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Chapter 1

Introdu
tion

This do
ument is a referen
e manual and rationale for Cforall, a polymorphi
 extension of the C programming

language. It makes frequent referen
e to the ANSI C standard [1℄, and o

asionally 
ompares Cforall to C++

[5℄.

The manual deliberately imitates the ordering of the ANSI C standard (although the se
tion numbering

varies). Unfortunately, this means that the manual 
ontains more \forward referen
es" than usual, and that

it will be hard to follow if the reader does not have a 
opy of the ANSI standard near-by. For a gentle

introdu
tion to Cforall, see the 
ompanion do
ument \An Overview of Cforall" [4℄.

2 Commentary (like this) is quoted with quads. Commentary usually deals with subtle points,

the rationale behind a rule, and design de
isions. 2

The syntax notation used in this do
ument is the same as is used in the ANSI C standard, with one

ex
eption: ellipsis in the de�nition of a nonterminal, as in \de
laration: . . . ", indi
ates that these rules

extend a previous de�nition, whi
h o

urs in this do
ument or in the ANSI C standard.

1.1 De�nitions of Terms

Wherever possible, terms in this do
ument have the same meaning as in the ANSI C standard. In parti
ular,

\shall" states a requirement on a program or implementation of Cforall, and \shall not" states a prohibition.

For the 
onvenien
e of the reader, the following de�nitions are quoted from various se
tions of the ANSI

C standard.


ompatible type (x3.1.2.6) Two types have 
ompatible type if their types are the same. Additional rules

for determining whether two types are 
ompatible are des
ribed [below℄.

� (x3.5.2.2) Ea
h enumerated type shall be 
ompatible with an integer type; the 
hoi
e of type is

implementation-de�ned.

� (x3.5.3) For two quali�ed types to be 
ompatible, both shall have the identi
ally quali�ed version

of a 
ompatible type; the order of type quali�ers within a list of spe
i�ers or quali�ers does not

a�e
t the spe
i�ed type.

� (x3.5.4.1) For two pointer types to be 
ompatible, both shall be identi
ally quali�ed and both

shall be pointers to 
ompatible types.

� (x3.5.4.2) For two array types to be 
ompatible, both shall have 
ompatible element types, and if

both size spe
i�ers are present, they shall have the same value.

1



CHAPTER 1. INTRODUCTION 2

� (x3.5.4.3) For two fun
tion types to be 
ompatible, both shall spe
ify 
ompatible return types.

Moreover, the parameter type lists, if both are present, shall agree in the number of parameters

and in use of the ellipsis terminator; 
orresponding parameters shall have 
ompatible types. If

one type has a parameter type list and the other type is spe
i�ed by a fun
tion de
larator that

is not part of a fun
tion de�nition and that 
ontains an empty identi�er list, the parameter list

shall not have an ellipsis terminator and the type of ea
h parameter shall be 
ompatible with

the type that results from the appli
ation of the default argument promotions. If one type has

a parameter type list and the other type is spe
i�ed by a fun
tion de�nition that 
ontains a

(possibly empty) identi�er list, both shall agree in the number of parameters, and the type of

ea
h prototype parameter shall be 
ompatible with the type that results from the appli
ation of

the default argument promotions to the type of the 
orresponding identi�er. (For ea
h parameter

de
lared with fun
tion or array type, its type for these 
omparisons is the one that results from


onversion to a pointer type. For ea
h parameter de
lared with quali�ed type, its type for these


omparisons is the unquali�ed version of its de
lared type.)

Moreover, two stru
ture, union, or enumerated types de
lared in separate translation units are 
om-

patible if they have the same number of members, the same member names, and 
ompatible member

types; for two stru
tures, the members shall be in the same order; for two stru
tures or unions, the

bit-�elds shall have the same widths; for two enumerations, the members shall have the same values.


omposite type (x3.1.2.6) A 
omposite type 
an be 
onstru
ted from two types that are 
ompatible; it is

a type that is 
ompatible with both of the two types and satis�es the following 
onditions:

� If one type is an array of known size, the 
omposite type is an array of that size.

� If only one type is a fun
tion type with a parameter type list (a fun
tion prototype), the 
omposite

type is a fun
tion type with the parameter type list.

� If both types are fun
tion types with parameter type lists, the type of ea
h parameter in the


omposite parameter list is the 
omposite type of the 
orresponding parameters.

These rules apply re
ursively to the types from whi
h the two types are derived.

For an identi�er with external or internal linkage de
lared in the same s
ope as another de
laration for

that identi�er, the type of the identi�er be
omes the 
omposite type.

de
laration (x3.5) A de
laration spe
i�es the interpretation and attributes of a set of identi�ers.

default argument promotions (x3.3.2.2) If the expression [in a fun
tion 
all℄ that denotes the 
alled

fun
tion has a type that does not in
lude a prototype, the integral promotions are performed on ea
h

argument and arguments that have type float are promoted to double. These are 
alled the default

argument promotions [. . . ℄. The ellipsis notation in a fun
tion prototype de
larator 
auses argument

type 
onversions to stop after the last de
lared parameter. The default argument promotions are

performed on trailing arguments.

de�nition (x3.5) A de
laration that also 
auses storage to be reserved for an obje
t or fun
tion named by

an identi�er is a de�nition.

derived de
larator type (x3.1.2.5) Array, fun
tion and pointer types are 
olle
tively 
alled derived de
la-

rator types.

integral promotions (x3.2.1.1) A 
har, a short int, or an int bit-�eld, or their signed or unsigned

varieties, or an enumeration type, may be used in an expression whenever an int or unsigned int

may be used. If an int 
an represent all values of the original type, the value is 
onverted to an int;

otherwise, it is 
onverted to an unsigned int. These are 
alled the integral promotions.

Revision: 1.82



CHAPTER 1. INTRODUCTION 3

fun
tion prototype (x3.1.2.1) A fun
tion prototype is a de
laration of a fun
tion that de
lares the types

of its parameters.

lvalue (x3.2.2.1) An lvalue is an expression (with an obje
t type or an in
omplete type other than void)

that designates an obje
t. When an obje
t is said to have a parti
ular type, the type is spe
i�ed by

the lvalue used to designate the obje
t. A modi�able lvalue is an lvalue that does not have array type,

does not have an in
omplete type, does not have a 
onst-quali�ed type, and if it is a stru
ture or union,

does not have any member (in
luding, re
ursively, any member of all 
ontained stru
tures or unions)

with a 
onst-quali�ed type.

name spa
e (x3.1.2.3) If more than one de
laration of a parti
ular identi�er is visible at any point in a

translation unit, the synta
ti
 
ontext disambiguates uses that refer to di�erent entities. Thus, there

are separate name spa
es for various 
ategories of identi�ers, as follows:

� label names (disambiguated by the syntax of the label de
laration and use);

� the tags of stru
tures, unions, and enumerations (disambiguated by following any of the keywords

stru
t, union, or enum);

� the members of stru
tures or unions; ea
h stru
ture or union has a separate name spa
e for its

members (disambiguated by the type of the expression used to a

ess the member via the . or

-> operator);

� all other identi�ers, 
alled ordinary identi�ers (de
lared in ordinary de
larators or as enumeration


onstants).

obje
t (x1.6) An obje
t is a region of data storage in the exe
ution environment, the 
ontents of whi
h 
an

represent values. Ex
ept for bit-�elds, obje
ts are 
omposed of 
ontiguous sequen
es of one or more

bytes, the number, order, and en
oding of whi
h are either expli
itly spe
i�ed or implementation-

de�ned. When referen
ed, an obje
t may be interpreted as having a parti
ular type.

quali�ed type (x3.1.2.5) Ea
h unquali�ed type has three 
orresponding quali�ed versions of its type: a


onst-quali�ed version, a volatile-quali�ed version, and a version having both quali�
ations. A derived

type is not quali�ed by the quali�ers (if any) of the type from whi
h it is derived.

[Cforall also allows lvalue-quali�ed versions of types, and versions having any 
ombination of the three

type quali�ers.℄

s
ope (x3.1.2.1) There are four kinds of s
opes: fun
tion, �le, blo
k, and fun
tion prototype. . . .

A label name is the only kind of identi�er that has fun
tion s
ope. It 
an be used (in a goto statement)

anywhere in the fun
tion in whi
h it appears, and is de
lared impli
itly by its synta
ti
 appearan
e

(followed by a \:" and a statement). Label names shall be unique within a fun
tion.

Every other identi�er has s
ope determined by the pla
ement of its de
laration (in a de
larator or type

spe
i�er). If the de
larator or type spe
i�er that de
lares the identi�er appears outside of any blo
k

or list of parameters, the identi�er has �le s
ope, whi
h terminates at the end of the translation unit.

If the de
larator or type spe
i�er that de
lares the identi�er appears inside a blo
k or within the list

of parameter de
larations in a fun
tion de�nition, the identi�er has blo
k s
ope, whi
h terminates at

the \g" that 
loses the asso
iated blo
k. If the de
larator or type spe
i�er that de
lares the identi�er

appears within the list of parameter de
larations in a fun
tion prototype (not part of a fun
tion

de�nition), the identi�er has fun
tion prototype s
ope, whi
h terminates at the end of the fun
tion

de
larator.

Two identi�ers have the same s
ope if and only if their s
opes terminate at the same point.

Revision: 1.82



CHAPTER 1. INTRODUCTION 4

Stru
ture, union, and enumeration tags have s
ope that begins just after the appearan
e of the tag in

a type spe
i�er that de
lares the tag. Ea
h enumeration 
onstant has s
ope that begins just after the

appearan
e of its de�ning enumerator in an enumerator list. Any other identi�er has s
ope that begins

just after the 
ompletion of its de
larator.

[Cforall adds a �fth kind of s
ope: de�nition s
ope.℄

sequen
e point (x2.1.2.3) At 
ertain spe
i�ed points in the exe
ution sequen
e 
alled sequen
e points, all

side e�e
ts of previous evaluations shall be 
omplete and no side e�e
ts of subsequent evaluations shall

have taken pla
e.

side e�e
t (x2.1.2.3) A

essing a volatile obje
t, modifying an obje
t, modifying a �le, or 
alling a fun
tion

that does any of those operations are all side e�e
ts, whi
h are 
hanges in the state of the exe
ution

environment.

storage-
lass spe
i�er (x3.5.1) The keywords auto, extern, register, stati
, and typedef are storage-


lass spe
i�ers.

storage duration (x3.1.2.4) An obje
t has a storage duration that determines its lifetime. There are two

storage durations: stati
 and automati
.

An obje
t whose identi�er is de
lared with external or internal linkage, or with the storage-
lass

spe
i�er stati
 has stati
 storage duration. For su
h an obje
t, storage is reserved and its stored

value is initialized only on
e, prior to program startup. The obje
t exists and retains its last-stored

value throughout the exe
ution of the entire program.

An obje
t whose identi�er is de
lared with no linkage and without the storage-
lass spe
i�er extern

has automati
 storage duration. Storage is guaranteed to be reserved for a new instan
e of su
h an

obje
t on ea
h normal entry into the blo
k with whi
h it is asso
iated, or on a jump from outside the

blo
k to a labeled statement in the blo
k or in an en
losed blo
k. If an initialization is spe
i�ed for

the value stored in the obje
t, it is performed on ea
h normal entry, but not if the blo
k is entered by

a jump to a labeled statement.

translation unit (x2.1.1.1) A sour
e �le together with all the headers and sour
e �les in
luded via the

prepro
essing dire
tive #in
lude, less any sour
e lines skipped by any of the 
onditional in
lusion

prepro
essing dire
tives, is 
alled a translation unit .

type (x3.1.2.5) The meaning of a value stored in an obje
t or returned by a fun
tion is determined by the

type of the expression used to a

ess it. (An identi�er de
lared to be an obje
t is the simplest su
h

expression; the type is spe
i�ed in the de
laration of the identi�er.) Types are partitioned into obje
t

types (types that des
ribe obje
ts), fun
tion types (types that des
ribe fun
tions), and in
omplete types

(types that des
ribe obje
ts but la
k information needed to determine their sizes).

An array type of unknown size is an in
omplete type. It is 
ompleted, for an identi�er of that type,

by spe
ifying the size in a later de
laration (with internal or external linkage). A stru
ture or union

type of unknown 
ontent is an in
omplete type. It is 
ompleted, for all de
larations of that type, by

de
laring the same stru
ture or union tag with its de�ning 
ontent later in the same s
ope.

type quali�er (x3.5.3) The keywords 
onst and volatile are type quali�ers.

type spe
i�er (x3.5.2) A type spe
i�er is a stru
ture or union spe
i�er, enumeration spe
i�er, typedef name,

or any legal 
ombination of the keywords void, 
har, short, int, long, float, double, signed, or

unsigned.

[Cforall adds the type, dtype, and ftype keywords and the forall spe
i�er as new type spe
i�ers.℄

Revision: 1.82



CHAPTER 1. INTRODUCTION 5

visible (x3.1.2.1) An identi�er is visible (i.e. 
an be used) only within a region of program text 
alled its

s
ope.

Revision: 1.82



Chapter 2

Lexi
al Elements

2.1 Keywords

Syntax

keyword: . . .

forall

lvalue

spe


dtype

ftype

type

2.2 Identi�ers

Cforall allows operator overloading by asso
iating operators with spe
ial fun
tion identi�ers. Furthermore,

the 
onstants \0" and \1" have spe
ial status for many of C's data types (and for many programmer-de�ned

data types as well), so Cforall treats them as overloadable identi�ers as well. Programmers 
an use these

identi�ers to de
lare fun
tions and obje
ts that implement operators and 
onstants for their own types.

2.2.1 Constant Identi�ers

Syntax

identi�er: . . .

0

1

The tokens \0" and \1" are identi�ers. No other tokens de�ned by the rules for integer 
onstants are


onsidered to be identi�ers.

2 Why \0" and \1"? Those integers have spe
ial status in C. All s
alar types 
an be in
remented

and de
remented, whi
h is de�ned in terms of adding or subtra
ting 1. The operations \&&",

\||", and \!" 
an be applied to any s
alar arguments, and are de�ned in terms of 
omparison

against 0. A 
onstant-expression that evaluates to 0 is e�e
tively 
ompatible with every pointer

type.

6



CHAPTER 2. LEXICAL ELEMENTS 7

In C, the integer 
onstants 0 and 1 suÆ
e be
ause the integral promotion rules 
an 
onvert

them to any arithmeti
 type, and the rules for pointer expressions treat 
onstant expressions

evaluating to 0 as a spe
ial 
ase. However, user-de�ned arithmeti
 types often need the equivalent

of a 1 or 0 for their fun
tions or operators, polymorphi
 fun
tions often need 0 and 1 
onstants

of a type mat
hing their polymorphi
 parameters, and user-de�ned pointer-like types may need

a null value. De�ning spe
ial 
onstants for a user-de�ned type is more eÆ
ient than de�ning

a 
onversion to the type from int that 
he
ks that its argument is 0 or 1, and simpler than

extending the language with a bit type that 
an only take on those values and allowing the

programmer to de�ne a 
onversion from bit.

Why just \0" and \1"? Why not other integers? No other integers have spe
ial status in C.

A fa
ility that let programmers de
lare spe
i�
 
onstants|\
onst Complex 12", for instan
e|

would not be mu
h of an improvement. Some fa
ility for de�ning the 
reation of values of

programmer-de�ned types from arbitrary integer tokens would be needed. The 
omplexity of

su
h a feature doesn't seem worth the gain. 2

2.2.2 Operator Identi�ers

Table 2.1 lists the programmer-de�nable operator identi�ers and the operations they are asso
iated with.

Fun
tions that are de
lared with (or pointed at by fun
tion pointers that are de
lared with) these identi�ers


an be 
alled by expressions that use the operator tokens and syntax, or the operator identi�ers and \fun
tion


all" syntax. The relationships between operators and fun
tion 
alls are dis
ussed in des
riptions of the

operators.

?[?℄ subs
ripting

?() fun
tion 
all

?++ post�x in
rement

?-- post�x de
rement

++? pre�x in
rement

--? pre�x de
rement

*? dereferen
e

+? unary plus

-? arithmeti
 negation

~? bitwise negation

!? logi
al 
omplement

?*? multipli
ation

?/? division

?%? remainder

?+? addition

?-? subtra
tion

?<<? left shift

?>>? right shift

?<? less than

?<=? less than or equal

?>=? greater than or equal

?>? greater than

?==? equality

?!=? inequality

?&? bitwise AND

?^? ex
lusive OR

?|? in
lusive OR

?=? simple assignment

?*=? multipli
ation assignment

?/=? division assignment

?%=? remainder assignment

?+=? addition assignment

?-=? subtra
tion assignment

?<<=? left-shift assignment

?>>=? right-shift assignment

?&=? bitwise AND assignment

?^=? ex
lusive OR assignment

?|=? in
lusive OR assignment

Table 2.1: Operator Identi�ers

2 Operator identi�ers are made up of the 
hara
ters of the operator token, with question

marks added to mark the positions of the arguments of operators. The question marks serve

as mnemoni
 devi
es; programmers 
an not 
reate new operators by arbitrarily mixing question

marks and other non-alphabeti
 
hara
ters. Note that pre�x and post�x versions of the in
rement

and de
rement operators are distinguished by the position of the question mark. 2

2 The use of \?" in identi�ers means that some C programs are not Cforall programs. For

instan
e, the sequen
e of 
hara
ters \(i < 0)?-i:i" is legal in a C program, but a Cforall


ompiler will dete
t a syntax error be
ause it will treat \?-" as an identi�er, not as the two

tokens \?" and \-". 2
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2 Certain operators 
an not be de�ned by the programmer:

� The logi
al operators \&&" and \||", and the 
onditional operator \?:". These operators

do not always evaluate their operands, and hen
e 
an not be properly de�ned by fun
tions

unless some me
hanism like 
all-by-name is added to the language. Note that the de�nitions

of \&&" and \||" say that they work by 
he
king that their arguments are unequal to 0, so

de�ning \!=" and \0" for user-de�ned types is enough to allow them to be used in logi
al

expressions.

� The 
omma operator. It is a 
ontrol-
ow operator like those above. Changing its meaning

seems pointless and 
onfusing.

� The \address of" operator. It seems useful to be able to de�ne a unary \&" operator that

returns values of some programmer-de�ned pointer-like type. The problem lies with the

type of the operator. Consider the expression \p = &x", where x is of type T and p has the

programmer-de�ned type T_ptr. The expression might be treated as a 
all to the unary

fun
tion \&?". Now what is the type of the fun
tion's parameter? It 
an not be T, be
ause

then x would be passed by value, and there is no way to 
reate a useful pointer-like result

from a value. Hen
e the parameter must have type T*. But then the expression must be

rewritten as \p = &?( &x )"|whi
h doesn't seem like progress!

The rule for address-of expressions would have to be something like \keep applying address-

of fun
tions until you get one that takes a pointer argument, then use the built-in operator

and stop". It seems simpler to de�ne a 
onversion fun
tion from T* to T_ptr.

� The sizeof operator. It is already de�ned for every obje
t type, and intimately tied into

the language's storage allo
ation model. Rede�ning it seems pointless.

� The \member of" operators \." and \->". These are not really in�x operators, sin
e their

right \operand" is not a value or obje
t.

� Cast operators. Anything that 
an be done with an expli
it 
ast 
an be done with a fun
tion


all. The di�eren
e in syntax is small.

2

2.2.3 S
opes of Identi�ers

Cforall's s
ope rules di�er from C's in one major respe
t: a de
laration of an identi�er may overload outer

de
larations of lexi
ally identi
al identi�ers in the same name spa
e, instead of hiding them. The outer

de
laration is hidden if the two de
larations have 
ompatible type, or if one de
lares an array type and

the other de
lares a pointer type and the element type and pointed-at type are 
ompatible, or if one has

fun
tion type and the other is a pointer to a 
ompatible fun
tion type, or if one de
laration is a type or

typedef de
laration and the other is not. The outer de
laration be
omes visible when the s
ope of the inner

de
laration terminates.

2 Hen
e, a Cforall program 
an de
lare an int v and a float v in the same s
ope; a C++

program 
an not.

Note that enumeration 
onstants all exist in the name spa
e of ordinary identi�ers, and all

have type int, so one identi�er 
an not be used for two enumeration 
onstants in the same s
ope.

In other words, orange 
an not be a 
onstant from enum 
olor and enum fruit at the same

time. 2

2.2.4 Linkage of Identi�ers

Cforall's linkage rules di�er from C's in only one respe
t: instan
es of a parti
ular identi�er with external or

internal linkage do not ne
essarily denote the same obje
t or fun
tion. Instead, in the set of translation units
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and libraries that 
onstitutes an entire program, any two instan
es of a parti
ular identi�er with external

linkage denote the same obje
t or fun
tion if they have 
ompatible types, or if one de
lares an array type

and the other de
lares a pointer type and the element type and pointed-at type are 
ompatible, or if one has

fun
tion type and the other is a pointer to a 
ompatible fun
tion type. Within one translation unit, ea
h

instan
e of an identi�er with internal linkage denotes the same obje
t or fun
tion in the same 
ir
umstan
es.

Identi�ers with no linkage always denote unique entities.

2 A Cforall program 
an de
lare an extern int v and an extern float v; A C program


annot. 2
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Chapter 3

Conversions

Cforall de�nes situations where values of one type are automati
ally 
onverted to another type. These


onversions are 
alled impli
it 
onversions. The programmer 
an request expli
it 
onversions using 
ast

expressions.

3.1 Other Operands

3.1.1 Anonymous Members

If an expression has a stru
ture or union type that has an anonymous member, it 
an be 
onverted impli
itly

or expli
itly to the anonymous member's type. The result of the 
onversion is the anonymous member of

the 
onverted expression, and is an lvalue if the 
onverted expression was.

If an expression's type is a pointer to a stru
ture or union type that has an anonymous member, it 
an be


onverted impli
itly or expli
itly to a pointer to the anonymous member's type. The result of the 
onversion

is a pointer to the anonymous member.

Examples

stru
t point f

int x, y;

g;

void move_by(stru
t point* p1, stru
t point p2) f

p1->x += p2.x;

p1->y += p2.y;

g

stru
t 
olor_point f

enum f RED, BLUE, GREEN g 
olor;

stru
t point;

g 
p1, 
p2;

move_to(&
p1, 
p2);

Thanks to impli
it 
onversion, the two arguments that move_by() re
eives are a pointer to 
p1's se
ond

member and a 
opy of 
p2's se
ond member.

10
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3.1.2 Spe
ialization

A fun
tion or value whose type is polymorphi
 may be 
onverted to one whose type is less polymorphi
 by

binding values to one or more of its inferred parameters. Any value that is legal for the inferred parameter

may be used, in
luding other inferred parameters.

If, after the inferred parameter binding, an assertion parameter has no inferred parameters in its type,

then an obje
t or fun
tion must be visible at the point of the spe
ialization that has the same identi�er

as the assertion parameter and has a type that is 
ompatible with or 
an be spe
ialized to the type of the

assertion parameter. The assertion parameter is bound to that obje
t or fun
tion.

The type of the spe
ialization is the type of the original with the bound inferred parameters and the

bound assertion parameters repla
ed by their bound values.

Examples

The type

forall(type T, type U) void (*)(T, U);


an be spe
ialized to (among other things)

forall(type T) void (*)(T, T); /* U bound to T */

forall(type T) void (*)(T, real); /* U bound to real */

forall(type U) void (*)(real, U); /* T bound to real */

void f(real, real); /* both bound to real */

The type

forall(type T | T ?+?(T,T)) T (*)(T);


an be spe
ialized to (among other things)

int (*)(int); /* T bound to int, and */

/* T ?+?(T,T) bound to int ?+?(int,int) */

3.2 Safe and Unsafe Conversions

In C, a pattern of 
onversions known as the usual arithmeti
 
onversions is used with most binary arithmeti


operators to 
onvert the operands to a 
ommon type and determine the type of the operator's result. In

Cforall, these and other 
onversions play a role in overload resolution, and 
olle
tively are 
alled the safe


onversions.

The following 
onversions are dire
t safe arithmeti
 
onversions.

� A 
har, a short int, an int bit-�eld, or their signed or unsigned varieties, or an enumeration type,

may undergo an integral promotion.

� An int may be 
onverted to an unsigned int, and to a long int.

� An unsigned int may be 
onverted to a long unsigned int. If a long int 
an represent all values

of an unsigned int, then an unsigned int may also be 
onverted to a long int.

� A long int may be 
onverted to a long unsigned int.

� A long unsigned int may be 
onverted to a float.

� A float may be 
onverted to a double.
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� A double may be 
onverted to a long double.

Furthermore, if type T 
an be 
onverted to type U by a safe arithmeti
 
onversion and type U 
an be 
onverted

to type V by a safe arithmeti
 
onversion, then the 
onversion from T to type V is an indire
t safe arithmeti



onversion.

A dire
t safe 
onversion is a dire
t safe arithmeti
 
onversion, or one of the following 
onversions:

� from any obje
t type or in
omplete type to void;

� from a pointer to any non-void type to a pointer to void;

� from a pointer to any type to a pointer to a more quali�ed version of the type;

� from a stru
ture or union type to the type of an anonymous member of the stru
ture or union;

� from a pointer to a stru
ture or union type to a pointer to the type of an anonymous member of the

stru
ture or union;

� within the s
ope of an initialized type de
laration, 
onversions between a type and its implementation

or between a pointer to a type and a pointer to its implementation.

Conversions that are not safe 
onversions are unsafe 
onversions.

2 As in C, there is an impli
it 
onversion from void* to any pointer type. This is 
learly

dangerous, and C++ does not have this impli
it 
onversion. Cforall keeps it, in the interest of

remaining as pure a superset of C as possible, but dis
ourages it by making it unsafe. 2

3.3 Conversion Cost

The 
onversion 
ost of a safe 
onversion

1

is a measure of how desirable or undesirable it is. It is de�ned as

follows.

� The 
ost of a 
onversion from any type to itself is 0.

� The 
ost of a dire
t safe 
onversion is 1.

� The 
ost of an indire
t safe arithmeti
 
onversion is the smallest number of dire
t 
onversions needed

to make up the 
onversion.

Examples

The 
ost of an impli
it 
onversion from int to long is 1.

The 
ost of an impli
it 
onversion from long to double is 3, be
ause it is de�ned in terms of 
onversions

from long to unsigned long, then to float, and then to double.

If int 
an represent all the values of unsigned short, then the 
ost of an impli
it 
onversion from

unsigned short to unsigned is 2: unsigned short to int to unsigned. Otherwise, unsigned short is


onverted dire
tly to unsigned, and the 
ost is 1.

If long 
an represent all the values of unsigned, then the 
onversion 
ost of unsigned to long is 1.

Otherwise, the 
onversion is an unsafe 
onversion, and its 
onversion 
ost is unde�ned.

1

Unsafe 
onversions do not have de�ned 
onversion 
osts.
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Expressions

Cforall allows operators and identi�ers to be overloaded. Hen
e, ea
h expression 
an have a number of

interpretations, ea
h of whi
h has a di�erent type. The interpretations that are potentially exe
utable

are 
alled valid interpretations. The set of interpretations depends on the kind of expression and on the

interpretations of the subexpressions that it 
ontains. The rules for determining the valid interpretations

of an expression are dis
ussed below for ea
h kind of expression. Eventually the 
ontext of the outermost

expression 
hooses one interpretation of that expression to be exe
uted.

An ambiguous interpretation is an interpretation whi
h does not spe
ify the exa
t obje
t or fun
tion

denoted by every identi�er in the expression. An expression 
an have some interpretations that are ambiguous

and others that are unambiguous. An expression that is 
hosen to be exe
uted shall not be ambiguous.

The best valid interpretations are the valid interpretations that use the fewest unsafe 
onversions. Of

these, the best are those where the fun
tions and obje
ts involved are the least polymorphi
. Of these, the

best have the lowest total 
onversion 
ost, in
luding all impli
it 
onversions in the argument expressions.

Of these, the best have the highest total 
onversion 
ost for the impli
it 
onversions (if any) applied to the

argument expressions. If there is no single best valid interpretation, or if the best valid interpretation is

ambiguous, then the resulting interpretation is ambiguous.

2 Cforall's rules for sele
ting the best interpretation are designed to allow overload resolution

to mimi
 C's operator semanti
s. In C, the \usual arithmeti
 
onversions" are applied to the

operands of binary operators if ne
essary to 
onvert the operands to a 
ommon type (roughly

speaking, the \smallest" type that 
an hold both arguments). In Cforall, those 
onversions are

\safe". The \fewest unsafe 
onversions" rule ensures that the usual 
onversions are done, if

possible. The \lowest total expression 
ost" rule 
hooses the proper 
ommon type. The odd-

looking \highest argument 
onversion 
ost" rule ensures that, when unary expressions must be


onverted, 
onversions of fun
tion results are preferred to 
onversion of fun
tion arguments:

(double)-i will be preferred to -(double)i.

The \least polymorphi
" rule redu
es the number of polymorphi
 fun
tion 
alls, sin
e su
h

fun
tions are presumably more expensive than monomorphi
 fun
tions and sin
e the more spe
i�


fun
tion is presumably more appropriate. It also gives preferen
e to monomorphi
 values (su
h

as the int 0) over polymorphi
 values (su
h as the null pointer 0). However, interpretations

that 
all polymorphi
 fun
tions are preferred to interpretations that perform unsafe 
onversions,

be
ause those 
onversions potentially lose a

ura
y or violate strong typing.

There are two notable di�eren
es between Cforall's overload resolution rules and the rules

for C++ de�ned in [5℄. First, the result type of a fun
tion plays a role. In C++, a fun
tion


all must be 
ompletely resolved based on the arguments to the 
all in most 
ir
umstan
es. In

Cforall, a fun
tion 
all may have several interpretations, ea
h with a di�erent result type, and

13
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the interpretations of the 
ontaining 
ontext 
hoose among them. Se
ond, safe 
onversions are

used to 
hoose among interpretations of all sorts of fun
tions; in C++, the \usual arithmeti



onversions" are a separate set of rules that apply only to the built-in operators. 2

Expressions involving 
ertain operators are 
onsidered to be equivalent to fun
tion 
alls. A transformation

from \operator" syntax to \fun
tion 
all" syntax is de�ned by rewrite rules. Ea
h operator has a set of

prede�ned fun
tions that overload its identi�er. Overload resolution determines whi
h member of the set

is exe
uted in a given expression. The fun
tions have internal linkage and are impli
itly de
lared with �le

s
ope. The prede�ned fun
tions and rewrite rules are dis
ussed below for ea
h of these operators.

2 Prede�ned fun
tions and 
onstants have internal linkage be
ause that simpli�es optimization

in traditional 
ompile-and-link environments. For instan
e, \an_int + an_int" is equivalent

to \?+?(an_int, an_int)". If integer addition has not been rede�ned in the 
urrent s
ope, a


ompiler 
an generate 
ode to perform the addition dire
tly. If prede�ned fun
tions had external

linkage, this optimization would be diÆ
ult. 2

2 Sin
e ea
h subse
tion des
ribes the interpretations of an expression in terms of the inter-

pretations of its subexpressions, this 
hapter 
an be taken as des
ribing an overload resolution

algorithm that uses one bottom-up pass over an expression tree. Su
h an algorithm was �rst

des
ribed (for Ada) by Baker [2℄. It is extended here to handle polymorphi
 fun
tions and arith-

meti
 
onversions. The overload resolution rules and the prede�ned fun
tions have been 
hosen

so that, in programs that do not introdu
e overloaded de
larations, expressions will have the

same meaning in C and in Cforall. 2

2 Expression syntax is quoted from the ANSI C standard. The syntax itself de�nes the pre
e-

den
e and asso
iativity of operators. The se
tions are arranged in de
reasing order of pre
eden
e,

with all operators in a se
tion having the same pre
eden
e. 2

4.1 Primary Expressions

Syntax

primary-expression:

identi�er


onstant

string-literal

( expression )

Prede�ned Identi�ers


onst int 1;


onst int 0;

forall(dtype DT) DT *
onst 0;

forall(ftype FT) FT *
onst 0;

Semanti
s

The valid interpretations of an identi�er are given by the visible de
larations of the identi�er. A 
onstant

or string-literal has one valid interpretation, whi
h has the type and value de�ned by C. A parenthesised

expression has the same interpretations as the 
ontained expression.

The prede�ned integer identi�ers \1" and \0" have the integer values 1 and 0, respe
tively. The other

two prede�ned \0" identi�ers are bound to polymorphi
 pointer values that, when spe
ialized with a data

type or fun
tion type respe
tively, produ
e a null pointer of that type.
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Examples

The expression (void*)0 spe
ializes the (polymorphi
) null pointer to a null pointer to void. (
onst

void*)0 does the same, and also uses a safe 
onversion from void* to 
onst void*. In ea
h 
ase, the null

pointer 
onversion is better than the unsafe 
onversion of the integer 0 to a pointer.

2 Note that the prede�ned identi�ers have addresses.

Cforall does not have C's 
on
ept of \null pointer 
onstants", whi
h are not typed values but

spe
ial strings of tokens. The C token \0" is an expression of type int with the value \zero", and

it also is a null pointer 
onstant. Similarly, \(void*)0" is an expression of type (void*) whose

value is a null pointer, and it is also a null pointer 
onstant. However, in C, \(void*)(void*)0" is

not a null pointer 
onstant, even though it is null-valued, a pointer, and 
onstant! The semanti
s

of C expressions 
ontain many spe
ial 
ases to deal with subexpressions that are null pointer


onstants. Cforall handles these 
ases through overload resolution and spe
ialization. 2

4.2 Post�x Operators

Syntax

post�x-expression:

primary-expression

post�x-expression [ expression ℄

post�x-expression ( argument-expression-list

opt

)

post�x-expression . identi�er

post�x-expression -> identi�er

post�x-expression ++

post�x-expression --

argument-expression-list:

assignment-expression

argument-expression-list , assignment-expression

Rewrite Rules

a[b℄ ) ?[?℄(a, b)

a( arguments ) ) ?()(a, arguments )

a++ ) ?++(&(a))

a-- ) ?--(&(a))

2 Note that \++" and \--" are rewritten as fun
tion 
alls that are given a pointer to that

operand. (This is true of all operators that modify an operand.) As Hamish Ma
donald has

pointed out, this for
es the modi�ed operand of su
h expressions to be an lvalue. This partially

enfor
es the C semanti
 rule that su
h operands must be modi�able lvalues.

Subs
ript expressions are rewritten as fun
tion 
alls that pass the �rst parameter by value.

This is somewhat unfortunate, sin
e array-like types tend to be large. The alternative is to use

the rewrite rule \a[b℄ )?[?℄(&(a), b)". However, C semanti
s forbid this approa
h: the a in

\a[b℄" 
an be an arbitrary pointer value, whi
h does not have an address. 2
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Prede�ned Identi�ers

int ?++(int*), ?--(int*);

unsigned ?++(unsigned*), ?--(unsigned*);

long ?++(long*), ?--(long*);

long unsigned ?++(long unsigned*), ?--(long unsigned*);

float ?++(float*), ?--(float*);

double ?++(double*), ?--(double*);

long double ?++(long double*), ?--(long double*);

forall(type T) T* ?++(T**), ?--(T**);

forall(type T) 
onst T* ?++(
onst T**), ?--(
onst T**);

forall(type T) volatile T* ?++(volatile T**), ?--(volatile T**);

forall(type T) 
onst volatile T* ?++(
onst volatile T**), ?--(
onst volatile T**);

forall(type T) lvalue T ?[?℄(T*, ptrdiff_t);

forall(type T) 
onst lvalue T ?[?℄(
onst T*, ptrdiff_t);

forall(type T) volatile lvalue T ?[?℄(volatile T*, ptrdiff_t);

forall(type T) 
onst volatile lvalue T ?[?℄(
onst volatile T*, ptrdiff_t);

For every 
omplete enumerated type E there exist

E ?++(E*), ?--(E*);

2 In C, a semanti
 rule requires that pointer operands of in
rement and de
rement be pointers

to obje
t types. Hen
e, void* obje
ts 
annot be in
remented. In Cforall, the restri
tion follows

from the use of a type parameter in the prede�ned fun
tion de�nitions, as opposed to dtype,

sin
e only obje
t types 
an be inferred arguments 
orresponding to the type parameter T. 2

4.2.1 Fun
tion Calls

Semanti
s

A fun
tion designator is an interpretation of an expression that has fun
tion type. The post�x-expression in

a fun
tion 
all may have some interpretations that are fun
tion designators and some that are not.

For those interpretations of the post�x-expression that are not fun
tion designators, the expression is

rewritten and be
omes a 
all of a fun
tion named \?()". The valid interpretations of the rewritten expression

are determined in the manner des
ribed below.

Ea
h 
ombination of fun
tion designators and argument interpretations is 
onsidered. For those in-

terpretations of the post�x-expression that are monomorphi
 fun
tion designators, the 
ombination has a

valid interpretation if the fun
tion designator a

epts the number of arguments given, and ea
h argument

interpretation mat
hes the 
orresponding expli
it parameter:

� if the argument 
orresponds to a parameter in the fun
tion designator's prototype, the argument

interpretation must have the same type as the 
orresponding parameter, or be impli
itly 
onvertible

to the parameter's type

� if the fun
tion designator's type does not in
lude a prototype or if the argument 
orresponds to \..."

in a prototype, a default argument promotion is applied to it.

The type of the valid interpretation is the return type of the fun
tion designator.

For those 
ombinations where the interpretation of the post�x-expression is a polymorphi
 fun
tion

designator and the fun
tion designator a

epts the number of arguments given, there shall be at least one

set of impli
it arguments for the impli
it parameters su
h that
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� If the de
laration of the impli
it parameter uses type-
lass type, the impli
it argument must be an

obje
t type; if it uses dtype, the impli
it argument must be an obje
t type or an in
omplete type; and

if it uses ftype, the impli
it argument must be a fun
tion type.

� if an expli
it parameter's type uses any impli
it parameters, then the 
orresponding expli
it argument

must have a type that is (or 
an be safely 
onverted to) the type produ
ed by substituting the impli
it

arguments for the impli
it parameters in the expli
it parameter type.

� the remaining expli
it arguments must mat
h the remaining expli
it parameters, as des
ribed for

monomorphi
 fun
tion designators.

� for ea
h assertion parameter in the fun
tion designator's type, there must be an obje
t or fun
tion

with the same identi�er that is visible at the 
all site and whose type is 
ompatible with or 
an be

spe
ialized to the type of the assertion de
laration.

There is a valid interpretation for ea
h su
h set of impli
it parameters. The type of ea
h valid interpretation

is the return type of the fun
tion designator with impli
it parameter values substituted for the impli
it

arguments.

A valid interpretation is ambiguous if the fun
tion designator or any of the argument interpretations is

ambiguous.

Every valid interpretation whose return type is not 
ompatible with any other valid interpretation's

return type is an interpretation of the fun
tion 
all expression.

Every set of valid interpretations that have mutually 
ompatible result types also produ
es an interpre-

tation of the fun
tion 
all expression. The type of the interpretation is the 
omposite type of the types of

the valid interpretations, and the value of the interpretation is that of the best valid interpretation.

2 One desirable property of a polymorphi
 programming language is generalizability : the abil-

ity to repla
e an abstra
tion with a more general but equivalent abstra
tion without requiring


hanges in any of the uses of the original[3℄. For instan
e, it should be possible to repla
e a

fun
tion \int f(int);" with \forall(type T) T f(T);" without a�e
ting any 
alls of f.

Cforall does not fully possess this property, be
ause unsafe 
onversions are not done when

arguments are passed to polymorphi
 parameters. Consider

float g(float, float);

int i;

float f;

double d;

f = g(f, f); /* (1) */

f = g(i, f); /* (2) (safe 
onversion to float) */

f = g(d, f); /* (3) (unsafe 
onversion to float) */

If g was repla
ed by \forall(type T) T g(T,T);", the �rst and se
ond 
alls would be unaf-

fe
ted, but the third would 
hange: f would be 
onverted to double, and the result would be a

double.

Another example is the fun
tion \void h(int*);". This fun
tion 
an be passed a void*

argument, but the generalization \forall(type T) void h(T*);" 
an not. In this 
ase, void

is not a valid value for T be
ause it is not an obje
t type. If unsafe 
onversions were allowed, T


ould be inferred to be any obje
t type, whi
h is undesirable. 2

Examples

A fun
tion 
alled \?()" might be part of a numeri
al di�erentiation pa
kage.

Revision: 1.82



CHAPTER 4. EXPRESSIONS 18

extern type Derivative;

extern double ?()(Derivative, double);

extern Derivative derivative_of( double (*f)(double) );

extern double sin(double);

Derivative sin_dx = derivative_of(sin);

double d;

d = sin_dx(12.9);

Here, the only interpretation of sin_dx is as an obje
t of type Derivative. For that interpretation, the

fun
tion 
all is treated as \?()(sin_dx, 12.9)".

int f(long); /* (1) */

int f(int, int); /* (2) */

int f(int*); /* (3) */

int i = f(5); /* 
alls (1) */

Fun
tion (1) provides a valid interpretation of \f(5)", using an impli
it int to long 
onversion. The other

fun
tions do not, sin
e the se
ond requires two arguments, and sin
e there is no impli
it 
onversion from

int to int* that 
ould be used with the third fun
tion.

forall(type T) T h(T);

double d = h(1.5);

\1.5" is a double 
onstant, so T is inferred to be double, and the result of the fun
tion 
all is a double.

forall(type T, type U) void g(T,U); /* (4) */

forall(type T) void g(T,T); /* (5) */

forall(type T) void g(T,long); /* (6) */

void g(long, long); /* (7) */

double d;

int i;

int* p;

g(d,d); /* 
alls (5) */

g(d,i); /* 
alls (6) */

g(i,i); /* 
alls (7) */

g(i,p); /* 
alls (4) */

The �rst 
all has valid interpretations for all four versions of g. (6) and (7) are dis
arded be
ause they

involve unsafe double-to-long 
onversions. (5) is 
hosen be
ause it is less polymorphi
 than (4).

For the se
ond 
all, (7) is again dis
arded. Of the remaining interpretations for (4), (5), and (6) (with i


onverted to long), (6) is 
hosen be
ause it is the least polymorphi
.

The third 
all has valid interpretations for all of the fun
tions; (7) is 
hosen sin
e it is not polymorphi


at all.

The fourth 
all has no interpretation for (5), be
ause its arguments must have 
ompatible type. (4) is


hosen be
ause it does not involve unsafe 
onversions.

forall(type T) T min(T,T);

double max(double, double);
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spe
 min_max(T) f

T min(T,T);

T max(T,T);

g

forall(type U | min_max(U)) void shuffle(U,U);

shuffle(9, 10);

The only possibility for U is double, be
ause that is the type used in the only visible max fun
tion. 9 and 10

must be 
onverted to double, and min must be spe
ialized with T bound to double.

extern void q(int); /* (8) */

extern void q(void*); /* (9) */

extern void r();

q(0);

r(0);

The int 0 
ould be passed to (8), or the (void*) spe
ialization of the null pointer 0 
ould be passed to (9).

The former is 
hosen be
ause the int 0 is less polymorphi
. For the same reason, int 0 is passed to r(),

even though it has no de
lared parameter types.

4.2.2 Post�x In
rement and De
rement Operators

Semanti
s

First, ea
h interpretation of the operand of an in
rement or de
rement expression is 
onsidered separately.

For ea
h interpretation that is a bit-�eld, the expression has one valid interpretation, with the type of the

operand, and the expression is ambiguous if the operand is.

For ea
h interpretation of the operand that is not a bit-�eld, the expression is rewritten, and the interpre-

tations of the expression are the interpretations of the 
orresponding fun
tion 
all. Finally, all interpretations

of the expression produ
ed for the di�erent interpretations of the operand are 
ombined to produ
e the in-

terpretations of the expression as a whole; where interpretations have 
ompatible result types, the best

interpretations are sele
ted in the manner des
ribed for fun
tion 
all expressions.

2 In
rement and de
rement expressions show up two de�
ien
ies of Cforall's type system. First,

there is no su
h thing as a pointer to a bit-�eld. Therefore, there is no way to de�ne a fun
tion

that alters a bit �eld argument, and hen
e no way to de�ne in
rement and de
rement fun
tions

for bit �elds. As a result, the semanti
s of in
rement and de
rement expressions must treat

bit-�elds spe
ially. This holds true for all of the operators that may modify bit-�elds.

Se
ond, type quali�ers are not in
luded in type values, so polymorphi
 fun
tions that take

pointers to arbitrary types often 
ome in four 
avors, one for ea
h possible quali�
ation of the

pointed-at type. 2

4.2.3 Other Post�x Operators

Semanti
s

The interpretations of subs
ript expressions are the interpretations of the 
orresponding fun
tion 
all ex-

pressions.

In the member sele
tion expression \s.m", there shall be at least one interpretation of s whose type is

a stru
ture type or union type 
ontaining a member named m. If two or more interpretations of s have

members named m with mutually 
ompatible types, then the expression has an ambiguous interpretation

whose type is the 
omposite type of the types of the members. If an interpretation of s has a member
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m whose type is not 
ompatible with any other s's m, then the expression has an interpretation with the

member's type. The expression has no other interpretations.

The expression \p->m" has the same interpretations as the expression \(*p).m".

4.3 Unary Operators

Syntax

unary-expression:

post�x-expression

++ unary-expression

-- unary-expression

unary-operator 
ast-expression

sizeof unary-expression

sizeof ( type-name )

unary-operator: one of

& * + - ~ !

Rewrite Rules

*a ) *?(a)

+a ) +?(a)

-a ) -?(a)

~a ) ~?(a)

!a ) !?(a)

++a ) ++?(&(a))

--a ) --?(&(a))

Prede�ned Identi�ers

int ++?(int*), --?(int*);

unsigned ++?(unsigned*), --?(unsigned*);

long ++?(long*), --?(long*);

long unsigned ++?(long unsigned*), --?(long unsigned*);

float ++?(float*), --?(float*);

double ++?(double*), --?(double*);

long double ++?(long double*), --?(long double*);

forall(type T) T* ++?(T**), --?(T**);

forall(type T) 
onst T* ++?(
onst T**), --?(
onst T**);

forall(type T) volatile T* ++?(volatile T**), --?(volatile T**);

forall(type T) 
onst volatile T* ++?(
onst volatile T**), --?(
onst volatile T**);

forall(type T) lvalue T *?(T*);

forall(type T) 
onst lvalue T *?(
onst T*);

forall(type T) volatile lvalue T *?(volatile T*);

forall(type T) 
onst volatile lvalue T *?(
onst volatile T*);

forall(ftype FT) FT *?(FT*);
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int +?(int), -?(int), ~?(int);

unsigned +?(unsigned), -?(unsigned), ~?(unsigned);

unsigned long +?(unsigned long), -?(unsigned long), ~?(unsigned long);

long +?(long), -?(long), ~?(long);

float +?(float), -?(float);

double +?(double), -?(double);

long double +?(long double), -?(long double);

int !?(int), !?(unsigned), !?(unsigned long), !?(long),

!?(float), !?(double), !?(long double);

forall(dtype DT) int !?(
onst volatile DT*);

forall(ftype FT) int !?(FT*);

For every 
omplete enumerated type E there exist

E ++?(E*), --?(E*);

Constraints

The operand of sizeof shall not be type, dtype, or ftype.

Semanti
s

When the sizeof operator is applied to an expression, the expression shall have exa
tly one unambiguous

interpretation. The sizeof expression has one interpretation, whi
h is of the implementation-de�ned integral

type size_t (de�ned in <stddef.h>).

When sizeof is applied to an identi�er de
lared by a type-de
laration or a type-parameter , it yields the

size in bytes of the type that implements the operand. When the operand is an opaque type or an inferred

type parameter, the expression is not a 
onstant expression.

2

type Pair = stru
t f int first, se
ond; g;

size_t p_size = sizeof(Pair); /* 
onstant expression */

extern type Complex;

size_t 
_size = sizeof(Complex); /* non-
onstant expression */

forall(type T) T f(T p1, T p2) f

size_t t_size = sizeof(T); /* non-
onstant expression */

/* ... */

g

\sizeof Complex", although not stati
ally known, is �xed. Within f(), \sizeof(T)" is �xed

for ea
h 
all of f(), but may vary from 
all to 
all. 2

When the \&" operator is applied to an expression, the operand shall have exa
tly one unambiguous

interpretation. The \&" expression has one interpretation whi
h is of type T*, where T is the type of the

operand.

The interpretations of pre�x in
rement and de
rement expressions are determined in the same way as

the interpretations of post�x in
rement and de
rement expressions.

The interpretations of other unary expression are the interpretations of the 
orresponding fun
tion 
all.
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Examples

long li;

void eat_double(double);

eat_double(-li); /* ) eat_double( -?(li) ); */

The valid interpretations of \-li" are

interpretation result type expression 
onversion 
ost

-?((int)li) int (unsafe)

-?((unsigned)li) unsigned (unsafe)

-?(li) long 0

-?((long unsigned)li) long unsigned 1

-?((float)li) float 2

-?((double)li) double 3

-?((long double)li) long double 4

The valid interpretations of the eat_double 
all, with the 
ost of the argument 
onversion and the 
ost of

the entire expression, are

interpretation argument 
ost expression 
ost

eat_double((double)-?((int)li)) 4 (unsafe)

eat_double((double)-?((unsigned)li)) 3 (unsafe)

eat_double((double)-?(li)) 3 0 + 3 = 3

eat_double((double)-?((long unsigned)li)) 2 1 + 2 = 3

eat_double((double)-?((float)li)) 1 2 + 1 = 3

eat_double( -?((double)li)) 0 3 + 0 = 3

eat_double((double)-?((long double)li)) (unsafe) (unsafe)

Ea
h has result type void, so the best must be sele
ted. The interpretations involving unsafe 
onversions

are dis
arded. The remainder have equal expression 
onversion 
osts, so the \highest argument 
onversion


ost" rule is invoked, and the 
hosen interpretation is eat_double((double)-?(li)).

4.4 Cast Operators

Syntax


ast-expression:

unary-expression

( type-name ) 
ast-expression

Constraints

The type-name in a 
ast-expression shall not be type, dtype, or ftype.

Semanti
s

In a 
ast expression \(type-name)e", if type-name is the type of an interpretation of e, then that interpre-

tation is the only interpretation of the 
ast expression; otherwise, e shall have some interpretation that 
an

be 
onverted to type-name, and the interpretation of the 
ast expression is the 
ast of the interpretation

that 
an be 
onverted at the lowest 
ost. The 
ast expression's interpretation is ambiguous if more than one

interpretation 
an be 
onverted at the lowest 
ost or if the sele
ted interpretation is ambiguous.

Revision: 1.82



CHAPTER 4. EXPRESSIONS 23

2 Casts 
an be used to eliminate ambiguity in expressions by sele
ting interpretations of subex-

pressions, and to spe
ialize polymorphi
 fun
tions and values. 2

4.5 Multipli
ative Operators

Syntax

multipli
ative-expression:


ast-expression

multipli
ative-expression * 
ast-expression

multipli
ative-expression / 
ast-expression

multipli
ative-expression % 
ast-expression

Rewrite Rules

a * b ) ?*?(a,b)

a / b ) ?/?(a,b)

a % b ) ?%?(a,b)

Prede�ned Identi�ers

int ?*?(int, int), ?/?(int, int),

?%?(int, int);

unsigned ?*?(unsigned, unsigned), ?/?(unsigned, unsigned),

?%?(unsigned, unsigned);

unsigned long ?*?(unsigned long, unsigned long), ?/?(unsigned long, unsigned long),

?%?(unsigned long, unsigned long);

long ?*?(long, long), ?/?(long, long),

?%?(long, long);

float ?*?(float, float), ?/?(float, float);

double ?*?(double, double), ?/?(double, double);

long double ?*?(long double, long double), ?/?(long double, long double);

Semanti
s

The interpretations of multipli
ative expressions are the interpretations of the 
orresponding fun
tion 
all.

Examples

int i;

long li;

void eat_double(double);

eat_double( li % i );

\li % i" is rewritten as \?%?(li,i)". The valid interpretations of ?%?(li, i), their result types, and

their 
onversion 
osts for the operators given above are
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interpretation result type expression 
onversion 
ost

?%?( (int)li, i) int (unsafe)

?%?( li, (long)i) long 1

?%?( (unsigned)li, (unsigned)i) unsigned (unsafe)

?%?( (long unsigned)li, (long unsigned)i) long unsigned 3

The interpretations involving unsafe 
onversions are dis
arded. The 
osts of 
onverting the others to double

are 4 and 5, so the best interpretation of eat_double(li, i) is eat_double((double)?%?(li, (long)i)).

4.6 Additive Operators

Syntax

additive-expression:

multipli
ative-expression

additive-expression + multipli
ative-expression

additive-expression - multipli
ative-expression

Rewrite Rules

a + b ) ?+?(a,b)

a - b ) ?-?(a,b)

Prede�ned Identi�ers

int ?+?(int, int), ?-?(int, int);

long ?+?(long, long), ?-?(long, long);

unsigned ?+?(unsigned, unsigned), ?-?(unsigned, unsigned);

long unsigned ?+?(long unsigned, long unsigned), ?-?(long unsigned, long unsigned);

float ?+?(float, float), ?-?(float, float);

double ?+?(double, double), ?-?(double, double);

long double ?+?(long double, long double), ?-?(long double, long double);

forall(type T) T* ?+?(T*, ptrdiff_t),

?+?(ptrdiff_t, T*),

?-?(T*, ptrdiff_t);

forall(type T) 
onst T* ?+?(
onst T*, ptrdiff_t),

?+?(ptrdiff_t, 
onst T*),

?-?(
onst T*, ptrdiff_t);

forall(type T) volatile T* ?+?(volatile T*, ptrdiff_t),

?+?(ptrdiff_t, volatile T*),

?-?(volatile T*, ptrdiff_t);

forall(type T) 
onst volatile T* ?+?(
onst volatile T*, ptrdiff_t),

?+?(ptrdiff_t, 
onst volatile T*),

?-?(
onst volatile T*, ptrdiff_t);

forall(type T) ptrdiff_t ?-?(
onst volatile T*, 
onst volatile T*);
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Semanti
s

The interpretations of additive expressions are the interpretations of the 
orresponding fun
tion 
alls.

2 ptrdiff_t is an implementation-de�ned identi�er de�ned in <stddef.h> that is synonymous

with a signed integral type that is large enough to hold the di�eren
e between two pointers. It

seems reasonable to use it for pointer addition as well. (This is te
hni
ally a di�eren
e between

Cforall and C, whi
h only spe
i�es that pointer addition uses an integral argument.) Hen
e it is

also used for subs
ripting, whi
h is de�ned in terms of pointer addition. The ANSI C standard

uses size_t in several 
ases where a library fun
tion takes an argument that is used as a subs
ript,

but size_t is unsuitable here be
ause it is an unsigned type. 2

4.7 Bitwise Shift Operators

Syntax

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

Rewrite Rules

a << b ) ?<<?(a,b)

a >> b ) ?>>?(a,b)

Prede�ned Identi�ers

int ?<<?(int, int), ?>>?(int, int);

long ?<<?(long, long), ?>>?(long, long);

unsigned ?<<?(unsigned, unsigned), ?>>?(unsigned, unsigned);

long unsigned ?<<?(long unsigned, long unsigned), ?>>?(long unsigned,long unsigned);

Semanti
s

The interpretations of a bitwise shift expression are the interpretations of the 
orresponding fun
tion 
alls.

4.8 Relational Operators

Syntax

relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression
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Rewrite Rules

a < b ) ?<?(a,b)

a > b ) ?>?(a,b)

a <= b ) ?<=?(a,b)

a >= b ) ?>=?(a,b)

Prede�ned Identi�ers

int ?<?(int, int), ?<=?(int, int),

?>?(int, int), ?>=?(int, int);

int ?<?(long, long), ?<=?(long, long),

?>?(long, long), ?>=?(long, long);

int ?<?(unsigned, unsigned), ?<=?(unsigned, unsigned),

?>?(unsigned, unsigned), ?>=?(unsigned, unsigned);

int ?<?(long unsigned, long unsigned), ?<=?(long unsigned, long unsigned),

?>?(long unsigned, long unsigned), ?>=?(long unsigned, long unsigned);

int ?<?(float, float), ?<=?(float, float),

?>?(float, float), ?>=?(float, float);

int ?<?(double, double), ?<=?(double, double),

?>?(double, double), ?>=?(double, double);

int ?<?(long double, long double), ?<=?(long double, long double),

?>?(long double, long double), ?>=?(long double, long double);

forall(dtype DT) int ?<?(
onst volatile DT*, 
onst volatile DT*);

forall(dtype DT) int ?>?(
onst volatile DT*, 
onst volatile DT*);

forall(dtype DT) int ?<=?(
onst volatile DT*, 
onst volatile DT*);

forall(dtype DT) int ?>=?(
onst volatile DT*, 
onst volatile DT*);

Semanti
s

The interpretations of a relational expression are the interpretations of the 
orresponding fun
tion 
all.

2 The type parameter DT is used for both parameters of the pointer 
omparison fun
tions, and

the use of dtype restri
ts the argument types to obje
t types and in
omplete types. This repla
es

C's semanti
 rules that the arguments of a pointer 
omparison must have the same obje
t type

or in
omplete type. 2

4.9 Equality Operators

Syntax

equality-expression:

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

Rewrite Rules

a == b ) ?==?(a,b)

a != b ) ?!=?(a,b)
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Prede�ned Identi�ers

int ?==?(int, int), ?!=?(int, int);

int ?==?(long, long), ?!=?(long, long);

int ?==?(unsigned, unsigned), ?!=?(unsigned, unsigned);

int ?==?(long unsigned, long unsigned), ?!=?(long unsigned, long unsigned);

int ?==?(float, float), ?!=?(float, float);

int ?==?(double, double), ?!=?(double, double);

int ?==?(long double, long double), ?!=?(long double, long double);

forall(dtype DT) int ?==?(
onst volatile DT*, 
onst volatile DT*);

forall(dtype DT) int ?!=?(
onst volatile DT*, 
onst volatile DT*);

forall(ftype FT) int ?==?(FT*, FT*);

forall(ftype FT) int ?!=?(FT*, FT*);

forall(dtype DT) int ?==?(
onst volatile DT*, 
onst volatile void*);

forall(dtype DT) int ?==?(
onst volatile void*, 
onst volatile DT*);

forall(dtype DT) int ?!=?(
onst volatile DT*, 
onst volatile void*);

forall(dtype DT) int ?!=?(
onst volatile void*, 
onst volatile DT*);

forall(dtype DT) int ?==?(
onst volatile DT*, forall(dtype DT2) 
onst DT2*);

forall(dtype DT) int ?==?(forall(dtype DT2) 
onst DT2*, 
onst volatile DT*);

forall(dtype DT) int ?!=?(
onst volatile DT*, forall(dtype DT2) 
onst DT2*);

forall(dtype DT) int ?!=?(forall(dtype DT2) 
onst DT2*, 
onst volatile DT*);

forall(ftype FT) int ?==?(FT*, forall(ftype FT2) FT2*);

forall(ftype FT) int ?==?(forall(ftype FT2) FT2*, FT*);

forall(ftype FT) int ?!=?(FT*, forall(ftype FT2) FT2*);

forall(ftype FT) int ?!=?(forall(ftype FT2) FT2*, FT*);

2 The three groups of polymorphi
 equality operations provide 
omparisons between any two

pointers of the same type, between pointers to void and pointers to obje
t types or in
omplete

types, and between the null pointer 
onstant and pointers to any type. In the last 
ase, a spe
ial

C rule for null pointer 
onstant operands has been repla
ed by a 
onsequen
e of the Cforall type

system. 2

Semanti
s

The interpretations of an equality expression are the interpretations of the 
orresponding fun
tion 
all.

The result of an equality 
omparison between two pointers to prede�ned fun
tions or prede�ned values

is implementation-de�ned.

2 The implementation-de�ned status of equality 
omparisons allows implementations to use

one library routine to implement many prede�ned fun
tions. These optimization are parti
u-

larly important when the prede�ned fun
tions are polymorphi
, as is the 
ase for most pointer

operations 2

4.10 Bitwise AND Operator

Syntax
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AND-expression:

equality-expression

AND-expression & equality-expression

Rewrite Rules

a & b ) ?&?(a,b)

Prede�ned Identi�ers

int ?&?(int, int);

long ?&?(long, long);

unsigned ?&?(unsigned, unsigned);

long unsigned ?&?(long unsigned, long unsigned);

Semanti
s

The interpretations of a bitwise AND expression are the interpretations of the 
orresponding fun
tion 
all.

4.11 Bitwise Ex
lusive OR Operator

Syntax

ex
lusive-OR-expression:

AND-expression

ex
lusive-OR-expression ^ AND-expression

Rewrite Rules

a ^ b ) ?^?(a,b)

Prede�ned Identi�ers

int ?^?(int, int);

long ?^?(long, long);

unsigned ?^?(unsigned, unsigned);

long unsigned ?^?(long unsigned, long unsigned);

Semanti
s

The interpretations of a bitwise ex
lusive OR expression are the interpretations of the 
orresponding fun
tion


all.

4.12 Bitwise In
lusive OR Operator

Syntax

in
lusive-OR-expression:

ex
lusive-OR-expression

in
lusive-OR-expression | ex
lusive-OR-expression
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Rewrite Rules

a | b ) ?|?(a,b)

Prede�ned Identi�ers

int ?|?(int, int);

long ?|?(long, long);

unsigned ?|?(unsigned, unsigned);

long unsigned ?|?(long unsigned, long unsigned);

Semanti
s

The interpretations of a bitwise in
lusive OR expression are the interpretations of the 
orresponding fun
tion


all.

4.13 Logi
al AND Operator

Syntax

logi
al-AND-expression:

in
lusive-OR-expression

logi
al-AND-expression && in
lusive-OR-expression

Semanti
s

The operands of the expression \a && b" are treated as \(int)((a)!=0)" and \(int)((b)!=0)", whi
h

shall both be unambiguous. The expression has only one interpretation, whi
h is of type int.

2 When the operands of a logi
al expression are values of built-in types, and \!=" has not been

rede�ned for those types, the 
ompiler 
an optimize away the fun
tion 
alls.

A 
ommon C idiom omits 
omparisons to 0 in the 
ontrolling expressions of loops and if

statements. For instan
e, the loop below iterates as long as 
p points at a Complex value that is

non-zero.

extern type Complex;

extern 
onst Complex 0;

extern int ?!=?(Complex, Complex);

Complex *
p;

while (
p && *
p) f /* ... */ g

The logi
al expression 
alls the Complex inequality operator, passing it *
p and the Complex 0,

and getting a 1 or 0 as a result. In 
ontrast, C++ would apply a programmer-de�ned Complex-

to-int 
onversion to *
p in the equivalent situation. The 
onversion to int would produ
e a

general integer value, whi
h is unfortunate, and possibly dangerous if the 
onversion was not

written with this situation in mind. 2

4.14 Logi
al OR Operator

Syntax
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logi
al-OR-expression:

logi
al-AND-expression

logi
al-OR-expression || logi
al-AND-expression

Semanti
s

The operands of the expression \a || b" are treated as \(int)((a)!=0)" and \(int)((b)!=0)", whi
h

shall both be unambiguous. The expression has only one interpretation, whi
h is of type int.

4.15 Conditional Operator

Syntax


onditional-expression:

logi
al-OR-expression

logi
al-OR-expression ? expression : 
onditional-expression

Semanti
s

The 
onditional expression \a?b:
" is �rst treated as if it were the 
all \
ond((a)!=0, b, 
)", with 
ond

de
lared as

long double 
ond(int, long double, long double);

double 
ond(int, double, double);

float 
ond(int, float, float);

unsigned long 
ond(int, unsigned long, unsigned long);

long 
ond(int, long, long);

unsigned 
ond(int, unsigned, unsigned);

int 
ond(int, int, int);

forall(type T) T 
ond(int, T, T);

An interpretation of the 
onditional expression is ambiguous if the 
orresponding interpretation of the fun
-

tion 
all would be ambiguous.

If su
h a 
all would not have at least one interpretation, then the expression has one interpretation, with

type void, and is interpreted as

(void)((int)((a)!=0) ?(void)(b) :(void)(
))

The interpretation is ambiguous if any of the rewritten argument expressions are ambiguous.

2 The obje
t of the above is to bring the se
ond and third operands to a 
ommon type. The

monomorphi
 
ond fun
tions are de�ned for ea
h of the arithmeti
 types so that 
onversion 
osts

will be taken into a

ount in sele
ting that type. The polymorphi
 version allows 
onditional

expressions to have pointer, union, or stru
ture types. 2

4.16 Assignment Operators

Syntax

assignment-expression:


onditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= /= %= += -= <<= >>= &= ^= |=
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Rewrite Rules

Let \ " be any of the assignment operators. Then

a  b ) ? ?( &(a), b)

Prede�ned Identi�ers


har ?=?(
har*, 
har),

?=?(volatile 
har*, 
har);

unsigned 
har ?=?(unsigned 
har*, unsigned 
har),

?=?(volatile unsigned 
har*, unsigned 
har);

signed 
har ?=?(signed 
har*, signed 
har),

?=?(volatile signed 
har*, signed 
har);

short ?=?(int*, int),

?=?(volatile int*, int);

unsigned short ?=?(unsigned int*, unsigned int),

?=?(volatile unsigned int*, unsigned int);

int ?=?(int*, int),

?=?(volatile int*, int);

unsigned int ?=?(unsigned int*, unsigned int),

?=?(volatile unsigned int*, unsigned int);

long ?=?(long*, long),

?=?(volatile long*, long);

unsigned long ?=?(unsigned long*, unsigned long),

?=?(volatile unsigned long*, unsigned long);

float ?=?(float*, float),

?=?(volatile float*, float);

double ?=?(double*, double),

?=?(volatile double*, double);

long double ?=?(long double*, long double),

?=?(volatile long double*, long double);

/* Pointer assignment where the type pointed at by the left operand has all

of the qualifiers or more of the type pointed at by the right operand. */

forall(ftype FT) FT* ?=?(FT**, FT*),

?=?(FT* volatile*, FT*);

forall(dtype DT) DT* ?=?(DT**, DT*),

?=?(DT* volatile*, DT*);

forall(dtype DT) 
onst DT* ?=?(
onst DT**, DT*),

?=?(
onst DT* volatile*, DT*);

forall(dtype DT) volatile DT* ?=?(volatile DT**, DT*),

?=?(volatile DT* volatile*, DT*);

forall(dtype DT) 
onst volatile DT*

?=?(
onst volatile DT**, DT*),

?=?(
onst volatile DT* volatile*, DT*),

?=?(
onst volatile DT**, volatile DT*),

?=?(
onst volatile DT* volatile*, volatile DT*),

?=?(
onst volatile DT**, 
onst DT*),

?=?(
onst volatile DT* volatile*, 
onst DT*);
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/* Assignment between pointers to void and pointers to obje
t types or

in
omplete types. */

forall(dtype DT) DT*

?=?(DT**, void*), ?=?(DT* volatile*, void*);

forall(dtype DT) 
onst DT*

?=?(
onst DT**, void*), ?=?(
onst DT* volatile*, void*),

?=?(
onst DT**, 
onst void*), ?=?(
onst DT* volatile*, 
onst void*);

forall(dtype DT) volatile DT*

?=?(volatile DT**, void*), ?=?(volatile DT* volatile*, void*),

?=?(volatile DT**, volatile void*), ?=?(volatile DT* volatile*, volatile void*);

forall(dtype DT) 
onst volatile DT*

?=?(
onst volatile DT**, void*),

?=?(
onst volatile DT* volatile*, void*),

?=?(
onst volatile DT**, 
onst void*),

?=?(
onst volatile DT* volatile*, 
onst void*),

?=?(
onst volatile DT**, volatile void*),

?=?(
onst volatile DT* volatile*, volatile void*),

?=?(
onst volatile DT**, 
onst volatile void*),

?=?(
onst volatile DT* volatile*, 
onst volatile void*);

forall(dtype DT) void*

?=?(void**, DT*), ?=?(void* volatile*, DT*);

forall(dtype DT) 
onst void*

?=?(
onst void**, DT*), ?=?(
onst void* volatile*, DT*),

?=?(
onst void**, 
onst DT*), ?=?(
onst void* volatile*, 
onst DT*);

forall(dtype DT) volatile void*

?=?(volatile void**, DT*), ?=?(volatile void* volatile*, DT*),

?=?(volatile void**, volatile DT*), ?=?(volatile void* volatile*, volatile DT*);

forall(dtype DT) 
onst volatile void*

?=?(
onst volatile void**, DT*),

?=?(
onst volatile void* volatile*, DT*),

?=?(
onst volatile void**, 
onst DT*),

?=?(
onst volatile void* volatile*, 
onst DT*),

?=?(
onst volatile void**, volatile DT*),

?=?(
onst volatile void* volatile*, volatile DT*),

?=?(
onst volatile void**, 
onst volatile DT*),

?=?(
onst volatile void* volatile*, 
onst volatile DT*);

/* Assignment from null pointers to other pointer types. */

forall(dtype DT) DT*

?=?(DT**, forall(dtype DT2) 
onst DT2*),

?=?(DT* volatile*, forall(dtype DT2) 
onst DT2*);

forall(dtype DT) 
onst DT*

?=?(
onst DT**, forall(dtype DT2) 
onst DT2*),

?=?(
onst DT* volatile*, forall(dtype DT2) 
onst DT2*);

forall(dtype DT) volatile DT*

?=?(volatile DT**, forall(dtype DT2) 
onst DT2*),

?=?(volatile DT* volatile*, forall(dtype DT2) 
onst DT2*);

forall(dtype DT) 
onst volatile DT*

?=?(
onst volatile DT**, forall(dtype DT2) 
onst DT2*),
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?=?(
onst volatile DT* volatile*, forall(dtype DT2) 
onst DT2*);

forall(ftype FT) FT*

?=?(FT**, forall(ftype FT2) FT2*),

?=?(FT* volatile*, forall(ftype FT2) FT2*);

forall(type T) T*

?+=?(T**, ptrdiff_t), ?+=?(T* volatile*, ptrdiff_t),

?-=?(T**, ptrdiff_t), ?-=?(T* volatile*, ptrdiff_t);

forall(type T) 
onst T*

?+=?(
onst T**, ptrdiff_t), ?+=?(
onst T* volatile*, ptrdiff_t),

?-=?(
onst T**, ptrdiff_t), ?-=?(
onst T* volatile*, ptrdiff_t);

forall(type T) volatile T*

?+=?(volatile T**, ptrdiff_t), ?+=?(volatile T* volatile*, ptrdiff_t),

?-=?(volatile T**, ptrdiff_t), ?-=?(volatile T* volatile*, ptrdiff_t);

forall(type T) 
onst volatile T*

?+=?(
onst volatile T**, ptrdiff_t), ?+=?(
onst volatile T* volatile*, ptrdiff_t),

?-=?(
onst volatile T**, ptrdiff_t), ?-=?(
onst volatile T* volatile*, ptrdiff_t);

For every 
omplete stru
ture or union type S there exist

S ?=?(S*, S), ?=?(S volatile*, S);

For every 
omplete enumerated type E there exist

E ?=?(E*, int), ?=?(E volatile*, int);

2 The right-hand argument is int be
ause the integral promotions 
onvert enumeration 
on-

stants and variables to int whenever they are used as expressions. 2

Let \Æ=" be any of the 
ompound assignment operators, and E be a 
omplete enumerated type. Then

there exist fun
tions

E ?Æ=?(E*, int),

?Æ=?(volatile E*, int);


har ?Æ=?(
har*, 
har),

?Æ=?(volatile 
har*, 
har);

signed 
har ?Æ=?(signed 
har*, signed 
har),

?Æ=?(volatile signed 
har*, signed 
har);

unsigned 
har ?Æ=?(unsigned 
har*, unsigned 
har),

?Æ=?(volatile unsigned 
har*, unsigned 
har);

short ?Æ=?(int*, int),

?Æ=?(volatile int*, int);

unsigned short ?Æ=?(unsigned*, unsigned),

?Æ=?(volatile unsigned*, unsigned);

int ?Æ=?(int*, int),

?Æ=?(volatile int*, int);

unsigned ?Æ=?(unsigned*, unsigned),

?Æ=?(volatile unsigned*, unsigned);

long ?Æ=?(long*, long),

?Æ=?(volatile long*, long);

unsigned long ?Æ=?(unsigned long*, unsigned long),

?Æ=?(volatile unsigned long*, unsigned long);
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There also exist

float ?*=?(float*, float), ?*=?(volatile float*, float),

?/=?(float*, float), ?/=?(volatile float*, float),

?+=?(float*, float), ?+=?(volatile float*, float),

?-=?(float*, float), ?-=?(volatile float*, float);

double ?*=?(double*, double), ?*=?(volatile double*, double),

?/=?(double*, double), ?/=?(volatile double*, double),

?+=?(double*, double), ?+=?(volatile double*, double),

?-=?(double*, double), ?-=?(volatile double*, double);

long double ?*=?(long double*,long double), ?*=?(volatile long double*,long double),

?/=?(long double*,long double), ?/=?(volatile long double*,long double),

?+=?(long double*,long double), ?+=?(volatile long double*,long double),

?-=?(long double*,long double), ?-=?(volatile long double*,long double);

Semanti
s

The stru
ture assignment fun
tions provide member-wise assignment; ea
h non-array member and ea
h

element of ea
h array member of the right argument is assigned to the 
orresponding member or element of

the left argument using the assignment fun
tion de�ned for its type. All other assignment fun
tions have

the same e�e
t as the 
orresponding C assignment expression.

2 Note that, by default, union assignment uses C semanti
s|that is, bitwise 
opy|even if some

of the union members have programmer-de�ned assignment fun
tions. 2

Ea
h interpretation of the left operand of an assignment expression is 
onsidered separately. For ea
h

interpretation that is a bit-�eld, the expression has one valid interpretation, with the type of the left operand.

The right operand is 
ast to that type, and the assignment expression is ambiguous if either operand is. For

ea
h interpretation of the left operand that is not a bit-�eld, the expression is rewritten, and the interpre-

tations of the assignment expression are the interpretations of the 
orresponding fun
tion 
all. Finally, all

interpretations of the expression produ
ed for the di�erent interpretations of the left operand are 
ombined

to produ
e the interpretations of the expression as a whole; where interpretations have 
ompatible result

types, the best interpretations are sele
ted in the manner des
ribed for fun
tion 
all expressions.

4.17 Comma Operator

Syntax

expression:

assignment-expression

expression , assignment-expression

Semanti
s

In the 
omma expression \a,b", the �rst operand is interpreted as \(void)(a)", whi
h shall be unambiguous.

The interpretations of the expression are the interpretations of the se
ond operand.
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De
larations

Syntax

de
laration: . . .

type-de
laration

spe
-de�nition

Constraints

There shall be at most one de
laration of an identi�er with no linkage and 
ompatible type in the same s
ope

and in the same name spa
e, ex
ept for tags (as spe
i�ed in se
tion 3.5.2.3 of the ANSI C standard).

An identi�er de
lared by a type de
laration shall not be rede
lared as a parameter in a fun
tion de�nition

whose de
larator in
ludes an identi�er list.

2 This restri
tion e
hos ANSI C's ban on the rede
laration of typedef names as parameters

(se
tion 3.7). This avoids an ambiguity between old-style fun
tion de
larations and new-style

fun
tion prototypes:

void f(Complex, /* . . . 3000 
hara
ters . . . */);

void g(Complex, /* . . . 3000 
hara
ters . . . */)

int Complex; f/* ... */g

Without the rule, Complex would be a type in the �rst 
ase, and a parameter name in the se
ond.

2

5.1 Type Spe
i�ers

Syntax

type-spe
i�er: . . .

forall-spe
i�er

A forall spe
i�er introdu
es impli
it type parameterization into a fun
tion de
laration.

5.1.1 Stru
ture and Union Spe
i�ers

Syntax

stru
t-de
laration: . . .

spe
i�er-quali�er-list
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Semanti
s

A stru
t-de
laration with no stru
t-de
larator-list de
lares an anonymous member .

If an anonymous member has a stru
ture or union type, its members are a

essible as if they were

members of the 
ontaining stru
ture or union.

Examples

stru
t point f

int x, y;

g;

stru
t 
olor_point f

enum f RED, BLUE, GREEN g 
olor;

stru
t point;

g;

stru
t 
olor_point 
p;


p.x = 0;


p.
olor = RED;

stru
t literal f

enum f NUMBER, STRING g tag;

union f

double n;


har *s;

g;

g;

stru
t literal *next;

int length;

extern int strlen(
onst 
har*);

/* ... */

if (next->tag == STRING) length = strlen(next->s);

5.1.2 Forall Spe
i�ers

Syntax

forall-spe
i�er:

forall ( type-parameter-list )

Constraints

If the de
laration-spe
i�ers of a de
laration that 
ontains a forall-spe
i�er de
lares a stru
ture or union tag,

the types of the members of the stru
ture or union shall not use any of the type identi�ers de
lared by the

type-parameter-list .

2 This sort of de
laration is illegal be
ause the s
ope of the type identi�ers ends at the end of

the de
laration, but the s
ope of the stru
ture tag does not.

forall(type T) stru
t Pair f T a,b; g; /* illegal */

If an instan
e of stru
t Pair was de
lared later in the 
urrent s
ope, what would the members'

type be? 2
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Semanti
s

The type-parameter-lists and assertions of the forall-spe
i�ers de
lare a 
olle
tion of type identi�ers, fun
tion

and obje
t identi�ers with no linkage.

If, in the de
laration \T D1", T 
ontains forall-spe
i�ers and D1 has the form

D(parameter-type-list)

then a type identi�er de
lared by one of the forall-spe
i�ers is an inferred parameter of the fun
tion de
larator

if and only if it is not an inferred parameter of a fun
tion de
larator in D, and it is used in the type of a

parameter in the following type-parameter-list or it and an inferred parameter are used as arguments of

a spe
i�
ation in one of the forall-spe
i�ers. The identi�ers de
lared by assertions that use an inferred

parameter of a fun
tion de
larator are assertion parameters of that fun
tion de
larator.

2 Sin
e every inferred parameter is used by some parameter, inferen
e 
an be done bottom-up.

I 
ould also argue that this 
onstraint leads to more easily understood programs. 2

If a fun
tion de
larator is part of a fun
tion de�nition, its inferred parameters and assertion parameters

have blo
k s
ope; otherwise, identi�ers de
lared by assertions have a de
laration s
ope, whi
h terminates at

the end of the de
laration.

A fun
tion type that has at least one inferred parameter is a polymorphi
 fun
tion type. Fun
tion types

with no inferred parameters are monomorphi
 fun
tion types. One fun
tion type is less polymorphi
 than

another if it has fewer inferred parameters, or if it has the same number of inferred parameters and fewer of

its expli
it parameters have types that depend on an inferred parameter.

The names of inferred parameters and the order of identi�ers in forall spe
i�ers are not relevant to

polymorphi
 fun
tion type 
ompatibility. Let f and g be two polymorphi
 fun
tion types with the same

number of inferred parameters, and let f

i

and g

i

be the inferred parameters of f and g in their order of

o

uran
e in the fun
tion types' parameter-type-lists. Let f

0

be f with every o

urren
e of f

i

repla
ed by g

i

,

for all i. Then f and g are 
ompatible types if f

0

's and g's return types and parameter lists are 
ompatible,

and if for every assertion parameter of f

0

there is an assertion parameter in g with the same identi�er and


ompatible type, and vi
e versa.

Examples

Consider these analogous monomorphi
 and polymorphi
 de
larations.

int fi(int);

forall(type T) T fT(T);

fi() takes an int and returns an int. fT() takes a T and returns a T, for any type T.

int (*pfi)(int) = fi;

forall(type T) T (*pfT)(T) = fT;

pfi and pfT are pointers to fun
tions. pfT is not polymorphi
, but the fun
tion it points at is.

int (*fvpfi(void))(int) f

return pfi;

g

forall(type T) T (*fvpfT(void))(T) f

return pfT;

g

fvpfi() and fvpfT() are fun
tions taking no arguments and returning pointers to fun
tions. fvpfT() is

monomorphi
, but the fun
tion that its return value points at is polymorphi
.
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forall(type T) int (*fTpfi(T))(int);

forall(type T) T (*fTpfT(T))(T);

forall(type T, type U) U (*fTpfU(T))(U);

fTpfi() is a polymorphi
 fun
tion that returns a pointer to a monomorphi
 fun
tion taking an integer

and returning an integer. It 
ould return pfi. fTpfT() is subtle: it is a polymorphi
 fun
tion returning a

monomorphi
 fun
tion taking and returning T, where T is an inferred parameter of fTpfT(). For instan
e, in

the expression \fTpfT(17)", T is inferred to be int, and the returned value would have type int (*)(int).

\fTpfT(17)(13)" and \fTpfT("yes")("no")" are legal, but \fTpfT(17)("no")" is illegal. fTpfU() is

polymorphi
 (in type T), and returns a pointer to a fun
tion that is polymorphi
 (in type U). \f5(17)("no")"

is a legal expression of type 
har*.

forall(type T, type U, type V) U* f(T*, U, V* 
onst);

forall(type U, type V, type W) U* g(V*, U, W* 
onst);

The fun
tions f() and g() have 
ompatible types. Let f and g be their types; then f

1

= T; f

2

= U; f

3

=

V; g

1

= V; g

2

= U;, and g

3

= W. Repla
ing every f

i

by g

i

in f gives

forall(type V, type U, type W) U* f(V*, U, W* 
onst);

whi
h has a return type and parameter list that is 
ompatible with g.

2 The word \type" in a forall spe
i�er is redundant at the moment, but I want to leave room

for inferred parameters of ordinary types in 
ase parameterized types get added one day.

Even without parameterized types, I might try to allow

forall(int n) int sum(int ve
tor[n℄);

but C 
urrently rewrites array parameters as pointer parameters, so the e�e
ts of su
h a 
hange

require more thought. 2

2 A polymorphi
 de
laration must do two things: it must introdu
e type parameters, and it

must apply assertions to those types. Adding this to existing C de
laration syntax and semanti
s

was deli
ate, and not entirely su

essful.

C depends on de
laration-before-use, so a forall spe
i�er must introdu
e type names before

they 
an be used in the de
laration spe
i�ers. This 
ould be done by making the forall spe
i�er

part of the de
laration spe
i�ers, or by making it a new introdu
tory 
lause of de
larations.

Assertions are also part of polymorphi
 fun
tion types, be
ause it must be 
lear whi
h fun
-

tions have a

ess to the assertion parameters de
lared by the assertions. All attempts to put

assertions inside an introdu
tory 
lause produ
ed 
omplex semanti
s and 
onfusing 
ode. Build-

ing them into the de
laration spe
i�ers 
ould be done by pla
ing them in the fun
tion's parameter

list, or in a forall spe
i�er that is a de
laration spe
i�er. Assertions are also used with type pa-

rameters of spe
i�
ations, and by type de
larations. For 
onsisten
y's sake it seems best to atta
h

assertions to the type de
larations in forall spe
i�ers, whi
h means that forall spe
i�ers must be

de
laration spe
i�ers.

The 
hosen syntax led to the following question: what is the meaning of

forall(type T) T f(void);

There are two possibilities.

� f is polymorphi
 in T. This interpretation would allow the following.

forall(type T) T* allo
(void);

int *p = allo
();
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Here allo
() would re
eive int as an inferred argument, and return an int*.

� f is monomorphi
, and returns a polymorphi
 value. This fa
ility is more limited than it

seems at �rst. Consider f() above; the value returned must have type T for every obje
t

type T. Where is f() to get su
h a value? In pra
ti
e, the only useful polymorphi
 return

types are pointers to polymorphi
 fun
tion types and forall(type T) 
onst T*|and in

that 
ase, the only returnable value is 0.

Cforall took the se
ond ta
k, so that inferred arguments would be apparent from the fun
tion's

expli
it arguments. Consequently, fun
tions like allo
 must be written as

forall(type T) T* allo
(T initial_value);

2

5.2 Type Quali�ers

Cforall de�nes a new type quali�er lvalue.

Syntax

type-quali�er: . . .

lvalue

Semanti
s

lvalue may be used to qualify the return type of a fun
tion type. Let T be an unquali�ed version of a type;

then the result of 
alling a fun
tion with return type lvalue T is a modi�able lvalue of type T. 
onst and

volatile quali�ers may also be added to indi
ate that the fun
tion result is a 
onstant or volatile lvalue.

2 The 
onst and volatile quali�ers 
an only be sensibly used to qualify the return type of a

fun
tion if the lvalue quali�er is also used. 2

An lvalue-quali�ed type may be used in a 
ast expression if the operand is an lvalue; the result of the

expression is an lvalue.

2 lvalue provides some of the fun
tionality of C++'s \T&" (referen
e to obje
t of type T) type.

Referen
e types have four uses in C++.

� They are ne
essary for user-de�ned operators that return lvalues, su
h as \subs
ript" and

\dereferen
e".

� A referen
e 
an be used to de�ne an alias for a 
ompli
ated lvalue expression, as a way of

getting some of the fun
tionality of the Pas
al with statement. The following C++ 
ode

gives an example.

f 
har& 
ode = long_name.some_field[i℄.data->
ode;


ode = toupper(
ode);

g

This is not very useful.

� A referen
e parameter 
an be used to allow a fun
tion to modify an argument without

for
ing the 
aller to pass the address of the argument. This is most useful for user-de�ned

assignment operators. In C++, plain assignment is done by a fun
tion 
alled \operator=",

and the two expressions
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a = b;

operator=(a,b);

are equivalent. If a and b are of type T, then the �rst parameter of operator= must have

type \T&". It 
annot have type T, be
ause then assignment 
ouldn't alter the variable, and

it 
an't have type \T*", be
ause the assignment would have to be written \&a = b;".

In the 
ase of user-de�ned operators, this 
ould just as well be handled by using pointer types

and by 
hanging the rewrite rules so that \a = b;" is equivalent to \operator=(&(a),b)".

Referen
e parameters of \normal" fun
tions are Bad Things, be
ause they remove a useful

property of C fun
tion 
alls: an argument 
an only be modi�ed by a fun
tion if it is pre
eded

by \&".

� Referen
es to 
onst-quali�ed types 
an be used instead of value parameters. Given the C++

fun
tion 
all \fiddle(a_thing)", where the type of a_thing is Thing, the type of fiddle


ould be either of

void fiddle(Thing);

void fiddle(
onst Thing&);

If the se
ond form is used, then 
onstru
tors and destru
tors are not invoked to 
reate a

temporary variable at the 
all site (and it is bad style for the 
aller to make any assumptions

about su
h things), and within fiddle the parameter is subje
t to the usual problems 
aused

by aliases. The referen
e form might be 
hosen for eÆ
ien
y's sake if Things are too large or

their 
onstru
tors or destru
tors are too expensive. An implementation may swit
h between

them without 
ausing trouble for well-behaved 
lients. This leaves the implementor to de�ne

\too large" and \too expensive".

I propose to push this job onto the 
ompiler by allowing it to implement

void fiddle(
onst volatile Thing);

with 
all-by-referen
e. Sin
e it knows all about the size of Things and the parameter passing

me
hanism, it should be able to 
ome up with a better de�nition of \too large", and may

be able to make a good guess at \too expensive".

In summary, sin
e referen
es are only really ne
essary for returning lvalues, I'll only provide

lvalue fun
tions. 2

5.3 Spe
i�
ation De�nitions

Syntax

spe
-de�nition:

spe
 identi�er ( type-parameter-list ) { spe
-de
laration-list

opt

}

spe
-de
laration-list:

spe
-de
laration ;

spe
-de
laration-list spe
-de
laration ;

spe
-de
laration:

spe
i�er-quali�er-list de
larator-list

de
larator-list:

de
larator

de
larator-list , de
larator

2 The de
larations allowed in a spe
i�
ation are mu
h the same as those allowed in a stru
ture,

ex
ept that bit �elds are not allowed, and in
omplete types and fun
tion types are allowed. 2
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Semanti
s

A spe
i�
ation de�nition de�nes a name for a spe
i�
ation: a parameterized 
olle
tion of obje
t and fun
tion

de
larations.

The de
larations in a spe
i�
ation 
onsist of the de
larations in the spe
-de
laration-list and de
larations

produ
ed by any assertions in the spe
-parameter-list . If the 
olle
tion 
ontains two de
larations that de
lare

the same identi�er and have 
ompatible types, they are 
ombined into one de
laration with the 
omposite

type 
onstru
ted from the two types.

5.3.1 Assertions

Syntax

assertion-list:

assertion

assertion-list assertion

assertion:

| identi�er ( type-name-list )

| spe
-de
laration

type-name-list:

type-name

type-name-list , type-name

Constraints

The identi�er in an assertion that is not a spe
-de
laration shall be the name of a spe
i�
ation. The

type-name-list shall 
ontain one type-name argument for ea
h type-parameter in that spe
i�
ation's spe
-

parameter-list . If the type-parameter uses type-
lass type, the argument shall be the type name of an obje
t

type; if it uses dtype, the argument shall be the type name of an obje
t type or an in
omplete type; and if

it uses ftype, the argument shall be the type name of a fun
tion type.

Semanti
s

An assertion is a de
laration of a 
olle
tion of obje
ts and fun
tions, 
alled assertion parameters.

The assertion parameters produ
ed by an assertion that applies the name of a spe
i�
ation to type argu-

ments are found by taking the de
larations spe
i�ed in the spe
i�
ation and treating ea
h of the spe
i�
ation's

parameters as a synonym for the 
orresponding type-name argument.

The 
olle
tion of assertion parameters produ
ed by the assertion-list are found by 
ombining the de
lara-

tions produ
ed by ea
h assertion. If the 
olle
tion 
ontains two de
larations that de
lare the same identi�er

and have 
ompatible types, they are 
ombined into one de
laration with the 
omposite type 
onstru
ted

from the two types.

Examples

forall(type T | T ?*?(T,T))

T square(T val) f

return val + val;

g

spe
 summable(type T) f

T ?+=?(T*, T);


onst T 0;
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g;

spe
 list_of(type List, type Element) f

Element 
ar(List);

List 
dr(List);

List 
ons(Element, List);

List nil;

int is_nil(List);

g;

spe
 sum_list(type List,

type Element | summable(Element) | list_of(List, Element)) fg;

sum_list 
ontains seven de
larations, whi
h des
ribe a list whose elements 
an be added up. The assertion

\|sum_list(i_list, int)" produ
es the assertion parameters

int ?+=?(int*, int);


onst int 0;

int 
ar(i_list);

i_list 
dr(i_list);

i_list 
ons(int, i_list);

i_list nil;

int is_nil;

5.4 Type De
larations

Syntax

type-parameter-list:

type-parameter

type-parameter-list , type-parameter

type-parameter:

type-
lass identi�er assertion-list

opt

type-
lass:

type

dtype

ftype

type-de
laration:

storage-
lass-spe
i�er

opt

type type-de
larator-list ;

type-de
larator-list:

type-de
larator

type-de
larator-list , type-de
larator

type-de
larator:

identi�er assertion-list

opt

= type-name

identi�er assertion-list

opt

Constraints

If a type de
laration has blo
k s
ope, and the de
lared identi�er has external or internal linkage, the de
la-

ration shall have no initializer for the identi�er.
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Semanti
s

A type-parameter or a type-de
larator de
lares an identi�er to be a type name for a type distin
t from all

other types.

An identi�er de
lared by a type-parameter has no linkage. Identi�ers de
lared with type-
lass type are

obje
t types; those de
lared with type-
lass dtype are in
omplete types; and those de
lared with type-
lass

ftype are fun
tion types. The identi�er has blo
k s
ope that terminates at the end of the spe
-de
laration-list

or polymorphi
 fun
tion that 
ontains the type-parameter .

A type-de
larator with an initializer is a type de�nition. The de
lared identi�er is an in
omplete type

within the initializer, and an obje
t type after the end of the initializer. The type in the initializer is 
alled

the implementation type. Within the s
ope of the de
laration, impli
it 
onversions 
an be performed between

the de�ned type and the implementation type, and between pointers to the de�ned type and pointers to the

implementation type.

A type de
laration without an initializer and without a storage-
lass spe
i�er or with storage-
lass spe
i-

�er stati
 de�nes an in
omplete type. If a translation unit or blo
k 
ontains one or more su
h de
larations

for an identi�er, it must 
ontain exa
tly one de�nition of the identi�er (but not in an en
losed blo
k, whi
h

would de�ne a new type known only within that blo
k).

2 In
omplete type de
larations allow 
ompa
t mutually-re
ursive types.

type t1; /* In
omplete type de
laration. */

type t2 = stru
t f t1* p; /* ... */ g;

type t1 = stru
t f t2* p; /* ... */ g;

Without them, mutual re
ursion 
ould be handled by de
laring mutually re
ursive stru
tures,

then initializing the types to those stru
tures.

stru
t s1;

type t2 = stru
t s2 f stru
t s1* p; /* ... */ g;

type t1 = stru
t s1 f stru
t s2* p; /* ... */ g;

This introdu
es extra names, and may for
e the programmer to 
ast between the types and their

implementations. 2

A type de
laration without an initializer and with storage-
lass spe
i�er extern is an opaque type de
la-

ration. Opaque types are obje
t types. An opaque type is not a 
onstant-expression; neither is a stru
ture

or union that has a member whose type is not a 
onstant-expression. Every other obje
t type is a 
onstant-

expression. Obje
ts with stati
 storage duration shall be de
lared with a type that is a 
onstant-expression.

2 Type de
larations 
an de
lare identi�ers with external linkage, whereas typedef de
larations

de
lare identi�ers that only exist within a translation unit. These opaque types 
an be used in

de
larations, but the implementation of the type is not visible.

Stati
 obje
ts 
an not have opaque types be
ause spa
e for them would have to be allo
ated

at program start-up. This is a de�
ien
y, but I don't want to deal with \module initialization"


ode just now. 2

An in
omplete type whi
h is not a quali�ed version of a type is a value of type-
lass dtype. An obje
t

type whi
h is not a quali�ed version of a type is a value of type-
lasses type and dtype. A fun
tion type is

a value of type-
lass ftype.

2 Synta
ti
ally, a type value is a type-name, whi
h is a de
laration for an obje
t whi
h omits

the identi�er being de
lared.

Obje
t types are pre
isely the types that 
an be instantiated. Type quali�ers are not in
luded

in type values be
ause the 
ompiler needs the information they provide at 
ompile time to dete
t

illegal statements or to produ
e eÆ
ient ma
hine instru
tions. For instan
e, the 
ode that a
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ompiler must generate to manipulate an obje
t that has volatile-quali�ed type may be di�erent

from the 
ode to manipulate an ordinary obje
t.

Type quali�ers are a weak point of C's type system. Consider the standard library fun
tion

str
hr() whi
h, given a string and a 
hara
ter, returns a pointer to the �rst o

urren
e of the


hara
ter in the string.


har *str
hr(
onst 
har *s, int 
) f


har real_
 = 
; /* done be
ause 
 was de
lared as int. */

for (; *s != real_
; s++)

if (*s == '\0') return NULL;

return (
har*)s;

g

The parameter s must be 
onst 
har*, be
ause str
hr() might be used to sear
h a 
onstant

string, but the return type must be 
har*, be
ause the result might be used to modify a non-


onstant string. Hen
e the body must perform a 
ast, and (even worse) str
hr() provides a

type-safe way to attempt to modify 
onstant strings. What is needed is some way to say that s's

type might 
ontain quali�ers, and the result type has exa
tly the same quali�ers. Polymorphi


fun
tions do not provide a �x for this de�
ien
y, be
ause type quali�ers are not part of type

values. Instead, overloading 
an be used to de�ne str
hr() for ea
h 
ombination of quali�ers.

2

2 Sin
e in
omplete types are not type values, they 
an not be used as the initializer in a type

de
laration, or as the type of a stru
ture or union member. This prevents the de
laration of

types that 
ontain ea
h other.

type t1;

type t2 = t1; /* illegal: in
omplete type `t1'. */

type t1 = t2;

The initializer in a �le-s
ope de
laration must be a 
onstant expression. This means type

de
larations 
an not build on opaque types, whi
h is a de�
ien
y.

extern type Huge; /* extended-pre
ision integer type. */

type Rational = stru
t f

Huge numerator, denominator; /* illegal */

g;

stru
t Pair f

Huge first, se
ond; /* legal */

g;

Without this restri
tion, Cforall might require \module initialization" 
ode (sin
e Rational has

external linkage, it must be 
reated before any other translation unit instantiates it), and would

for
e an ordering on the initialization of the translation unit that de�nes Huge and the translation

that de
lares Rational.

A bene�t of the restri
tion is that it prevents the de
laration in separate translation units of

types that 
ontain ea
h other, whi
h would be hard to prevent otherwise.

File a.
:

extern type t1;

type t2 = stru
t f t1 f1; /* ... */ g /* illegal */

File b.
:

extern type t2;

type t1 = stru
t f t2 f2; /* ... */ g /* illegal */
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2

2 Sin
e a type-de
laration is a de
laration and not a stru
t-de
laration, type de
larations 
an not

be stru
ture members. The form of type-de
laration forbids arrays of, pointers to, and fun
tions

returning type. Hen
e the syntax of type-spe
i�er does not have to be extended to allow type-

valued expressions. It also side-steps the problem of type-valued expressions produ
ing di�erent

values in di�erent de
larations.

Sin
e a type de
laration is not a parameter-de
laration, fun
tions 
an not have expli
it type

parameters. This may be too restri
tive, but it attempts to make 
ompilation simpler. Re
all

that when traditional C s
anners read in an identi�er, they look it up in the symbol table

to determine whether or not it is a typedef name, and return a \type" or \identi�er" token

depending on what they �nd. A type parameter would add a type name to the 
urrent s
ope.

The s
ope manipulations involved in parsing the de
laration of a fun
tion that takes fun
tion

pointer parameters and returns a fun
tion pointer may just be too 
ompli
ated.

Expli
it type parameters don't seem to be very useful, anyway, be
ause their s
ope would

not in
lude the return type of the fun
tion. Consider the following attempt to de�ne a type-safe

memory allo
ation fun
tion.

#in
lude <stdlib.h>

T* new(type T) f return (T*) mallo
(sizeof(T)); g;

...

int* ip = new(int);

This looks sensible, but Cforall's de
laration-before-use rules mean that \T" in the fun
tion body

refers to the parameter, but the \T" in the return type refers to the meaning of T in the s
ope

that 
ontains new; it 
ould be unde�ned, or a type name, or a fun
tion or variable name. Nothing

good 
an result from su
h a situation. 2

Examples

Sin
e type de
larations 
reate new types, instan
es of types are always passed by value.

type A1 = int[2℄;

void f1(A1 a) f a[0℄ = 0; g;

typedef int A2[2℄;

void f2(A2 a) f a[0℄ = 0; g;

A1 v1;

A2 v2;

f1(v1);

f2(v2);

V1 is passed by value, so f1()'s assignment to a[0℄ does not modify v1. V2 is 
onverted to a pointer, so

f2() modi�es v2[0℄.

A translation unit 
ontaining the de
larations

extern type Complex; /* opaque type de
laration. */

extern float abs(Complex);


an 
ontain de
larations of 
omplex numbers, whi
h 
an be passed to abs. Some other translation unit must

implement Complex and abs. That unit might 
ontain the de
larations

type Complex = stru
t f float re, im; g;

Complex 
plx_i = f0.0, 1.0g;

float abs(Complex 
) f
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return sqrt(
.re*
.re + 
.im*
.im);

g

Note that 
 is impli
itly 
onverted to a stru
t so that its 
omponents 
an be retrieved.

type Time_of_day = int; /* se
onds sin
e midnight. */

Time_of_day ?+?(Time_of_day t1, int se
onds) f

return ((int)t1 + se
onds)%86400;

g

t1 must be 
ast to its implementation type to prevent in�nite re
ursion.

2 Within the s
ope of a type de�nition, an instan
e of the type 
an be viewed as having that type

or as having the implementation type. In the Time_of_day example, the di�eren
e is important.

Di�erent languages have treated the distin
tion between the abstra
tion and the implementation

in di�erent ways.

� Inside a Clu 
luster [6℄, the de
laration of an instan
e states whi
h view applies. Two

primitives 
alled up and down 
an be used to 
onvert between the views.

� The Simula 
lass [7℄ is essentially a re
ord type. Sin
e the only operations on a re
ord

are member sele
tion and assignment, whi
h 
an not be overloaded, there is never any

ambiguity as to whether the abstra
tion or the implementation view is being used. In C++

[5℄, operations on 
lass instan
es in
lude assignment and \&", whi
h 
an be overloaded. A

\s
ope resolution" operator 
an be used inside the 
lass to spe
ify whether the abstra
t or

implementation version of the operation should be used.

� An Ada derived type de�nition [8℄ 
reates a new type from an old type, and also impli
itly

de
lares derived subprograms that 
orrespond to the existing subprograms that use the old

type as a parameter type or result type. The derived subprograms are 
lones of the existing

subprograms with the old type repla
ed by the derived type. Literals and aggregates of

the old type are also 
loned. In other words, the abstra
t view provides exa
tly the same

operations as the implementation view. This allows the abstra
t view to be used in all 
ases.

The derived subprograms 
an be repla
ed by programmer-spe
i�ed subprograms. This is

an ex
eption to the normal s
ope rules, whi
h forbid dupli
ate de�nitions of a subprogram

in a s
ope. In this 
ase, expli
it 
onversions between the derived type and the old type 
an

be used.

Cforall's rules are like Clu's, ex
ept that impli
it 
onversions and 
onversion 
osts allow it to do

away with most uses of up and down. 2

5.4.1 Default Fun
tions and Obje
ts

A de
laration of a type identi�er T with type-
lass type impli
itly de
lares a default assignment fun
tion T

?=?(T*, T), with the same s
ope and linkage as the identi�er T.

2 Assignment is 
entral to C's imperative programming style, and every existing C obje
t

type has assignment de�ned for it (ex
ept for array types, whi
h are treated as pointer types

for purposes of assignment). Without this rule, nearly every inferred type parameter would

need an a

ompanying assignment assertion parameter. If a type parameter should not have

an assignment operation, dtype should be used. If a type should not have assignment de�ned,

the user 
an de�ne an assignment fun
tion that 
auses a run-time error, or provide an external

de
laration but no de�nition and thus 
ause a link-time error. 2
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A de�nition of a type identi�er T with implementation type I and type-
lass type impli
itly de�nes a

default assignment fun
tion. A de�nition of a type identi�er T with implementation type I and an assertion

list impli
itly de�nes default fun
tions and default obje
ts as de
lared by the assertion de
larations. The

default obje
ts and fun
tions have the same s
ope and linkage as the identi�er T. Their values are determined

as follows:

� If at the de�nition of T there is visible a de
laration of an obje
t with the same name as the default

obje
t, and if the type of that obje
t with all o

urren
e of I repla
ed by T is 
ompatible with the

type of the default obje
t, then the default obje
t is initialized with that obje
t. Otherwise the s
ope

of the de
laration of T must 
ontain a de�nition of the default obje
t.

� If at the de�nition of T there is visible a de
laration of a fun
tion with the same name as the default

fun
tion, and if the type of that fun
tion with all o

urren
e of I repla
ed by T is 
ompatible with the

type of the default fun
tion, then the default fun
tion 
alls that fun
tion after 
onverting its arguments

and returns the 
onverted result.

Otherwise, if I 
ontains exa
tly one anonymous member su
h that at the de�nition of T there is visible

a de
laration of a fun
tion with the same name as the default fun
tion, and the type of that fun
tion

with all o

urren
es of the anonymous member's type in its parameter list repla
ed by T is 
ompatible

with the type of the default fun
tion, then the default fun
tion 
alls that fun
tion after 
onverting its

arguments and returns the result.

Otherwise the s
ope of the de
laration of T must 
ontain a de�nition of the default fun
tion.

2 Note that a pointer to a default fun
tion will not 
ompare as equal to a pointer to the inherited

fun
tion. 2

A fun
tion or obje
t with the same type and name as a default fun
tion or obje
t that is de
lared within

the s
ope of the de�nition of T repla
es the default fun
tion or obje
t.

Examples

spe
 s(type T) f

T a, b;

g

stru
t impl f int left, right; g a = f 0, 0 g;

type Pair | s(Pair) = stru
t impl;

Pair b = f 1, 1 g;

The de�nition of Pair impli
itly de�nes two obje
ts a and b. Pair a inherits its value from the stru
t

impl a. The de�nition of Pair b is 
ompulsory be
ause there is no stru
t impl b to 
onstru
t a value

from.

spe
 ss(type T) f

T 
lone(T);

void munge(T*);

g

type Whatsit | ss(Whatsit);

type Doodad | ss(Doodad) = stru
t doodad f

Whatsit; /* anonymous member */

int extra;

g;

Doodad 
lone(Doodad) f /* ... */ g
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The de�nition of Doodad impli
itly de�nes three fun
tions:

Doodad ?=?(Doodad*, Doodad);

Doodad 
lone(Doodad);

void munge(Doodad*);

The assignment fun
tion inherits stru
t doodad's assignment fun
tion be
ause the types mat
h when

stru
t doodad is repla
ed by Doodad throughout. munge() inherits Whatsit's munge() be
ause the types

mat
h when Whatsit is repla
ed by Doodad in the parameter list. 
lone() does not inherit Whatsit's


lone(): repla
ement in the parameter list yields \Whatsit 
lone(Doodad)", whi
h is not 
ompatible with

Doodad's 
lone()'s type. Hen
e the de�nition of \Doodad 
lone(Doodad)" is ne
essary.

Default fun
tions and obje
ts are subje
t to the normal s
ope rules.

type T = ...;

T a_T = ...; /* Default assignment used. */

T ?=?(T*, T);

T a_T = ...; /* Programmer-de�ned assignment 
alled. */

2 A 
ompiler warning would be helpful in this situation. 2

2 The 
lass 
onstru
t of obje
t-oriented programming languages performs three independent

fun
tions. It en
apsulates a data stru
ture; it de�nes a subtype relationship, whereby instan
es

of one 
lass may be used in 
ontexts that require instan
es of another; and it allows one 
lass to

inherit the implementation of another.

In Cforall, en
apsulation is provided by opaque types and the s
ope rules, and subtyping

is provided by spe
i�
ations and assertions. Inheritan
e is provided by default fun
tions and

obje
ts. 2

5.5 Initialization

An expression that is used as an initializer is treated as being 
ast to the type of the obje
t being initialized.

An expression used in an initializer-list is treated as being 
ast to the type of the aggregate member that it

initializes. In either 
ase the 
ast must have a single unambiguous interpretation.
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Statements

Many statements 
ontain expressions, whi
h may have more than one interpretation. The following se
tions

des
ribe how the Cforall translator sele
ts an interpretation. In all 
ases the result of the sele
tion shall be

a single unambiguous interpretation.

6.1 Expression and Null Statements

The expression in an expression statement is treated as being 
ast to void.

6.2 Jump Statements

An expression in a return statement is treated as being 
ast to the result type of the fun
tion.

6.3 Sele
tion Statements

The 
ontrolling expression e in the swit
h statement

swit
h ( e ) ...

may have more than one interpretation, but it shall have only one interpretation with an integral type. An

integral promotion is performed on the expression if ne
essary. The 
onstant expressions in 
ase statements

with the swit
h are 
onverted to the promoted type.

6.4 Iteration Statements

The 
ontrolling expression e in the loops

if ( e ) ...

while ( e ) ...

do ... while ( e );

is treated as \(int)((e)!=0)".

The statement

for (a; b; 
) ...
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is treated as

for ((void)(a); (int)((b)!=0); (void)(
)) ...
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Chapter 7

Prepro
essing Dire
tives

7.1 Prede�ned Ma
ro Names

The implementation shall de�ne the ma
ro names __LINE__, __FILE__, __DATE__, and __TIME__, as in the

ANSI C standard. It shall not de�ne the ma
ro name __STDC__.

In addition, the implementation shall de�ne the ma
ro name __CFORALL__ to be the de
imal 
onstant 1.
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Appendix A

Examples

A.1 C Types

This se
tion gives example spe
i�
ations for some groups of types that are important in the C language, in

terms of the prede�ned operations that 
an be applied to those types.

A.1.1 S
alar, Arithmeti
, and Integral Types

The pointer, integral, and 
oating-point types are all s
alar types. All of these types 
an be logi
ally negated

and 
ompared. The assertion \s
alar(Complex)" should be read as \type Complex is s
alar".

spe
 s
alar(type T) f

int !?(T);

int ?<?(T, T), ?<=?(T, T), ?==?(T, T), ?>=?(T, T), ?>?(T, T), ?!=?(T, T);

g;

The integral and 
oating-point types are arithmeti
 types, whi
h support the basi
 arithmeti
 operators.

The use of an assertion in the spe
-parameter-list de
lares that, in order to be arithmeti
, a type must also

be s
alar (and hen
e that s
alar operations are available). This is equivalent to inheritan
e of spe
i�
ations.

spe
 arithmeti
(type T | s
alar(T) ) f

T +?(T), -?(T);

T ?*?(T, T), ?/?(T, T), ?+?(T, T), ?-?(T, T);

g;

The various 
avors of 
har and int and the enumerated types make up the integral types.

spe
 integral(type T | arithmeti
(T) ) f

T ~?(T);

T ?&?(T, T), ?|?(T, T), ?^?(T, T);

T ?%?(T, T);

T ?<<?(T, T), ?>>?(T, T);

g;

A.1.2 Modi�able Types

The only operation that 
an be applied to all modi�able lvalues is simple assignment.
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spe
 m_lvalue(type T) f

T ?=?(T*, T);

g;

Modi�able s
alar lvalues are s
alars and are modi�able lvalues, and assertions in the spe
-parameter-list

re
e
t those relationships. This is equivalent to multiple inheritan
e of spe
i�
ations. S
alars 
an also be

in
remented and de
remented.

spe
 m_l_s
alar(type T | s
alar(T) | m_lvalue(T) ) f

T ?++(T*), ?--(T*);

T ++?(T*), --?(T*);

g;

Modi�able arithmeti
 lvalues are both modi�able s
alar lvalues and arithmeti
. Note that this results in

the \inheritan
e" of s
alar along both paths.

spe
 m_l_arithmeti
(type T | m_l_s
alar(T) | arithmeti
(T) ) f

T ?/=?(T*, T), ?*=?(T*, T);

T ?+=?(T*, T), ?-=?(T*, T);

g;

spe
 m_l_integral(type T | m_l_arithmeti
(T) | integral(T) ) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g;

A.1.3 Pointer and Array Types

Array types 
an barely be said to exist in ANSI C, sin
e in most 
ases an array name is treated as a


onstant pointer to the �rst element of the array, and the subs
ript expression \a[i℄" is equivalent to the

dereferen
ing expression \(*(a+(i)))". Te
hni
ally, pointer arithmeti
 and pointer 
omparisons other than

\==" and \!=" are only de�ned for pointers to array elements, but the type system does not enfor
e those

restri
tions. Consequently, there is no need for a separate \array type" spe
i�
ation.

Pointer types are s
alar types. Like other s
alar types, they have \+" and \-" operators, but the types do

not mat
h the types of the operations in arithmeti
, so these operators 
annot be 
onsolidated in s
alar.

spe
 pointer(type P | s
alar(P) ) f

P ?+?(P, long int), ?+?(long int, P), ?-?(P, long int);

ptrdiff_t ?-?(P, P);

g;

spe
 m_l_pointer(type P | pointer(P) | m_l_s
alar(P) ) f

P ?+=?(P*, long int), ?-=?(P*, long int);

P ?=?(P*, void*);

void* ?=?(void**, P);

g;

Spe
i�
ations that de�ne the dereferen
e operator (or subs
ript operator) require two parameters, one

for the pointer type and one for the pointed-at (or element) type. Di�erent spe
i�
ations are needed for ea
h

set of type quali�ers, be
ause quali�ers are not in
luded in types. The assertion \|ptr_to(Safe_pointer,

int)" should be read as \Safe_pointer a
ts like a pointer to int".

Revision: 1.82



APPENDIX A. EXAMPLES 54

spe
 ptr_to(type P | pointer(P), type T) f

lvalue T *?(P); lvalue T ?[?℄(P, long int);

g;

spe
 ptr_to_
onst(type P | pointer(P), type T) f


onst lvalue T *?(P); 
onst lvalue T ?[?℄(P, long int);

g;

spe
 ptr_to_volatile(type P | pointer(P), type T) g

volatile lvalue T *?(P); volatile lvalue T ?[?℄(P, long int);

g;

spe
 ptr_to_
onst_volatile(type P | pointer(P), type T) g


onst volatile lvalue T *?(P);


onst volatile lvalue T ?[?℄(P, long int);

g;

Assignment to pointers is more 
ompli
ated than is the 
ase with other types, be
ause the target's type


an have extra type quali�ers in the pointed-at type: a \T*" 
an be assigned to a \
onst T*", a \volatile

T*", and a \
onst volatile T*". Again, the pointed-at type is passed in, so that assertions 
an 
onne
t

these spe
i�
ations to the \ptr_to" spe
i�
ations.

spe
 m_l_ptr_to(type P | m_l_pointer(P),

type T | ptr_to(P,T) f

P ?=?(P*, T*);

T* ?=?(T**, P);

g;

spe
 m_l_ptr_to_
onst(type P | m_l_pointer(P),

type T | ptr_to_
onst(P,T)) f

P ?=?(P*, 
onst T*);


onst T* ?=?(
onst T**, P);

g;

spe
 m_l_ptr_to_volatile(type P | m_l_pointer(P),

type T | ptr_to_volatile(P,T)) f

P ?=?(P*, volatile T*);

volatile T* ?=?(volatile T**, P);

g;

spe
 m_l_ptr_to_
onst_volatile(

type P | ptr_to_
onst_volatile(P),

type T | m_l_ptr_to_volatile(P,T) | m_l_ptr_to_
onst(P)) f

P ?=?(P*, 
onst volatile T*);


onst volatile T* ?=?(
onst volatile T**, P);

g;

Note the regular manner in whi
h type quali�ers appear in those spe
i�
ations. An alternative spe
i�-


ation 
an make use of the fa
t that quali�
ation of the pointed-at type is part of a pointer type to 
apture

that regularity.
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spe
 m_l_ptr_like(type MyP | m_l_pointer(MyP),

type CP | m_l_pointer(CP) ) f

MyP ?=?(MyP*, CP);

CP ?=?(CP*, MyP);

g;

The assertion \| m_l_ptr_like(Safe_ptr, 
onst int*)" should be read as \Safe_ptr is a pointer type

like 
onst int*". This spe
i�
ation has two defe
ts, 
ompared to the original four: there is no au-

tomati
 assertion that dereferen
ing a MyP produ
es an lvalue of the type that CP points at, and the

\|m_l_pointer(CP)" assertion provides only a weak assuran
e that the argument passed to CP really is

a pointer type.

A.2 Relationships Between Operations

Di�erent operators often have related meanings; for instan
e, in C, \+", \+=", and the two versions of \++"

perform variations of addition. Languages like C++ and Ada allow programmers to de�ne operators for

new types, but do not require that these relationships be preserved, or even that all of the operators be

implemented. Completeness and 
onsisten
y is left to the good taste and dis
retion of the programmer. It

is possible to en
ourage these attributes by providing generi
 operator fun
tions, or member fun
tions of

abstra
t 
lasses, that are de�ned in terms of other, related operators.

In Cforall, polymorphi
 fun
tions provide the equivalent of these generi
 operators, and spe
i�
ations

expli
itly de�ne the minimal implementation that a programmer should provide. This se
tion shows a few

examples.

A.2.1 Relational and Equality Operators

The di�erent 
omparison operators have obvious relationships, but there is no obvious subset of the oper-

ations to use in the implementation of the others. However, it is usually 
onvenient to implement a single


omparison fun
tion that returns a negative integer, 0, or a positive integer if its �rst argument is respe
tively

less than, equal to, or greater than its se
ond argument; the library fun
tion str
mp is an example.

C and Cforall have an extra, non-obvious 
omparison operator: \!", logi
al negation, returns 1 if its

operand 
ompares equal to 0, and 0 otherwise.

spe
 
omparable(type T) f


onst T 0;

int 
ompare(T, T);

g

forall(type T | 
omparable(T)) int ?<?(T l, T r) f

return 
ompare(l,r) < 0;

g

/* . . . similarly for <=, ==, >=, >,

and !=. */

forall(type T | 
omparable(T)) int !?(T operand) f

return !
ompare(operand, 0);

g
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A.2.2 Arithmeti
 and Integer Operations

A 
omplete arithmeti
 type would provide the arithmeti
 operators and the 
orresponding assignment op-

erators. Of these, the assignment operators are more likely to be implemented dire
tly, be
ause it is usually

more eÆ
ient to alter the 
ontents of an existing obje
t than to 
reate and return a new one. Similarly, a


omplete integral type would provide integral operations based on integral assignment operations.

spe
 arith_base(type T) f


onst T 1;

T ?+=?(T*,T), ?-=?(T*,T), ?*=?(T*,T), ?/=?(T*,T);

g

forall(type T | arith_base(T)) T ?+?(T l, T r) f

return l += r;

g

forall(type T | arith_base(T)) T ?++(T* operand) f

T temporary = *operand;

*operand += 1;

return temporary;

g

forall(type T | arith_base(T)) T ++?(T* operand) f

return *operand += 1;

g

/* . . . similarly for -, --, *,and /. */

spe
 int_base(type T) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g

forall(type T | int_base(T)) T ?&?(T l, T r) f

return l &= r;

g

/* . . . similarly for |, ^, %, <<,and >>. */

Note that, although an arithmeti
 type would 
ertainly provide 
omparison fun
tions, and an integral

type would provide arithmeti
 operations, there does not have to be any relationship among int_base,

arith_base and 
omparable. Note also that these de
larations provide guidan
e and assistan
e, but they

do not de�ne an absolutely minimal set of requirements. A truly minimal implementation of an arithmeti


type might only provide 0, 1, and ?-=?, whi
h would be used by polymorphi
 ?+=?, ?*=?, and ?/=? fun
tions.
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