alling
onventions.)

_add3__FLddde_dZ:

addf f1,f2,f5 ; add up parameters re
eived in regs and

addf f5,f3,f0 ; leave result in f0

ret

_g__Fle_dZ:

CHAPTER 4. IMPLEMENTATION OF \LAKE" 45

movd 1.0,f1 ; pass arguments in output registers

movd 2.0,f2

movd 3.0,f3

all _add3__FLddde_dZ ;
all fun
tion

movd f0,f16 ;
opy return from ``add3'' to ``q''

movd f16,f0 ; return ``q'' in floating return reg

ret

The add3 program is 20 instru
tions long when
ompiled using our new
alling

onventions and 10 instru
tions long when
ompiled using more
onventional
alling

onventions.

The above example represents the worst
ase example for monomorphi

oating-

point
ode. There are a number of simple optimizations we
an apply to
ommon

ases: 1) Constant parameters (like the above)
an be stashed at
ompile time as

onstant data 2) we
an often pass the address of
oating point parameters and

variables without having to re-stash them and 3) if we set up a number of stash

lo
ations we
an often re-use them for several
alls.

One solution to this problem of expensive
oating point parameters would be to

alter our
alling
onvention to pass all values less than the size of a double dire
tly.

We have
hosen not to do this be
ause it degrades performan
e substantially for

integer and pointer
ode (by either wasting half the registers for a register-based

alling
onvention, or by for
ing us to push garbage words for a sta
k-based
alling

onvention as well as numerous other
ompli
ations|see later for details).

For stru
t parameters, whi
h are seldom used in normal \C" programs, our

new
alling
onventions are at least as eÆ
ient as the usual host
alling
onventions.

So for monomorphi
 fun
tions our
alling
onvention is as eÆ
ient as the host

\C"
alling
onvention for all types ex
ept doubles and longs. Programs that make

extensive use of double or long parameters may experien
e signi�
ant performan
e

degradation.

Examples of Polymorphi
 Fun
tions

First we show the assembly
ode for the simple square fun
tion we have been using

as an example throughout this do
ument.

forall a : a square(a x, exists a op*(a,a))

{

CHAPTER 4. IMPLEMENTATION OF \LAKE" 46

return x*x;

}

void f()

{

print(square(5));

print(square(5.0));

}

Is
ompiled to:

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

movl i2,o2 ; pass MA for ``x'' as first arg to op*

movl i2,o3 ; pass MA for ``x'' as se
ond arg to op*

movl i1,o1 ; pass our return area pointer to ``op*''

all *12(i0) ;
all ``op*'' operation parameter

movl o1,i1 ; return MA that was returned by ``op*''

ret

_
losure_0:

.long _multiply__FLiie_iZ

_
losure_1:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long _
losure_0

_
losure_2:

.long _multiply__FLdde_dZ

_
losure_3:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long _
losure_1

LC0:

.double 5.0

CHAPTER 4. IMPLEMENTATION OF \LAKE" 47

_f__FLe_Z:

movl 5,o2 ; pass integer 5 in MA

movab _
losure_1,o0 ; pass pointer to
losure for square(int)

all *(o0) ;
all ``square'' via pointer in
losure

movl o1,o2 ; pass MA returned from square(int)

all _print__FLie_iZ ;
all print(int)

movab LC0,o2 ; pass pointer to stashed ``5.0'' as first arg

subl sp,8 ; allo
ate spa
e to stash ``square'' return

movl sp,l2

movl l2,o1 ; and pass as return area

movab _
losure_1,o0 ; pass pointer to
losure for square(double)

all *(o0) ;
all ``square'' via pointer in
losure

movl l2,o2 ; pass stash
ontaining ``square'' return

all _print__FLde_iZ ;
all print(double)

ret

While these examples demonstrate good performan
e for small-sample polymorphi

routines, they get this performan
e through an array of optimizations that
annot

be applied in all
ases. One way to
ompare
alling
onventions would be to
ompile,

then ben
hmark a large program using ea
h of the proposed
alling
onventions.

This te
hnique, however, does not provide mu
h insight into how to design a good

alling
onvention.

Fortunately, it is possible to enumerate all the sour
es of polymorphi
 values,

and all the operations that
an be performed on these values. This in a useful tool

when designing and evaluating
alling
onventions.

The following are all the sour
es of variable-sized values :

1. Input parameter

2. Automati
 variable

3. Fun
tion return value

CHAPTER 4. IMPLEMENTATION OF \LAKE" 48

4. Dereferen
ed value (In
ludes pointer, array and �eld a

ess)

These are all the operations that
an be applied to a variable sized value :

1. Pass as Parameter

2. Return from fun
tion

3. Assign to variable

4. Assign to parameter

5. Assign to Dereferen
ed lvalue (In
ludes pointer, array and �eld a

ess)

6. Take address of

In the following table we explore all the transa
tions that a \Sea"
ompiler is

required to support, and how a
ompiler using our new
alling
onventions would

implement them:

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

We
reate polymorphi
 lo
al variables in the same format (using a stash for

obje
ts that are not a word in size) that is used for parameters. This allows

polymorphi
 lo
al variables to be eÆ
iently 1) passed as parameters and 2)

used to store the results of fun
tion
alls.

The following
ode sample
reates a lo
al variable with stash size spe
i�ed

by a �eld in the
losure. The MA for the lo
al variable is stored in register

\l0", and the stash is allo
ated from the sta
k.

addl 8(i0),sp

movl sp,l0

We exe
ute the same
ode for word-sized variables, but in this
ase the stash

area will never be used. We do this be
ause it is
onsiderably
heaper to

allo
ate a bogus stash than it is to
he
k(at run-time) whether a stash is

really needed.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 49

2. Input parameter or automati
 variable passed as parameter

If the stash for a lo
al variable or parameter
annot be guaranteed
onstant

for the duration of the
all (usually be
ause a pointer to the variable has been

passed outside the fun
tion), then the
ompiler must make a safe
opy of the

variable before passing it.

On
e we have a safe variable in MA form, our
alling
onvention allows us to

pass just the MA, without making a new
opy of the stash (if there is one).

The
ode that is required to pass the MA is the same as would be required

to pass a word-sized argument using the host \C"'s
alling
onvention. For

our assembly language this is:

movl i2,o2

3. Input parameter or Automati
 variable returned from fun
tion

if sizeof(t) == sizeof(int)

return variable's MA in return reg

else

opy variable's stash to area pointed by "return area pointer"

4. Input parameter or automati
 variable assigned to variable or parameter

if sizeof(t) == sizeof(int)

opy MA

else

opy stash

5. Input parameter or Automati
 variable assigned to dereferen
ed lvalue

if sizeof(t) == sizeof(int)

opy MA to target

else

opy area referen
ed by MA to target

6. Fun
tion return value passed as Parameter

CHAPTER 4. IMPLEMENTATION OF \LAKE" 50

Allo
ate stash for return value (re-use same stash for multiple
alls)

Pass pointer to stash as return value area

Call first fun
tion

Pass return register as parameter to se
ond fun
tion (It will either

ontain a value if the sizeof(t) == sizeof(int) or it will
ontain a

pointer to the already allo
ated stash, and the value will have been

written in this stash.)

addl 8(10),sp

movl sp,i2

all _fun

movl i2,i3

all _fun
2

7. Fun
tion return value returned from fun
tion

By passing the \return area pointer" on to a subfun
tion, and then
opying

the subfun
tion's \return register" to the
urrent fun
tion's \return register",

it
an be arranged that the
urrent fun
tion does not have to re
opy and

stash-based portion of the return value.

movl i1,o1

all f

movl o1,i1

ret

8. Fun
tion return value assigned to variable or parameter

Pass the MA for the variable or pointer as the ``return area pointer''

Call the fun
tion

Store the return register from the fun
tion in the MA for the variable

(If sizeof(t) == sizeof(int) the return register will
ontain a

value, otherwise it will
ontain the original stash pointer)

movl l1,o1 ; l1 is the MA for the variable

all f

movl o1,l1 ; o1 will either
ontain a value, or

; will still
ontain l1

9. Fun
tion return value assigned to dereferen
ed lvalue

CHAPTER 4. IMPLEMENTATION OF \LAKE" 51

all fun
tion with pointer to lvalue as return area pointer

if (sizeof(t) == sizeof(int))

opy return value reg to lvalue

10. Dereferen
ed value passed as parameter

If we
an determine that there are no aliases to the obje
t then we
an avoid

opying the obje
t's data:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

load address of obje
t into MA

If there may be aliases to the obje
t then we must
opy the obje
t's data:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

allo
ate stash for pointed to obje
t

opy obje
t into stash

load address of stash into MA

11. Dereferen
ed value returned from fun
tion

if (sizeof(t) == sizeof(int))

return value in return register

else

opy value to area pointer by "return value pointer"

12. Dereferen
ed value assigned to variable or parameter

if (sizeof(t) == sizeof(int))

opy value to MA

else

opy value to stash

13. Dereferen
ed value assigned to Dereferen
ed lvalue

CHAPTER 4. IMPLEMENTATION OF \LAKE" 52

opy value

14. Take address of parameter or variable

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return
ontents of MA

Evaluation of our Calling Convention

Putting word sized values inside the MA has little e�e
t on the performan
e of

polymorphi
 fun
tions: it for
es us to add many
onditionals, but these probably

improve performan
e by allowing a very
ommon
ase (word size arguments) to

exe
ute without having to do do a
all to \b
opy" (the variable-sized
opy fun
tion.

For monomorphi
 fun
tions, however, allowing word sized arguments to be passed

and returned dire
tly in registers
an improve performan
e signi�
antly.

Our elaborate rules to redu
e the need for
opying arguments allow the following

ases to be implemented very
heaply (No
onditionals and no variable-sized
opies):

2. Input parameter or automati
 variable passed as parameter (no alias
ase)

6. Fun
tion return value passed as parameter

7. Fun
tion return value returned from fun
tion

8. Fun
tion return value assigned to variable or parameter

These
ases
an be implemented with one
onditional:

10. Dereferen
ed value passed as parameter (no alias
ase)

9. Fun
tion return value assigned to dereferen
ed lvalue

The following
ases still need to do a variable sized
opy:

3. Input parameter or automati
 variable returned from fun
tion

4. Input parameter or automati
 variable assigned to variable or parameter

CHAPTER 4. IMPLEMENTATION OF \LAKE" 53

5. Input parameter or automati
 variable assigned to dereferen
ed lvalue

11. Dereferen
ed value returned from fun
tion

12. Dereferen
ed value assigned to variable or parameter

13. Dereferen
ed value assigned to Dereferen
ed lvalue

No
opies are required under either s
heme for the following transa
tions:

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

14. Take address of parameter or variable

Note that all the
ases that still need to do a variable-sized
opy are either

assignment statements or return statements. Unless we depart from \C"'s model

of \a variable is a name for a region of storage" it is impossible to eliminate
opies

for assignment or return statements (Although there are some tri
ks we
an play

with return statements: for example see \returning a return value".)

So we have eÆ
ient
alling
onventions for monomorphi

ode, we have redu
ed

the number of variable sized
opies to an absolute minimum, and we have very low

overhead for the various glue operations like lo
ating input parameters.

Comparison Of Calling Conventions

Calling
onventions
an be
ompared by
omparing the run-time algorithms they

require to implement ea
h of the above 14 points.

In the following list we
ompare our new
alling
onvention with the simpler

\always
opy, no MA"
alling
onvention, whi
h is the same as our
alling
onven-

tion ex
ept that arguments are always
opied prior to a
all and values are never

stored in the MA:

Mu
h Better (No
onditionals and no variable-sized
opies regardless of type)

2. Input parameter or automati
 variable passed as parameter

6. Fun
tion return value passed as parameter

7. Fun
tion return value returned from fun
tion

8. Fun
tion return value assigned to variable or parameter

CHAPTER 4. IMPLEMENTATION OF \LAKE" 54

Similar (Che
k for MA-sized argument allows this
ommon
ase to exe
ute

faster)

9. Fun
tion return value assigned to dereferen
ed lvalue

3. Input parameter or automati
 variable returned from fun
tion

4. Input parameter or automati
 variable assigned to variable or parameter

5. Input parameter or automati
 variable assigned to dereferen
ed lvalue

10. Dereferen
ed value passed as parameter

11. Dereferen
ed value returned from fun
tion

12. Dereferen
ed value assigned to variable or parameter

Identi
al

1. Create polymorphi
 lo
al variable (or temporary polymorphi
 variable)

13. Dereferen
ed value assigned to Dereferen
ed lvalue

Slightly Worse

14. Take address of parameter or variable

Monomorphi

ode uses the same
alling
onventions as polymorphi

ode, but

an have quite di�erent
hara
teristi
s be
ause all
onditionals are evaluated at

ompile time. For monomorphi

ode our new
alling
onventions provide the same

performan
e as the host \C"
alling
onventions for integer and pointer types, and

perform the same as the \always
opy, no MA"
alling
onventions.

In summary our new
alling
onvention never performs mu
h worse than the

\always
opy, no MA"
alling
onvention, and in many important
ases it gives

mu
h better performan
e.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 55

Why we use the stash for less-then-word-sized arguments

It is possible to put less-than-word-sized arguments inside a word and pass them

inside the MA rather than using the stash.

If we only allow word-sized arguments to be stored in the MA, then whenever we

assign a polymorphi
 variable to a non stash-format obje
t we have to, at run-time,

exe
ute the following
onditional
ode.

if (sizeof(t) == sizeof(int))

opy MA word to target

else

opy stash to target

If we allow less-than-word-sized arguments to be stored in the MA, then this
ondi-

tional be
omes mu
h more
omplex, signi�
antly degrading both performan
e and

ode size.

if (sizeof(t) == sizeof(int))

opy MA word to target

else if (sizeof(t) == 1)

opy low order byte of MA to target

else if (sizeof(t) == 2)

opy low order 2 bytes of MA to target

else if (sizeof(t) == 3)

opy low order 3 bytes of MA to target

else

opy stash to target

When we pass less-than-word-sized integers in registers it is desirable to pass them

in the a format that the pro
essors integer instru
tions
an operate on. Usually

this means we want to pass small integers in the integer registers, as if they were

full width integers.

With pro
essors that store the most signi�
ant byte of a word in the lowest

numbered address (big-endian ma
hines) the layout in storage of a small integer

stored in a full width integer and a native small integer are di�erent :

The integer \42" stored at memory lo
ation 10

CHAPTER 4. IMPLEMENTATION OF \LAKE" 56

Address : 10 11 12 13

Value : 00 00 00 42

The \short integer" 42 stored at memory lo
ation 10

Address : 10 11 12 13

Value : 00 42 XX XX (XX = don't
are)

The di�erent storage formats be
ome a problem when the address of a polymorphi

variable is taken. If we only allow word-sized arguments to be stored in the MA,

then the address of a polymorphi
 variable is either the address of the MA or the

ontents of the MA:

if (sizeof(t) == sizeof(int))

return address of MA (we may have to move MA to memory first)

else

return
ontents of MA

If we allow less-than-word-sized arguments to be stored in the MA, then we must

add
ode to
al
ulate the o�set of the argument within the MA:

if (sizeof(t) == sizeof(int))

return address of MA + (4 - sizeof(t)) (may have to move MA first)

else

return
ontents of MA

Whenever we want to use the result of a pointer dereferen
e (pointers, arrays,

or �eld a

esses) another set of
ompli
ations arises. The
urrent version of the

ompiler has to do the following:

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else

allo
ate stash for pointed to obje
t

opy obje
t into stash

load address of stash into MA

While a version that allows less-than-word-sized obje
ts to be stored in the MA

would have to do:

CHAPTER 4. IMPLEMENTATION OF \LAKE" 57

if (sizeof(t) == sizeof(int))

load pointed at obje
t into MA

else if (sizeof(t) == 1)

load one byte into low order bytes of MA

else if (sizeof(t) == 2)

load two bytes into low order bytes of MA

else if (sizeof(t) == 3)

load three bytes into low order bytes of MA

else

allo
ate stash for pointed to obje
t

opy obje
t into stash

load address of stash into MA

Keep in mind that these algorithms must be evaluated|at run-time|whenever a

polymorphi
 memory obje
t is a

essed.

If we allow small obje
ts to be loaded in the MA we must load small stru
tures

into the MA in the same manner that we would load small integers. Otherwise

we would have to add extra
onditions to the unpa
king and address
al
ulation

routines.

Less-than-word-sized arguments are rarely used in \C" programs; instead they

are
onverted to integers before being passed. So having a less eÆ
ient
alling

onvention for smaller arguments is not expe
ted to have mu
h impa
t on the

performan
e \Sea" programs.

One way to get better performan
e for double parameters would be to expand

the MA to the size of a double. However if this were done, the above
ompli
ations

would for
e us to pass int's and pointers using the stash.

4.1.7 A
tual Code Samples

When we were implementing the
alling
onvention for our \Sea"
ompiler the

priority was on getting a working
ompiler, and the eÆ
ien
y of the �rst version

was a lesser
on
ern. Thus the
urrent implementation of the polymorphi

alling

onvention generates fairly ineÆ
ient
ode. The following is the VAX
ode emitted

by our
ompiler for a polymorphi
 square program.

/* square.d */

CHAPTER 4. IMPLEMENTATION OF \LAKE" 58

forall a : a square(a x, exist a op*(a,a))

{

return x*x;

}

de
l int main()

{

print (square (5));

print (square (5.0));

return 1;

}

#NO_APP

g

_
ompiled.:

.text

.align 1

.globl _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

_square__FLI1aEFLI1aI1ae_I1aZe_I1aZ:

.word 0x0

movl *4(ap),r0 ; load the pointer to our return area into r0

movl *8(ap),r1 ; load the pointer to our
losure into r1

subl2 $24,sp ; allo
ate spa
e for stashing arguments

movl 8(r1),r1 ; get pointer to ``op*''
losure through r1

movl 12(ap),12(sp) ; pass MA for ``x'' as first arg to ``op*''

movl 12(ap),8(sp) ; pass MA for ``x'' as se
ond arg to ``op*''

movl r1,20(sp) ; pass pointer to ``op*''
losure to ``op*''

movl r0,16(sp) ; pass our return area pointer to ``op*''

alls $10,*(r1) ;
all ``op*'' using ``op*''
losure

ret ; return value that was returned by ``op*''

.align 2

LC0: ;
losure for int op*(int,int)

.long _multiply__FLiie_iZ

.align 2

LC1: ;
losure for square spe
ialized to int square(int)

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 4

.long LC0

CHAPTER 4. IMPLEMENTATION OF \LAKE" 59

.align 2

LC2:

.long _print__FLie_iZ

.align 2

LC3:

.long _multiply__FLdde_dZ

.align 2

LC4:

.long _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ

.long 8

.long LC3

.align 2

LC5:

.long _print__FLde_iZ

.align 1

.globl _main

_main:

.word 0x3
0

subl2 $20,sp

subl3 $4,fp,r8

movl sp,r7

subl2 $24,sp

movl sp,r9

subl2 $24,sp

movl $5,20(sp)

addl3 sp,$20,8(sp)

movab LC1,16(sp)

addl3 sp,$16,4(sp)

subl3 $8,fp,12(sp)

addl3 sp,$12,(sp)

movab _square__FLI1aEFLI1aI1ae_I1aZe_I1aZ,r6

alls $9,(r6)

movl r9,sp

movl -8(fp),20(sp)

CHAPTER 4. IMPLEMENTATION OF \LAKE" 60

addl3 sp,$20,8(sp)

movab LC2,16(sp)

addl3 sp,$16,4(sp)

movl r8,12(sp)

addl3 sp,$12,(sp)

alls $9,_print__FLie_iZ

movl r7,sp

subl3 $12,fp,r7

subl2 $28,sp

movl sp,r8

subl2 $28,sp

movd $0d5.00000000000000000000e+00,20(sp)

addl3 sp,$20,8(sp)

movab LC4,16(sp)

addl3 sp,$16,4(sp)

subl3 $20,fp,12(sp)

addl3 sp,$12,(sp)

alls $10,(r6)

movl r8,sp

movd -20(fp),20(sp)

addl3 sp,$20,8(sp)

movab LC5,16(sp)

addl3 sp,$16,4(sp)

movl r7,12(sp)

addl3 sp,$12,(sp)

alls $10,_print__FLde_iZ

movl $1,r0

ret

Longer examples are given in the appendi
es.

For
omparison purposes, the following is a monomorphi
 version of the same

fun
tions. If we had written square int and square double using the inline *

operator the resulting
ode would have been even better.

/* square.
 */

int square_int(int x)

{

return multiply_int(x, x);

CHAPTER 4. IMPLEMENTATION OF \LAKE" 61

}

double square_double(double x)

{

return multiply_double(x, x);

}

int main()

{

print_int (square_int (5));

print_double (square_double (5.0));

return 1;

}

#NO_APP

g

_
ompiled.:

.text

.globl _square_int

_square_int:

.word 0x0

movl 4(ap),r0

pushl r0

pushl r0

alls $2,_multiply_int

ret

.align 1

.globl _square_double

_square_double:

.word 0x0

movd 4(ap),r0

movd r0,-(sp)

movd r0,-(sp)

alls $4,_multiply_double

ret

.align 1

.globl _main

_main:

CHAPTER 4. IMPLEMENTATION OF \LAKE" 62

.word 0x0

pushl $5

alls $1,_square_int

pushl r0

alls $1,_print_int

movd $0d5.00000000000000000000e+00,-(sp)

alls $2,_square_double

movd r0,-(sp)

alls $2,_print_double

movl $1,r0

ret

A
ompiler that utilizes the above implementation strategy
an use normal \C"

style separate
ompilation :

.
+.h .
+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| |

| |

| .o | .o

| |

| |

V V

| |

| Standard Linker |

| |

|

|

|

|

CHAPTER 4. IMPLEMENTATION OF \LAKE" 63

V

a.out

4.2 Implementation 2 : Polymorphi
 obje
t
ode,

all
losures
onstant

For this implementation we use the algorithm proposed in
hapter 3 to transform

the \Lake" program so that all
losures are
onstant.

A
losure
ontains a pointer to a fun
tion as well as a set of type and opera-

tion parameters bindings for a spe
i�
 invo
ation of that fun
tion. If
losures are

known at
ompile time then we
an apply, at
ompile time, the
losure to the poly-

morphi
 fun
tion and thereby generate a spe
ialized version of the polymorphi

fun
tion. While it is possible to
ompletely spe
ialize the polymorphi
 fun
tion to

be a monomorphi
 fun
tion (and this is explored in the next se
tion), this is not the

only form of spe
ialization that is possible. We propose retaining one obje
t-
ode

fun
tion that is referen
ed by all
losures, but spe
ializing bits of this fun
tion by

moving
onstant
al
ulations and bits of
ode to the
losure.

When reading
ode generated by our \Sea"
ompiler, it was observed that many

omplex expressions,
onsisting entirely of
onstants and
losure �elds, were being

evaluated at runtime. These expressions are used to a

ess parameters, lay out

lo
al variables, lo
ate �elds in parameterized types, and during the
onstru
tion of

parameter lists.

For example : (a and b are type parameters)

(((sizeof(a)+3)/4)*4)*2 + ((sizeof(b)+3)/4)*4 + 8

Instead of generating runtime
ode for su
h expressions, we propose repla
ing these

expressing with referen
es to new
losure members. We then add notes to the fun
-

tion de�nition detailing the (
ompile-time)
al
ulations we want done. As
onstant

losures are generated we
an look up these notes, do the requested
al
ulations,

and store the results as new
losure �elds.

Pointers to
hunks of
ode, like
opy operations,
an be similarly moved in the

losure.

An additional bene�t of having all
losures
onstant is that we don't have to

reate
losures at runtime. This
an result in signi�
ant runtime savings for some

styles of programming that involve the
onstru
tion of many non-
onstant
losures.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 64

A
ompiler that utilizes this te
hnique needs a global \Closure Pro
essing" pass

before linking. This pass uses a simple, fast algorithm, and does not have to pro
ess

mu
h data, so it is not expe
ted to add signi�
antly to
ompile time.

As ea
h \.
" �le is
ompiled to a \.o" �le the
ompiler also outputs a \.
lo" �le

that
ontains : 1)
onstant
losures that have been
reated during the
ompilation

of that �le 2) \
losure expansion templates" for all polymorphi
 fun
tions de
lared

in that �le and 3) for ea
h polymorphi
 fun
tion, a list of expressions that
an be

expanded at
ompile time.

.
+.h .
+.h

| |

| |

V V

-------------- --------------

| | | |

| Compiler | | Compiler |

| | | |

-------------- --------------

| | | |

|.o |.
lo .
lo| .o|

| | | |

| V V |

| --------------- |

| | Closure | |

| | Pro
essor | |

| | | |

| --------------- |

| | |

| |.o |

| | |

V V V

| |

| Standard Linker |

| |

|

|

|

CHAPTER 4. IMPLEMENTATION OF \LAKE" 65

|

V

a.out

\.
lo" �les
ontain
onstant
losures,
losure expansion templates, and whatever

information is needed about polymorphi
 fun
tions to allow us to
al
ulate sta
k

o�sets for polymorphi
 automati
 variables, et
.

4.3 Implementation 3 : Translation to monomor-

phi
 obje
t
ode

On
e we have transformed a \Lake" program so that all
losures are
onstant, we

apply these
onstant
losures to the original polymorphi
 fun
tions and generate

spe
ialized monomorphi
 versions.

A
ompiler using this te
hnique would read ea
h \Sea" program �le, do all

type-
he
king and type inferen
e, output a �le
ontaining
losure information, and

output a �le
ontaining \Lake" parse trees for every fun
tion. The \
losure pro
es-

sor" global pass would then
al
ulate the
onstant
losures for the program. These

onstant
losures
an then be
ombined with the polymorphi
 fun
tion represented

as a \Lake" parse tree to generate a spe
ialized \Lake" fun
tion. This fun
tion
an

then be
ompiled to obje
t
ode.

Spe
ialized \Lake" fun
tions would be standard \C" fun
tions, and
ould be

ompiled using standard \C"
ompilation te
hniques, or, in fa
t, we
ould output

these \Lake" fun
tions as \C"
ode and feed this through the sto
k \C"
ompiler.

This would result in a portable, high performan
e (in exe
ution time)
ompiler.

Be
ause a large body of \Sea"
ode has not been written, it is unknown how

many spe
ialized versions of polymorphi
 fun
tions would be generated by typi
al

programs. Be
ause we repli
ate all the
ode for ea
h version this algorithm
ould

potentially generate very large exe
utable �les.

If we generated obje
t
ode for spe
ialized versions of polymorphi
 fun
tions

anew with every
ompile (in
luding for libraries) we
ould not use this
ompiler on

large systems. The solution is to
a
he obje
t
ode for already expanded versions of

fun
tions. Every expansion is added to this
a
he after it is generated, and all the

expansions generated from a spe
i�
 �le are
ushed when the parse-tree generated

from that �le
hanges.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 66

A
ompiler with parse trees for all the fun
tions in a system would also be able

to inline any fun
tion.

As was dis
ussed earlier, this is the only
ompilation s
heme that
an eÆ
iently

support \C++"-style
onstru
tors and destru
tors.

Another advantage of this
ompilation s
heme is that it would for
e library

distributors to distribute their libraries in something
lose to sour
e form.

The stru
ture of a
ompiler employing this te
hnique would be as follows :

CHAPTER 4. IMPLEMENTATION OF \LAKE" 67

.
+.h .
+.h

| |

V V

-------------- --------------

| Compiler | | Compiler |

-------------- --------------

|.t |.
lo .
lo| .t|

| | | |

| V V |

| ----------------- |

| | Closure | |

| | Pro
essor | |

| ----------------- |

| | |

V V V

| Fun
tion Expander |

^ |.

|expansion |

|queries V

| ------------------

| | `C'
ompiler |

| ------------------

| |.o

V V

| Expansion Ca
he |

|.o+.a

V

| Standard Linker |

|

V

a.out

\.t" �les
ontain \Lake" parse trees. \.
lo" �les
ontain
losure information.

CHAPTER 4. IMPLEMENTATION OF \LAKE" 68

4.4 Implementation 4 : Only pointer types
an

be bound to type parameters

Almost all the
omplexity in our polymorphi
 obje
t
ode
ompiler is there in order

to support parameters, return values, and aggregate type members whose size is

not a
ompile-time
onstant. For a variant of \Sea" where only (data) pointer types

an be bound to type variables (and typegen parameters), all polymorphi
 obje
ts

have the same representation, and the resulting language system is mu
h simpler,

more reliable, more portable, and more eÆ
ient.

In the next
hapter we will demonstrate that, due to the way \C" variables are

de�ned, we derive surprisingly little advantage out of allowing types other than

pointer to be bound to type parameters. We will then argue that the advantages

of a \pointers only" de�nition outweigh the bene�ts of the more
omplete system.

What follows is a dis
ussion of how a \pointers only" \Sea"
ompiler
ould be

implemented :

The �rst step in
ompiling \pointers only" \Sea" is to do type inferen
e and

overload resolution, translating the \Sea" program into a \Lake" program. For

example, the following \Sea" program fragment:

// Type generator for ``list''

type list(type elem) {

return stru
t {

list(elem) *next;

elem data; } *;

}

// put string

void put(FILE *f,
har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put(stream s, list(elem) l, exists void put(stream, elem))

{

while (l)

CHAPTER 4. IMPLEMENTATION OF \LAKE" 69

{

put(s, l->data);

l = l->next;

}

}

// test fun
tion

void g(list(
har *) l)

{

put(stdout, l);

}

Would be translated by the inferen
er to the following \Lake" program: (a real

translation would use the mangled names des
ribed for implementation 1)

// Type generator for ``list''

type list(type elem) {

return stru
t {

list(elem) *next;

elem data; } *;

}

// put integer

void put_1(FILE *f,
har *x)

{

fputs(x, f);

}

// put list

forall streams,elem :

void put_2(stream s, list(elem) l, exists void put_p1(stream, elem))

{

while (l)

{

put_p1(s, l->data);

l = l->next;

}

}

CHAPTER 4. IMPLEMENTATION OF \LAKE" 70

// test fun
tion

void g_1(list(
har *) l)

{

put_2<FILE *,
har *, put_1<>>(stdout, l);

}

\Lake" has two features that are missing from \C":

1. Polymorphi
 \Lake" fun
tions are spe
ialized to be monomorphi
 \Lake"

fun
tion by the appli
ation of a tuple of type and operation parameters.

An unspe
ialized \Lake" fun
tion
an be represented in \C" as a pointer to

a \C" fun
tion, that is prepared to take, as its �rst parameter, a pointer

to a stru
ture
ontaining bindings for its type and operation parameters.

A spe
ialized \Lake" fun
tion is represented in \C" as a
losure
ontaining

a pointer to the polymorphi
 \C" fun
tion, as well as bindings for all its

operation parameters. When a spe
ialized \C"
losure is applied to a set of

a
tual arguments, we
all the polymorphi
 fun
tion mentioned in the
losure,

supplying a pointer to the
losure as its �rst parameter. The polymorphi

fun
tion
an then spe
ialize its own behaviour by referring to the
ontents of

the
losure. No runtime support is needed for type parameters be
ause we

have restri
ted all type parameters to one representation.

We de
lare a new
losure \stru
t" for ea
h polymorphi
 fun
tion de�nition,

be
ause this allows us to give types to the
losure members, drasti
ally re-

du
ing the number of type
asts we have to do.

2. Type generators

Type generators
an be expanded to \C" types by applying, at
ompile time,

the type generator parameters to the type generator de�nition. This trans-

lation loses the spe
ial type equivalen
y rules de�ned for type generators,

fortunately all types generated from a single typegen will have the same rep-

resentation (in \only pointers" \Sea"), and
an be made type
ompatible

when appropriate, through judi
ious appli
ation of type
asts.

In addition to these two translations, a liberal sprinkling of (void *)
asts is

required to keep the \C" type-
he
ker quiet. The resulting \C" program is:

typedef stru
t _list_poly {

stru
t list *next;

CHAPTER 4. IMPLEMENTATION OF \LAKE" 71

void *data; } *list_poly;

typedef stru
t _list_int {

stru
t _list_int *next;

har *data; } list_int;

/* The first parameter to every fun
tion is a pointer to its
losure. */

/* put integer */

stru
t put_1_
losure {

void (*obj)(stru
t put_1_
losure *, FILE *,
har *);

};

void put_1(put_1_
losure *
, FILE *f,
har *x)

{

fputs(x, f);

}

/* put list */

stru
t put_2_
losure {

void (*obj)(stru
t put_2_
losure *, void *);

void (**put_p1)(void *, void *, void *);

};

void put_2(stru
t put_2_
losure *
, list_poly l)

{

while(l)

{

*
->put_p1((void *)
->put_p1, s, l->data);

l = l->next;

}

}

stru
t put_1_
losure C1 = {put_1};

stru
t put_2_
losure C2 = {put_2,

void (**)(void *, void *, void *)&C1};

CHAPTER 4. IMPLEMENTATION OF \LAKE" 72

/* test fun
tion */

void g_1(void *
, list_int l)

{

C2->obj(&C2, (void *)stdout, l);

}

Whi
h
an then be run through the host \C"
ompiler.

4.4.1 Why not allow integers as well as pointers ?

Integers usually have the same representation as pointers, so for most ma
hines it is

possible, without
ompromising eÆ
ien
y, to allow both integer and pointer types

to be bound to type parameters.

Two minor
ompatibility problems would be introdu
ed by this
hange:

1. We would not be able to
ompile \Sea" programs on ma
hines that used a

di�erent representation for pointers and integers. Fortunately, however, su
h

ma
hines are rapidly be
oming extin
t.

2. On a ma
hine that has separate integer and pointer registers (ie. the Motorola

68000), a register based
alling
onvention might load integer parameters into

integer registers and pointer parameters in pointer registers. Thus if we at-

tempted to
all a monomorphi
 fun
tion from within a polymorphi
 fun
tion,

passing the integer arguments as if they were pointers, these arguments
ould

end up in the wrong registers. The solution to this problem is to pass all

integer arguments as if they were pointers, but this is a nuisan
e.

We are opposed to this addition be
ause it adds little power to the language

while adding
onfusion to the language de�nition.

A more interesting variant would allow all the built-in types as well as pointers,

to be bound to type parameters. This would provide most of the power of our

truly polymorphi
 version, without having to support runtime variable parameters

larger than a double. We
ould implement this variant by passing all parameters

as �xed sized
hunks large enough to hold a value of any of the basi
 types. See

the se
tion entitled \Why we use the stash for less-then-word-sized arguments" for

a dis
ussion of the pitfalls of this te
hnique. (In short, this ends up being just as

ompli
ated, and ineÆ
ient as the fully general
ase.)

Chapter 5

Experien
e Using \Sea"

After implementing the prototype \Sea"
ompiler we attempted to write a number

of libraries and sample programs to test the expressiveness of the new features.

In this se
tion we explore the limitations we ran into as well as some unexpe
ted

apabilities that emerged.

5.1 Values

The following se
tion is an exploration of how \values" are
reated and manipulated

in \C", and the impli
ations of this for \Sea".

A \C" variable or parameter of type T is a name for a region of storage large

enough to hold a value of type T.

Obje
t : \A region of data storage in the exe
ution environment, the
ontents

of whi
h
an represent values ..." ANSI 1.6

\A de
laration that also
auses storage to be reserved for an obje
t or fun
tion

named by an identi�er is a de�nition" ANSI 3.5

Parameter : \An obje
t de
lared as part of a fun
tion de
laration or de�nition

that a
quires a value on entry to the fun
tion ..." ANSI 1.6

\If a return statement with an expression is exe
uted, the value of the expression

is returned to the
aller as the value of the fun
tion
all expression ..." ANSI 3.6.6.4

So values of any \C" type
an be stored in variables, passed as fun
tion param-

eters, and returned from fun
tions.

73

CHAPTER 5. EXPERIENCE USING \SEA" 74

Unfortunately \C" variables are not
apable of representing very
omplex values.

They work �ne for integers,
oating point numbers, pointers, and small �xed-size

stru
tures (like those that might be used to represent
omplex numbers). A \C"

variable has a size that is �xed at
ompile time,
annot be very big or it will be too

expensive to pass as a parameter, and
an only have a very limited substru
ture

(e.g. no re
ursively de�ned substru
ture).

So straight \C" is a very limited language that
annot represent
omplex values

like \matri
es" and \lists". In pra
ti
e this problem is
ir
umvented by building

omplex values out of multiple
hunks of storage allo
ated from areas of memory

that are not used by the \C" language system, and then a

essing these
hunks of

storage as typed obje
ts through \C" pointers.

While this te
hnique does allow us to represent
omplex abstra
tions in \C",

be
ause they are being
reated outside of the
ontrol of the language, the language's

built-in operations are oblivious to this substru
ture, so assignment, parameter

passing and value return all operate only on the top-level value. So when the

\C" programmer wants to work with a large value (like a matrix) he or she must

expli
itly allo
ate and release storage for the value, expli
itly
reate temporaries to

hold intermediate values, and take into a

ount when the sharing of the body of

the value will be a problem and expli
itly make
opies.

We were able to write polymorphi
 routines that manipulated the small (in stor-

age requirements and
omplexity) values that
an �t within a single \C" variable.

We were also able to write routines that modi�ed the state of large polymorphi

heap-based data stru
tures (like linked lists). However, when we tried to implement

routines that operated on large heap-based values (like strings, bignums or matri-

es), we found that our routines be
ame polluted with expli
it storage-management

operations, value-
opying operations, return value
onventions, parameter-passing

onventions, and sharing assumptions that were di�erent for ea
h abstra
tion.

The following
ode samples show a number of di�erent ways a simple sample

fun
tion
ould be implemented in \C". Ea
h uses slightly di�erent storage manage-

ment
onventions.

/* If a bignum
an fit within a single `C' variable then we
an implement

``pythag'' as follows.

*/

bignum pythag(bignum x, bignum y)

{

bignum r;

CHAPTER 5. EXPERIENCE USING \SEA" 75

r=bignum_sqrt(x*x+y*y);

return r;

}

/* Conventions :

1) Return values are stored on the heap and deallo
ation is the

responsibility of the
aller.

2) Input parameters are never modified by fun
tions (unless expli
itly

stated).

*/

bignum pythag(bignum x, bignum y)

{

bignum t1, t2, t3, t4;

t1 = bignum_mult(x, x);

t2 = bignum_mult(y, y);

t3 = bignum_add(t1, t2);

bignum_free(t1);

bignum_free(t2);

t4 = bignum_sqrt(t3);

bignum_free(t3);

return t4;

}

/* Conventions :

1) A pointer to an already
reated bignum will be passed in for

storing a return value. We may also
hoose to stipulate that this

output parameter not point to the same area as any of the input

parameters.

2) Input parameters are never modified by fun
tions (unless expli
itly

stated).

This version generates fewer
alls to the storage manager (the previous

version needed at least one mallo
/free per fun
tion
all to handle

the return value.)

Note :

CHAPTER 5. EXPERIENCE USING \SEA" 76

Although there has only been a minor
hange in the
onventions sin
e

the previous version, every line of
ode is different.

*/

void pythag(bignum out, bignum x, bignum y)

{

bignum a, t1, t2, t3;

bignum_init(a);

bignum_init(t1);

bignum_init(t2);

bignum_init(t3);

bignum_mult(t1, x, x);

bignum_mult(t2, y, y);

bignum_add(t3, x, y);

bignum_sqrt(a, t3);

bignum_
opy(out, a);

bignum_free(t3);

bignum_free(t2);

bignum_free(t1);

bignum_free(a);

return out;

}

5.2 Constru
tors and Destru
tors

When
onfronted with a similar problem, the designers of \C++"
reated a system

of overloaded
onstru
tors, overloaded destru
tors and an overloaded assignment

operator that allows the programmer to exe
ute a
ode stub every time an obje
t|

of a spe
i�
 type|is
reated,
opied, or goes out of s
ope. The \C++" programmer

typi
ally uses these hooks to either 1) maintain a separate deep substru
ture for

ea
h variable or parameter, and re
over the storage o

upied by this substru
ture

when the variable or parameter goes out of s
ope, or 2) implement a referen
e

ounting system for the obje
t so multiple top-level obje
ts
an share one substru
-

CHAPTER 5. EXPERIENCE USING \SEA" 77

ture, yet the storage o

upied by the substru
ture
an be re
laimed when there are

no more referen
es to it.

`C++"s de�nition of
onstru
tors and destru
tors is
omplex,
onfusing, and

full of grey areas. However, most of this
omplexity appears to be the result of

integrating the system into an already existing language (\C"). Rather than at-

tempting to repeat their perilous (design) journey, thereby
reating a fresh set of

subtle problems, \Sea" will use \C++"'s
onstru
tor/destru
tor system.

If
onstru
tors/destru
tors were applied to every obje
t in a system the result-

ing program would run very slowly, mu
h slower than if garbage
olle
tion (a more

general, fully automati
, storage re
lamation system) had been used. The advan-

tage to
onstru
tors/destru
tors is that there is no
ost unless they are a
tually

used, whi
h is typi
ally for only a few types in a system. Another advantage of

onstru
tors over garbage
olle
tion is that they allow for the re
lamation of system

resour
es like �le handles.

\C++"
onstru
tors are de�ned as part of
lass, whereas \Sea"
onstru
tors

are de�ned as separate overloaded fun
tions that take a pointer to the type they

are meant to
onstru
t.

We
an use \Sea"s polymorphi
 overloading system to de�ne
onstru
tors/destru
tors

that work for any type that provides the base operations required for that style of

onstru
tor/destru
tor. For example, the following library implements a referen
e-

ounting
onstru
tor, destru
tor, and assignment operator for any type that has a

\referen
e
ount" �eld.

forall a : void
onstru
t(a *target,

exists void first_
onstru
t(a *), exists int *referen
e_
ount(a *))

{

*referen
e_
ount(target)++;

reate(target);

}

forall a : void init(a *target, a *sour
e,

exists int *referen
e_
ount(a *))

{

*referen
e_
ount(sour
e)++;

*target = *sour
e;

}

forall a : void op=(a *target, a sour
e,

CHAPTER 5. EXPERIENCE USING \SEA" 78

exists int *referen
e_
ount(a *))

{

*referen
e_
ount(&sour
e)++;

*target = sour
e;

}

forall a : void destroy(a *target,

exists void final_destroy(a *), exists int *referen
e_
ount(a *))

{

if(!--*referen
e_
ount(target))

final_destroy(target);

}

Then when we want to de�ne a referen
e-
ounted \bignum" type, we
an provide

just the basi
 de�nitions required by the above library. In \C++" programs, the

basi
 referen
e-
ounting algorithm must be re-implemented for ea
h new type.

typedef stru
t _bignum {

int referen
e_
ount;

har *digits;

} *bignum;

void first_
onstru
t(bignum *x)

{

*x->digits = NULL;

}

void final_destroy(bignum *x)

{

if (*x->digits != NULL)

free (*x->digits);

}

int *referen
e_
ount(bignum *x)

{

return &(*x->referen
e_
ount);

}

Unfortunately,
onstru
tors and destru
tors are in
ompatible with the preferred

implementation strategies for \Sea", as will be illustrated by the following example:

CHAPTER 5. EXPERIENCE USING \SEA" 79

We
an de�ne a polymorphi
 version of the pythag fun
tion in \Sea" as follows:

forall a : a pythag(a x, a y,

exists a op*(a,a), exists a op+(a,a), exists a sqrt(a))

{

a r;

r=sqrt(x*x+y*y);

return r;

}

After the
ompiler adds the impli
it
onstru
tor and destru
tor operation parame-

ters pythag will read:

(We are using the same
onstru
tor/destru
tor system as \C++", so in order

to a

urately generate the following example we de�ned a pythag fun
tion for a

lass that had a
onstru
tor, destru
tor, and a assignment operator, and ran this

program through the \
front" (the AT&T \C++" to \C" translator.))

(Constru
tors and destru
tors are integrated into the fun
tion
alling
onven-

tions, so it is not possible to do a truly a

urate sour
e-level representation of a

\Sea" fun
tion with
onstru
tors and destru
tors in pla
e. For the following ex-

ample we have repla
ed parts of the fun
tion
alling and return
onventions with

similar sour
e level
onstru
ts.)

forall a : void pythag(a *result, a x, a y,

exists void mult(a *, a, a), exists void add(a *, a, a),

exists void sqrt(a *, a),

exists void
onstru
t(a *), exists void init(a *, a),

exists void assign(a *, a), exists void destroy(a *))

{

a result;

a 1r;

a V4;

a V5;

a R6;

a V7;

a V8;

a R9;

a R10;

a R11;

CHAPTER 5. EXPERIENCE USING \SEA" 80

onstru
t (&1r);

mult (&R6, init (&V4, x), init (&V5, x));

mult (&R9, init (&V7, y), init (&V8, y));

plus (&R10, &R6, &R7);

sqrt (&R11, &R10);

assign (&1r, &R11);

destroy (&R11);

destroy (&R10);

destroy (&R9);

destroy (&V8);

destroy (&V7);

destroy (&R6);

destroy (&V5);

destroy (&V4);

init (result, &1r);

destroy (&1r);

return;

}

Often, when pythag is
alled, no
onstru
tors or destru
tors will be de�ned for the

polymorphi
 type a. (For example no
onstru
tors or destru
tors are de�ned for

int.) In this
ase the operation parameters
onstru
t, init, destroy and assign

will be bound to the default no-operation
onstru
tor.

A \Sea"
ompiler that translated polymorphi
 \Sea" programs into equivalent

monomorphi
 programs (Implementation 3),
ould remove all these null fun
tion

alls resulting in no performan
e degradation ex
ept when
onstru
tors were a
tu-

ally used. (as in \C++")

Unfortunately, with any of the \Sea" implementations where operation parame-

ters are re
eived at runtime, for every variable de
laration, every parameter passed,

every return value, and every assignment operator we would have to generate a
all

to a (possibly null) operation parameter. (Or, more eÆ
iently, evaluate a
on-

ditional to determine if the
all is really needed.) Thus the performan
e of all

polymorphi
 fun
tions would su�er tremendously.

CHAPTER 5. EXPERIENCE USING \SEA" 81

5.2.1 Garbage Colle
tion

A garbage
olle
tor does automated storage re
lamation by releasing the storage

o

upied by all obje
ts that a program
annot rea
h though any
hain of pointer

dereferen
es. Be
ause the program had no way of a

essing this data, the fa
t that

it is not longer available
an have no e�e
t on the program exe
ution.

Traditional garbage
olle
tors �nd all live data by marking all the data a

es-

sible from the program's variables (the roots), then re
ursively marking all data

a

essible from
urrently marked obje
ts. (The a
tual algorithms that are used are

mu
h more
omplex, but they are all based on this shell.)

In order for this type of garbage
olle
tor to operate it must be able to: 1)

identify all the \root" pointers in program variables 2) identify all the pointers in

ea
h heap obje
t.

In many languages pointers are lo
ated either by storing pointers in a spe
ial

format that no other data obje
t
an have (tagged pointers) or by tagging every

data obje
t (in
luding sta
k frames) with enough type information to lo
ate all

pointers within that obje
t.

Tagging Data Obje
ts

A te
hnique des
ribed by [DMH92℄ for tagging the runtime sta
k in a GCC-based

Modula-3
ompiler
an also be used for \C". As fun
tions are
ompiled we generate

a data stru
ture that des
ribes, for ea
h point in a fun
tion's exe
ution, the lo
ation

of all pointers or derived pointers. When a garbage
olle
tion is then done, pointers

an be lo
ated by walking up the
all
hain, and for ea
h fun
tion, looking in the

table asso
iated with its
urrent state of exe
ution (as identi�ed by the
urrent

value of the program
ounter within that fun
tion.) (There are limitations and

ompli
ations asso
iated with this te
hnique; see [DMH92℄ for details.)

To lo
ate pointers in the heap, the
ompiler
an be modi�ed to generate tables

des
ribing the lo
ation of pointers in every type. These tables
an be asso
iated

with ea
h type through our overloading system. We
an then write a polymorphi

allo
 fun
tion that will tag ea
h allo
ated blo
k with a referen
e to the appropriate

pointer layout table.

Stati
 data
an be tagged using a method similar to that we propose for the

heap, ex
ept that the tagging will be done at
ompile time.

There is no way for the garbage
olle
tor to determine whi
h a

ess path into

a union was last used. Thus we must either add a tag bit to unions or we
annot

CHAPTER 5. EXPERIENCE USING \SEA" 82

allow unions that have pointers in di�erent lo
ations in di�erent arms.

If the garbage
olle
tion algorithm is designed su
h that pointers that do not

point into a heap obje
t are left alone, then the garbage-
olle
ted heap
an
o-exist

with a
onventional \C" heap. Members of the \C" heap would not be allowed

to point into the garbage
olle
ted heap. Allowing the two heaps to
o-exist is

important if we want to have a

ess to the large library of \C"
ode available,

mu
h of whi
h will not play by our new rules.

\C" pointers regularly point into the middle of obje
ts, and therefore, our

garbage
olle
tor must be
apable of re
ognising su
h referen
es.

Using the above tagging information it would be possible to use most of the

high-performan
e garbage
olle
tors des
ribed in the literature.

Unfortunately, this te
hnique requires substantial
ompiler support, so it is not

appropriate if we want to use \C" as an intermediate language.

Tagged Pointers

Tagging \C" pointers is not pra
ti
al be
ause there is no way we
ould reserve spe-

i�
 bit patterns for pointers only, without severe (and in
ompatible) modi�
ations

to how aggregate data stru
tures are
onstru
ted and manipulated.

In response to these problems Hans Boehm invented
onservative pointer-�nding

garbage
olle
tors. The observation he made was that a garbage
olle
tor
an

be written even with a pointer-identi�er that o

asionally mistakes non-pointers

for pointers, and that su
h a pointer-identi�er
an be implemented simply and

eÆ
iently by
he
king if the prospe
tive word points to the beginning of a heap

obje
t.

The runtime heap has to be spe
ially
onstru
ted so that we
an rapidly identify

words pointing to the beginning of an allo
ated heap obje
t. The way we do this

is by de�ning a table that has an entry pointing to the beginning of every heap

obje
t. Sear
hing this table as we are trying to identify pointers would be too time

onsuming, so we pla
e a pointer in the header of ea
h allo
ated obje
t that points

to its entry in the table. To
he
k if a word points to the beginning of a heap

obje
t, we
he
k if the pointer in the header of the obje
t points into the table,

and if it does, we
he
k if the pointer in the table refers ba
k into the heap obje
t.

(This is a simpli�
ation of the algorithm presented in [Boehm℄ that uses slightly

more memory, but runs faster and does not require a
ustom storage allo
ator.)

CHAPTER 5. EXPERIENCE USING \SEA" 83

Now that we have a way of identifying pointers we
an implement a
onventional

mark-sweep garbage
olle
tor with every word in the sta
k and external variable

area as the set of roots.

Be
ause we will identify some non-pointers as pointers, we
annot use any of the

garbage
olle
tion te
hniques that move data. (Without elaborate virtual memory

tri
ks.) This is parti
ularly disappointing be
ause we would like to use our garbage

olle
tor data stru
tures to store and retrieve data stru
tures from se
ondary stor-

age.

The addition of garbage
olle
tion makes \C" a mu
h more powerful and pleas-

ant language to program in. For example we
an provide a mu
h better string

abstra
tion if we don't have to worry about storage re
lamation:

har *
on
at(
har *a,
har *b)

{

har *
 = mallo
(strlen(a)+strlen(b)+1);

str
py(
, a);

str
at(
, b);

return
;

}

We
an then evaluate expressions like \a =
on
at(
on
at("a", "b"))" with no

storage management
onsiderations.

Su
h strings
an be passed as parameters, returned from fun
tions, and stored

in variables, all without expli
it storage allo
ation grief. See above for a dis
ussion

of why this is parti
ularly important when we are de�ning polymorphi
 fun
tions.

There are several problems with adding garbage
olle
tion to \Sea" :

1. Pauses in exe
ution: There is a signi�
ant pause in exe
ution while the

garbage
olle
tor sear
hes the heap to �nd and mark live data. The du-

ration and frequen
y of these pauses depends on the appli
ation,
omputer,

and amount of memory. Many \C" appli
ations are intera
tive or real-time

in nature and any pauses are una

eptable.

2. Signi�
ant time overhead: The exa
t overhead depends on the program and

the amount of memory available.

3. Large memory requirements: Garbage-
olle
ted programs that do a lot of

storage allo
ation (as is the preferred style with garbage
olle
tion) should

expe
t to use several times more storage than they have live data.

CHAPTER 5. EXPERIENCE USING \SEA" 84

4. Portability: The
urrent versions of Boehm's
onservative garbage
olle
tor

are not
ompatible with the optimizations done by most modern
ompilers

when they are told to generate \optimized
ode". Not using
ompiler opti-

mizations on modern RISC ma
hines leads to signi�
ant performan
e degra-

dation. This is only an issue if our
ompiler generates \C"
ode (Eventually

someone will add a GC-friendly swit
h to GCC).

For the above reasons, rather than making garbage
olle
tion a standard part

of the \Sea" language de�nition, we propose two variants of \Sea": \Sea level 1"

would not have garbage
olle
tion and would be suitable for appli
ations where

performan
e or real-time
onsiderations were an issue, and \Sea" level 2 would

have garbage
olle
tion, and would feature mu
h more powerful polymorphi
 (and

non-polymorphi
) libraries.

5.2.2 Expli
it Storage Management

It should be noted that even in the absen
e of some form of storage re
lamation,

many interesting polymorphi
 routines
an still be written. For example most

data-stru
ture libraries (like lists or di
tionaries) and data-stru
ture manipulation

routines (like sort) operate on a large, already existing stru
ture, and thus
an

usually be implemented without mu
h storage management.

It is also possible to write routines that work for any type that use one spe
i�

style of storage allo
ation, and then standardize on this style for most types. For

example, we
an de�ne \pythag" for any type that has a storage \release" routine:

forall a : a pythag(a x, a y,

exists a mult(a,a), exists a add(a,a),

exists a sqrt(a), exists void release(a))

{

a t1, t2, t3, t4;

t1 = mult(x, x);

t2 = mult(y, y);

t3 = add(t1, t2);

release(t1);

release(t2);

t4 = sqrt(t3);

release(t3);

CHAPTER 5. EXPERIENCE USING \SEA" 85

return t4;

}

This is mu
h less elaborate (and limited) than the full
onstru
tor/destru
tor

s
heme, but it does not
reate the same implementation problems.

5.2.3 Implementation Sele
tion

As has already been dis
ussed, we propose 2 levels of the \Sea" language 1) without

garbage
olle
tion, suitable for limited memory environments or appli
ations with

real-time
onstraints and 2) with garbage
olle
tion, a mu
hmore powerful language

with mu
h more powerful libraries. We de�ne these as two di�erent variants of the

language so that the real-time programmer
an know whi
h libraries are safe for

his or her appli
ations.

Earlier, we introdu
ed a variant of \Sea" in whi
h only pointer types
an be

bound to type variables. A
ompiler for this variant
an be implemented as a

translator to \C", and su
h a
ompiler
ould probably be written in 15000-20000

lines of portable \C"
ode.

Be
ause of the elaborate
alling
onventions and data-stru
ture layout rules

required for an eÆ
ient, unrestri
ted implementation of \Sea", a
ompiler for su
h

a language has to
ompile dire
tly to the target assembly language. To make su
h

a
ompiler portable to a wide range of ma
hines requires
onsiderable additional

work. Our
urrent \Sea"
ompiler is portable and, with some tuning,
an generate

high-performan
e
ode. It is implemented as 175000 lines of \C"
ode. (almost all

of this is sto
k GCC).

Whi
h implementation is preferred depends on the appli
ation. The appli
ations

of early, experimental versions of \Sea" are as follows:

1. Developmental : Experiment with and re�ne language features.

\Sea" is one of the �rst languages to use \overloading polymorphism", so

as the language is used it is expe
ted that the language design will evolve

rapidly. This rapid evolution makes now a bad time to invest too heavily in

implementation te
hnology.

2. Evangeli
al : Allow other programmers/resear
hers to experiment with this

style of programming.

CHAPTER 5. EXPERIENCE USING \SEA" 86

It is mu
h easier to get other people to experiment with a small, reliable,

totally portable pre-pro
essor than it is to get them to install and experiment

with a 175000 line
ompiler.

3. Software Development : Use to
onstru
t a
tual programs that are meant to

be useful in their own right.

If someone writes a program in \pointers-only" \Sea" their program will be

easy to port to any environment that has a \C"-
ompiler. All that is required

is that the user �rst
ompile a small, totally portable pre-pro
essor.

A program written in full \Sea" will be dependent on a 175000 line
ompiler

that takes
onsiderable time and spa
e (20Mb) to bring up on one of the

supported ar
hite
tures.

So for early, experimental versions of \Sea"-like languages we would argue that

the pointers-only implementation is more appropriate. We make this argument be-

ause the implementors of this proje
t feel that it would have been a more useful

experiment to have written a small portable
ompiler, and experimented with lan-

guage features, than to have devoted so mu
h e�ort to making the
ompiler fully

polymorphi
.

5.3 Language Usage

5.3.1 Polymorphi
 Data Stru
tures

The following is a sample polymorphi
 data-stru
ture implementation:

type list(type elem)

{

return stru
t {

list(elem) *next;

elem data; } *;

}

type hashnode(type key, type
ontents)

{

return stru
t {

key k;

CHAPTER 5. EXPERIENCE USING \SEA" 87

ontents
; } *;

}

type hashtable(type key, type
ontents)

{

return stru
t {

list(hashnode(key,
ontents)) *table;

int size;

int (*hash)(key); } *;

}

forall key,
ontents:

hashtable(key,
ontents)
reate(int hashsize, int (*hash)(key))

{

hashtable(key,elem) h;

h = allo
(1);

h->table = allo
(hashsize);

h->size = hashsize;

h->hash = hash;

return h;

}

forall key,
ontents:

int lookup(hashtable(key,
ontents) d, key k,
ontents *ep,

exists int
ompare(key, key))

{

int hash;

list(hashnode(key,
ontents) l;

hash = d->hash(k) % d->hashsize;

for (l = h->table[hash℄; l != NULL; l = l->next)

{

if (
ompare(l->data->k, k) == 0)

*ep = l->data->
;

return 1;

}

return 0;

CHAPTER 5. EXPERIENCE USING \SEA" 88

}

forall key,
ontents:

void insert(hashtable(key,
ontents) d, key k, elem e)

{

...

}

forall key,
ontents:

void print(hashtable(key,elem) d,

exists void print(key), exists void print(elem))

{

...

}

forall key,
ontents:

void destroy(hashtable(key,
ontents) d,

void (*free_key)(key *), void (*free_
ontents)(
ontents *))

{

int i;

list(hashnode(key,
ontents) l,t;

// Free storage o

upied table, hashlists, hashnodes and hashtable

for (i=0; i<h->size; i++)

{

for (l = h->table[i℄; l != NULL; l = t)

{

t = l->next;

free_key (&l->k);

free_
ontents (&l->
);

free(l->data);

free(l);

}

}

free(h->table);

free(h);

}

Notes:

CHAPTER 5. EXPERIENCE USING \SEA" 89

1. This data stru
ture will work with \pointers-only" \Sea". In order to a

om-

modate the \only pointers" restri
tion, we
ouldn't store the key and
ontents

dire
tly in the list node. This for
ed us to add an extra level of indire
tion,

with the asso
iated extra overhead and extra storage management a
tivity.

2. The garbage-
olle
ted version of \Sea" is not required in order to use this

abstra
tion. We have had to parameterize the hashtable destroy fun
tion

with storage release fun
tions for the types stored in the table.

3. We
ould have made the \hash" fun
tion an \exist" parameter. But in that

ase it would be more diÆ
ult if we wanted to use a di�erent hash fun
tion,

for the same type, in a di�erent
ontext (perhaps we want a di�erent hash

fun
tion for a keyword symbol table that we do for an identi�er symbol table).

Be
ause \Sea"
urrently la
ks nested fun
tions the only way we
ould de�ne

two di�erent overloaded hash fun
tions for the same type would be to
ompile

them in separate \.
" �les, ea
h with stati
 visibility. (This is also why the

free fun
tion parameters to destroy were not made into exist parameters.)

4. The print fun
tion above is an example of a type of overloaded utility fun
-

tion we propose providing for all built-in types and library data stru
tures. It

is expe
ted that many data stru
tures in \Sea" programs will be stored using

the polymorphi
 data-stru
ture libraries. If su
h data stru
tures
ould be

read and written in text and binary this would be a substantial
onvenien
e

for the programmer. (Note how easily fun
tions like print
an be de�ned

for
omplex data stru
tures in terms of the print fun
tions for their mem-

ber types. For example to print a hashtable where ea
h element was also a

hashtable would require no additional
ode.)

5. All the basi
 operations required for the \hashtable" fun
tions are provided by

the \hashtable" type generator. This makes it very
onvenient to pass a poly-

morphi
 hashtable as a fun
tion parameter. (Compare this with \Abstra
t

Polymorphi
 Data Stru
tures" des
ribed below.)

Polymorphi
 versions of all the basi
 data stru
tures
an be similarly de�ned.

This single addition makes \C" a mu
h more powerful language.

5.3.2 Abstra
t Polymorphi
 Data Stru
tures

Abstra
t polymorphi
 data-stru
ture parameters are de�ned entirely in terms of

their operations. Using this te
hnique we
an write polymorphi
 routines in terms

CHAPTER 5. EXPERIENCE USING \SEA" 90

of the
hara
teristi
s they require from their data-stru
ture parameters, rather than

in terms of a spe
i�
 data stru
ture.

For example, the following browse routine will operate on any \sequen
e" that

an be stepped through in both dire
tions:

forall seq,pos,elem: void browse(seq s, pos p,

exists pos next(seq, pos, elem *),

exists pos prev(seq, pos, elem *),

exists void format(
har *, elem),

exists int browse_view(elem))

{

...

}

Using this browser we
an browse:

Array of menu options

Doubly linked list of field definitions in a database stru
ture editor.

B-tree of filenames mat
hing sear
h
riterion

Lines in the password file

Student re
ords from a database server

Fun
tions in a `C' file

Chunks of ``help'' text from a ``help'' file

Filenames in
urrent dire
tory

A
opy of the operating systems run-able pro
ess queue

Abstra
t input/output devi
es have similar broad appli
ation.

5.3.3 Polymorphi
 \printf"

In [OCD 92℄ a polymorphi
 variable-argument-length print fun
tion is des
ribed.

The following is a translation of this fun
tion into \Sea":

void print()

{

return;

}

CHAPTER 5. EXPERIENCE USING \SEA" 91

forall a,b: a print(b x, exists void put(b), exists a print)

{

put(x);

return print;

}

int main()

{

put(4)(5.0)("red");

return 0;

}

Unfortunately, be
ause our overload resolution algorithm is restri
ted so that it will

only
onsider external fun
tion de�nitions or exist parameters (in order to allow

for programs to be transformed so that all
losures are
onstant), this program will

not
ompile under \Sea".

For \Sea" we will borrow the \streams" pa
kage from \C++".

Chapter 6

Con
lusions

We have integrated \overloading polymorphism" with \C"; no fundamental in
om-

patibilities were en
ountered.

In most polymorphi
 programming languages, all values are
onstants on a

garbage-
olle
ted heap, and fun
tion parameters and return values are pointers to

these
onstants. Be
ause all fun
tion parameters and return values have the same

representation (a pointer) regardless of type, polymorphi

alling
onventions for

these languages are not
omplex.

\C"/\Sea" is de�ned in su
h a way that passing a parameter to a fun
tion or

returning a value from a fun
tion involve passing the value dire
tly (usually by

opying it). This is a substantial
ontributor to the high performan
e of \C", be-

ause we don't need an additional level of indire
tion to a

ess every value. De�ning

an eÆ
ient polymorphi

alling
onvention that
an work within the
onstraints of

\C" was a major
hallenge.

Our new
alling
onvention results in 1) slightly worse performan
e for monomor-

phi
 fun
tions, and 2) polymorphi
 fun
tions that, apart from the e�e
ts of no in-

lined arithmeti
 fun
tions, perform not mu
h worse than equivalent monomorphi

fun
tions.

We had expe
ted to use \C++"-style
onstru
tors/destru
tors for storage man-

agement. However, it was dis
overed that if we were generating polymorphi
 ob-

je
t
ode, we would not know until runtime whi
h type parameters had
onstru
-

tors/destru
tors de�ned for them. Allowing for this
exibility at runtime would

have had a large negative impa
t on the performan
e of polymorphi
 \Sea" fun
-

tions. So the only storage management alternatives available for \Sea" are expli
it

storage management or garbage
olle
tion.

92

CHAPTER 6. CONCLUSIONS 93

In early experimentation with the \Sea" language we found we were able to

write de�ne a large
lass of useful fun
tions without having to spe
ify them in

terms of a spe
i�
 type. The prin
ipal problem that arose was that the list of

operation parameters was
umbersome to
onstru
t, easy to get slightly wrong

(thereby limiting the domain of the fun
tion), and not very useful to a human

reader attempting to determine whether a spe
i�
 type has the required operations.

Bibliography

[OCD 92℄ Ophel, J., Corma
k, G., and Duggan, D. Combining Overload-

ing and Parametri
 Polymorphism in ML Draft Copy, 1992.

[Aho 86℄ Aho, A.V., Sethi, R., and Ullman, J.D. Compilers|Prin
iples,

Te
hniques, and Tools. Addison Wesley, 1986.

[Cardelli 85℄ Cardelli, L. and Wegner, P. On Understanding Types, Data

Abstra
tion, and Polymorphism. Computing Surveys 17:4, De
.

1985, 471-522.

[Corma
k 90℄ Corma
k, G., and A.K. Wright. Type-dependent Parameter In-

feren
e. Pro
eedings of ACM Sigplan 90 Symposium on Pro-

gramming Language Design and Implementation.

[Stallman 88℄ Stallman, R. Internals of the GNU C Compiler. Free Software

Foundation.

[Stroustrup 90℄ Stroustrup, B. The Annotated C++ Referen
e Manual.

Addison-Wesley, 1990.

[Wright 86℄ Wright, A.K. Referen
e manual for the language For
eOne.

Masters Thesis, University of Waterloo, 1986.

[Dit
h�eld 92℄ Dit
h�eld, G. Cforall Referen
e Manual Phd Thesis, University

of Waterloo, In pro
ess.

[DD 85℄ Donahue, J. and Demers, A. Data Types Are Values ACM

Transa
tions on Programming Languages and Systems, July

1985. Pages 426-445.

[Boehm 87℄ Boehm, H and Weiser, M. Garbage Colle
tion in an un
ooper-

ative environment. Software: Pra
ti
e and Experien
e, vol 18,

pages 807{820, Sept 1988.

94

BIBLIOGRAPHY 95

[DMH 92℄ Diwan, A., Moss, E. and Hudson, R. Compiler Support for

Garbage Colle
tion in a Stati
ally Typed Language. Pro
eed-

ings of the ACM SIGPLAN '92 Conferen
e on Programming

Language Design and Implementation, pages 273{282.

[ANSI 90℄ X3J11 Te
hni
al Committee Programming Language C | ANSI

X3.159{1989 Ameri
an National Standards Institute, 1989.

