Generic Programming with Inferred Models

Richard C. Bilson

Glen Ditchfield

Peter A. Buhr

University of Waterloo, Canada
rcbilson@plg.uwaterloo.ca

Abstract

The effective design of software systems using genericrprog
ming can benefit greatly from appropriate programming |aiggu
support. Essential support includes the direct representaf con-
ceptsi.e., collections of type properties, and the ability t@tisally
determine that concrete types model these concepts. Tihés dis-
cusses the languagey, which facilitates generic programming by
supporting concepts explicitly and automatically infegrimany
cases where types model concepts. It also demonstratesxhie fl
ibility of CV in expressing relationships among types, especially
so-called associated types, and presents some possiblesiexts
to the language to improve support for these relationships.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§ Language Constructs and Features—abstract data types,
constraints, polymorphism; D.2.18¢ftware EngineerifjgReusable
Software—reusable libraries; D.3.Prpgramming Languagés
Language Classifications—C

General Terms Languages, Design

Keywords generic programming, generics, polymorphism

1. Introduction

Stemming from the pioneering work of Musser and Stepanoy; [10
generic programming has become an important paradigm for en
couraging the design of reusable and composable software. F
damental to generic programming is the idea that algoritares
expressed in terms of properties of types, rather than mgef
specific types. Aconceptbrings together a set of useful properties.
An example is the mathematical concept of a semigroup, wdtch
stracts the existence of a binary operation. If a type pessedall of
the properties specified by a concept, it is saichtwwlelthe concept.
Although this approach to software design can be used in many
different programming languages, certain language featare
especially conducive. Key among them is parametric polymor
phism [3], the ability to write type-generic functions aratatypes
that can be statically type-checked. Polymorphism itéelfyever,
may still leave much complexity to be managed by the genede p
grammer. Based on their experience in implementing lacgées
generic libraries in a variety of polymorphic programmiranA
guages, Garciat al. [7] identified five refinements that can sig-
nificantly ease generic programming:

[copyright notice will appear here]

It should be possible to precisely represent and verify thd-m
elling relation between types and concepts at compile time,
possible to extend this relation independently of both t&fe-d
nition of the type and the definition of the concept.

It should be possible for a concept to express a relationship
among multiple types.

It should be possible for concepts to include typesspciated
typeg as well as values and operations.

e |t should be possible for generic functions to be instaetat
implicitly, with type variables inferred from argument gpat

a call site.

It should be possible to provide an alternative name for a,typ
i.e., atype alias

Recently, Siek and Lumsdaine [12, 13] have created the G lan-
guage, designed to support all of these features. For thelpas
years, we have been exploring and refining properties ofghe |
guagecv [5] (pronounced "C for all’), which is an imperative,
statically-typed programming language that extends thilao C
language with overloading, polymorphism, multiple retuatues,
and other features. Thev type system possesses the desirable fea-
tures for generic programming, except associated typelikeJ@,

Cv provides all of these features without requiring expligttira-
tions to establish the modelling relation; we believe it éoumique

in this respect. This paper describes how the desigivdécilitates
generic programming, and various approaches for dealitiythve
issues of associated types.

2. v Language

This section presents a brief, practical overviewCef A formal
treatment of the underlying type system can be found in te se
ond author’s Ph.D thesis [6]. The first author's M.Math thd4i]
describes a practical implementation of the language.

2.1 Overloading

Overload resolution is the process by which the use of an-over
loaded name is matched with one particular definition of tiaate,
based on the context in which the name is used. In simple over-
loading systems, multiple functions can be defined with traes
name but with different parameter types and/or a differemier
of parameters, e.g., C+ or Java.dd, overloaded functions may
be defined with identical parameters but with different metypes
and/or a different number of return types:

void f(int); // different return types

int f(int);

[int,int] f (int); // return 2 values
To select the proper function for a call, both the call argotee@nd
the context in which the result of an expression is used nmeisbh-
sidered. In this complex overloading system, overloadlutiem
can still be efficient but requires a more sophisticatedrétyn for

2014/8/10

expression analysis. Once an algorithm can deal with retya
overloading, it is straightforward to extend it to variahle

int x; // multiple variable names
double x; // in same scope
char x;

The appropriate variable is selected based on the contextich
the name is used. The constag@nd1 can be overloaded because
of their special meaning in many application domains:

struct complex { double re; double im; };

complex 0 = { 0., 0. }; // declare useful constants

complex 1 = {1, 1. };
Finally, an interesting extension to overload resolut®mequired
for functions returning multiple values when the result barused
for multiple assignment and function composition (i.e.,ltiple
results can provide multiple arguments for another call):

[char, int] f(void); // return 2 values

[int, double] f(void);

void g(int, double, char, int); // 4 parameters

// multiple assignment: 2 variables assigned by 1 call

i,d]="f();

[// fur]7ction()composition: 4 arguments provided by 2 calls

g(f(). f0))
Although the topic of expression analysis and code germerati
for routines returning multiple values has been discusgetli{p
ously [2], the combination of multiple return values witheov
loaded names leads to significant new complexity in the aigly
of expressions.

2.2 Polymorphism

A polymorphic function is written using forall clause:
forall(type T)
T identity(T x) {
return x;
}

The resulting function can be applied to values of any type.
Non-trivial polymorphic functions are written by constiaig
type parameters using contexts, which specify operatiomaloes
that must be provided. Contexts are analogous to the canoépt
G or the type classes of Haskell [14]. For example, this cdnte
specifies the set of types that have a binargperator:
context semigroup(type T) {
T?242(T, T)
where 747" is CV syntax used to name this operator. A function
that constrains a type parameter using corgextigroup can then
make use of-:
forall(type T | semigroup(T))
T twice(T x) {
return x + Xx;
¥

A similar syntax allows one context to refine another, addiddi-
tional constraints:

context monoid(type T | semigroup(T)) {
TO0;
+

A function that operates onraonoid can use both the operation
and the value.
Cv contexts differ from G concepts in two important ways:

e CV does not have the model declarations of G. Verifying a type
models a concept is done implicitly by the compiler whenever
necessary, based on the presence of variables and funitions
accessible scopes having the proper names and types.

1strictly speaking, angompletedata type, i.e., a type that is not a function
type and whose size is known to the compiler.

e CV has no direct equivalent for the associated types and same-
type constraints of G. Equivalent constraints are exptegse
CV using multi-parameter contexts.

Implicit modelling means the following fragment is validygn the
above declaration akmigroup:
int 74-7(int, int);
int f(intx, inty) {
return twice(x, y);
¥

The declaration of+7 is sufficient to establish that the built-in type
int models the contextemigroup. In this particular situation, this
declaration is provided automatically by the compilercsimteger
addition is defined by the language. In general, the nanrtemay
be overloaded with other meanings to allow other types toehod
semigroup. The context members serve as implicit parameters to
a polymorphic function; their precise interpretation idiled as
if they are explicit parameters. That is, the declaratiomwode is
interpreted as:

forall(type T | semigroup(T)

T twice(T (*plus)(T, T), T
return plus(x, x);

)
x){

and the corresponding use within the functide interpreted as:
return twice(747, x, y);
The typeT is inferred by attempting pair-wise unification of the
types of the resulting formal parameters with the types fiéidint
combinations of interpretations of the arguments. In thise; the
fact that?+7 is defined with an appropriate signatureisnallows
the inference to succeed. If there is no appropriate defindf?+2,
the inference fails and a compile-time error is reportedhattoint
of use. The dependence on names to establish modelling riedns
overloading inCv is essential and pervasive.

Combining parametric polymorphism with operation inferen
in this way was first suggested by Cormack and Wright [4]. The
alternative is an explicit language mechanism, such asnthl
declaration of G or thénstance declaration of Haskell. These lan-
guages require a declaration for every combination of tyykcan-
cept in the modelling relation. In comparisofly needs none of
these declarations, which we believe to be a real and signific
saving.

3. Accidental Conformance

Implicit modelling gives additional flexibility and econgnof no-
tation, but adds the risk that a type may accidentally canftr a
context by defining operations with the appropriate naméembp-
propriate semantics. Gregor and Siek [8] provide good elesrgf
cases where accidental conformance arises. One exampjeedd
into CV syntax, is:

context Groupoid(type T) {

T2+2(T,T);
+

context Semigroup(type T | Groupoid(T)) {
// operator + is associative

A type can modebemigroup with an operation of the same name
and type as is needed to mod&bupoid. The difference is that
there are additional constraints on the behaviour of theatios.
Since implicit modelling is inferred based only on names and
types, there is no way for it to be robust in the face of subtle
semantic differences such as this. accepts any type that models
Groupoid as a model ofSemigroup, even when ther operation

is not associative. In some cases of accidental conformaarce
appropriate renaming of operations can solve the probldeifa
painfully), but not in a case of semantic refinement such &s th

2014/8/10

a type with a+ operation that modelSemigroup should use the
same operation to mod&loupoid; it is only the reverse case that is
in error. As aresult, there are certain cases where expimitelling
is necessary.
Explicit modelling can be expressed @v by using an over-

loaded identifier to indicate conformance:

context Semigroup(type T | Groupoid(T)) {

T plus_is_associative; // operator + is associative
+

With this new requirement, a type defining theoperator by itself
only modelsGroupoid, notSemigroup; if the operator is associative,
a variableplus_is_associative can be defined for that type, which
allows it to also modetemigroup.

In practice, it seems accidental conformance should bexhe e
ception, rather than the rule. Gar@aal. note that “...in our ex-
perience, accidental conformance is not a significant oofrpro-
gramming errors” [7, p. 130]. While explicit modelling rexes the
possibility of accidental conformance, the disadvantadhat it re-
quires a model declaration for every pair of type and conesen
when there is no semantic confusion. There is no way to peovid
implicit modelling given explicit modelling, whereas its¢raight-
forward to require explicit modelling in an implicit langge such
asCv. It is therefore appropriate to allow a context designer the
choice of explicit modelling, rather than the designer & tan-
guage.

4. Associated Types

The fundamental purpose of associated types is to establish
lationship between the primary type or types in a conceptthad
associated type, the latter being uniquely determined byfdh
mer. This section explores the way in which type relatiopslzire
currently expressed i@v contexts and ways in whic@v could be
extended to provide the advantages of associated types véhil
taining implicit modelling.

4.1 Representing Associated Types

Here is an example of an iterator concept with an associgfe t
as expressed in G:
concept lterator<Iter> {
type Elt;
next : fn(Iter)->Iter;
curr : fn(lter)->Elt;
at_end : fn(Iter)->bool;

}
Each type that is a model dferator must have a corresponding
type Elt, which serves as a return type for the functiaiar. The
primary type (ter) uniquely determines the associated type. Given
a type that modelgerator, its associateélt type can be accessed
using a qualified name, to be constrained imhare clause or used
in a declaration, e.g.:

fun accumulate<lter>

where { Iterator<Iter>, Groupoid<lterator<lter>.Elt> }

(Iter first, Iter last, lterator<Iter>.Elt init) -> Iterator<Iter>.Elt
This declaration declares a functisstumulate, parameterized on a
typeIter that modeldterator and whose associat&t type models
Groupoid. The function takes two values of typer and one of type
Elt as parameters, and returns a value of type

By contrast,Cv makes no provision for types to be included in
contexts, except as context parameters. This restrictites rout
associated types as found in Gv establishes type relationships
without associated types or same-type constraints by using-
parameter contexts. To represent an associated typevicantext,

it is only necessary to add a corresponding name to the type pa

rameter list, and introduce an operation to the context wligse
relates the associated type to the primary type:

context lterator(type lIter, type Elt) {
// functional dependency
Elt iterator_elt(lter);
// context operations
Iter next(Iter);
Elt curr(Iter);
bool at_end(Iter);
IE
The run-time behaviour of thierator_elt operation is irrelevant;
it is useful only to guide the inference. In this way, the atide
operation plays the role offanctional dependenay Haskell [9],
defining relationships among type parameters. As a reddtet
is no explicit notion of primary and associated type. Theoter
overloads ofterator_elt must uniquely determine, for eadhr, the
corresponding@lt. Rather than use a qualified name, the associated
type is declared separately in tfegall clause:
forall(type Iter, type Elt
| Iterator(Iter, Elt), Groupoid(Elt))
Elt accumulate(Iter first, lter last, Elt init);

A type can model the contekkrator by defining theterator_elt
operation to encode an appropriate choice of associatex jiygt
as it would specify the type in an explicit model declaration

struct MyType {
// implementation

struct Mylterator {
// implementation

MyType iterator_elt(Mylterator) {}

The striking feature ofv contexts, however, is that in most cases
this additional operation is unnecessary. Usually if orpetis as-
sociated with another, that relationship is already exg@@svithin
the context by some useful operation. In tleator context, for
instance, théterator_elt function is superfluous: it has the same
signature asurr, which suffices to relate the two types, eliminat-
ing the need for an additional operation. In the worst casts, af
unrelated types can be associated within the context using ep-
erations to guide inference; in the usual case, the set otiged
types is already encoded within the context, so the typecégms
can be made implicitly and automatically.

In addition, multi-parameter contexts are capable of esgre
ing other relationships among concepts. For instance,idens
expressing mixed-type multiplication as a context (addftem
Jones [9]):

context Multiplicable(type X, type Y, type Z) {
Z multiply(X, Y);

int multiply(int, int);

double multiply(int, double);

double multiply(double, int);

double multiply(double, double);
These declarations specify that multiplication of ties returns
anint, while multiplication of anint and adouble, or two doubles,
returns alouble. A multi-parameter context is necessary since there
is no single primary type: it is a particular combination loé¢ two
types X and Y that determineg. Contexts inCv are therefore
sufficient to represent concepts with associated types,edisas
other type relationships that cannot be represented usgugimted
types.

4.2 Associated Typesand Notation

Even if associated types are logically unnecessary, thay stilh
be useful if they provide a more concise or convenient nmati
Multi-parameter contexts can express complex type relakiips,
but they have the side effect of giving all types equal pranaoe
in the interface. The context parameter list and every fanct

2014/8/10

constraint or refinement that uses the context must mentiery e
associated type. In a highly-generic system using manyegts)t
each involving many associated types, significant compleaad
reduced readability can occur [7].

Furthermore, a consequence of the notational economy of as-

sociated types is that the resulting program is better peepgor
augmentation of the concepts. A concept can be extended to in
clude more associated types without requiring all functiasing
the concept to be changed as well, so long as those functsns r
main independent of the choice of associated type.

In order to assess the impact of associated types on nqgtation
four cases are identified:

1. A function whose signature uses a context involving anass
ated type, where the signature does not constrain the assdci
type, and where the function implementation does not mentio
the associated type.

. A function such as in case 1, but where the associated $ype i
used in the implementation of the function.

. Afunction such as in case 1 or 2, but where the associaped ty
is used in the signature of the function.

. A context that refines one or more contexts involving assed
types.

To illustrate these cases, consider $4yuence context that,
conceptually, has two associated types:
context Sequence(type Seq, type Elt, type lter
| Iterator(lter, Elt)) {
Iter begin(Seq);
void insert(Seq, Iter, Elt);
void remove(Seq, lter);
bool is_empty(Seq);
void push_back(Seq, Elt);
+
Case 1 presents the most obvious benefit: the function ddaes no
need to name the associated type. In implementing such tidanc
in Cv, the need to mention all associated types in the signature
makes the function overly verbose and sensitive to additiorthe
context. An example is a function that uses $aguence concept,
without referring to theter type:
// push back n copies of e
forall(type Seq, type Elt, type lter
| Sequence(Seq, Elt, Iter))
void push_back_n(Seq s, Elt e, int n) {
for(inti=0;i<nmi+=1){
push_back(s, e);

}
Here, the function is completely independent of the titpe yet it
must give that type a name in its signature.

In case 2, thecv function must give the type a name, but that

name is used within the implementation of the function.

// add e if not already present in s

forall(type Seq, type Elt, type lter

| Sequence(Seq, Elt, Iter),
EqualityComparable(Elt))
void set_add(Seq s, Elt e) {
for(Iter i = s.begin(); ! at_end(i); next(i)) {
if(e==curr(i)) return;

push_back(s, e);
}
Assume that the conteEtjualityComparable provides the== oper-
ator. Here, the use of the typer is confined to the implementation.
In this case, the convenience of associated types is stiatythe
type need not be named in the function signature; the impleme

tation still relies on the type, and must refer to it using alidied
access. An informal survey of large C+ template libraréeg.(the
Boost Graph Library [11]) shows that programmers tend tadavo
such qualifications by introducing local names for assediagpes.

If a local name is desirable in any case, the fact thatequires a
local name is of little concern. One other disadvantage evew is
that given a separately declared interface signature éofuthction,
the name must appear there as well. As a result implementaio
tails are exposed to users of the function.

In case 3, it is necessary to mention the type in the function
signature; an example is the use of Bietype in the aboveet_add
function. The advantage of associated types is minimizadeshe
type must be mentioned using a qualified name. In fact, naltip
uses of an associated type might render the associatedaygiev
more verbose than &v equivalent, without a facility to define a
local name for an associated type for use in the signature.

In case 4, a refinement of one or more concepts involves the
complete set of associated types in all of the base concepés.
CV context, all of these types must be explicitly named in thety
parameter list of the refinement context. As a result, thebarm
of type parameters can only grow as concepts are progréssive
refined and combined.

context Array(type Seq, type Elt, type Iter, type Index

| Sequence(Seq, Elt, Iter)) {
Elt at(Index);

+
Mitigating this problem is the fact that context definitiosisould
be much more rare than uses of the contexts. However, this acc
mulation of type parameters imposes a burden on all usetseof t
context, as described in the other cases.

Given that associated types can be represente&xy/ lgyen with-
out special support, it is worth asking whether some of th@a-no
tional difficulties mentioned here can be helped by minonges
to the language, while preserving implicit modelling. Oppi@ach
is to allow function signatures to leave some type pararnaief
named:

forall(type Seq, type Elt | Sequence(Seq, Elt)) // no Iter
void push_back_n(Seq s, Elt e, int n);
Here, theSeq type is subject to the same constraints as before; the
difference is only that there is no hame defined for the sexpien
Iter type now, so it cannot play a role in the signature or in the im-
plementation. Since thgeq type uniquely determines ther type,
there is no resulting ambiguity. This construct can be cdedento
an equivalent form by a translator that generates an arpitiame
for the omitted type; this version can be interpreted adogrdo
the traditionalCv rules. To provide the most flexibility, it should
be possible to mention an arbitrary set of context argumeritse
leaving the rest out. This capability can be achieved usarged,
rather than (or in addition to) positional associationsantext pa-
rameter lists.
forall(type Seq, type It
| Sequence(Seq, Iter = It)) // no Elt
It nth_iterator(Seq s, int n) {
for(It i = s.begin(); ! at_end(i) && n>0;n-=1){
next(i);

return i;
}

The ability to omit types fronzontext argument lists addresses
case 1 above. It also mitigates case 2, since the interfgnatsire
can omit arguments, even if the implementation signatueglei¢o
name the type; i.e., the type constraint is the same regardie
which types are named, so long as the named types are stffizien
uniquely determine the unnamed types. This condition htdds
any type that could be otherwise written as an associateel typ

2014/8/10

Unfortunately, this extension does little to mitigate thie=dt issue
of case 4. If a context declaration leaves some type parasnete
unnamed in a refinement, it precludes any users of that ciofnbex
naming those parameters:

context Array(type Seq, type Elt, type Index

| Sequence(Seq, Elt)) { // no Iter
Elt index(Index);

IE
While this definition ofArray might be useful in cases where ele-
ments are only accessed usingdex, it prevents users from taking
full advantages ofequence, since thdter type cannot be named.
This seems presumptuous, and is not a general solution iceesey
However, this solution does help the users of a refined contex
since they can pick and choose relevant type parameters.

The advantage of this extension is that it succeeds without
significantly affecting the syntax or semantics of the laaggi A
different approach is to explicitly add associated typds i@v
contexts. This method adds more complexity to the definifdhe
language, since it involves introducing new rules for thgpes as
well as a new syntax to qualify associated type names. Hawi¢ve
is technically possible, and can be done while preservingidib
modelling. The meaning of:

context lterator(type Iter) {

type Elt;

Iter next(Iter);
Elt curr(Iter);
bool at_end(Iter);

+
can be defined to be the same as:

context lterator(type lIter, type Elt) {

Iter next(Iter);
Elt curr(lter);
bool at_end(Iter);

+
with the exception that the associated type version oméstth
type from the type parameter list, requiring a qualified ndme
situations where it must be used. The signature foathemulate
function above changes correspondingly to use a qualifietena

forall(type Iter

| Iterator(lter), Groupoid(Iterator(Iter).Elt))

Iterator(Iter).Elt accumulate(Iter first, Iter last,
Iterator(Iter).Elt init);
Implicit modelling still requires that the operations irethontext
uniquely determine the associated types. In some casesettiic-
tion may require the introduction of an additional openatio the
context in order to capture the functional dependency, asrited
in the previous section.

5. Conclusion

Generic programming has great potential to facilitate vearfe
reuse. With greater abstraction, however, comes a greatt n
for languages and tools that help to structure and managebthe
stractions. Details matter: as Gareigal. found in their survey [7],
small inconveniences can become large as problems inciease
size. Two relevant inconveniences are the need to estaldistept
conformance, and the need to manage associated types.apgs p
presents, irty, an example of a language that significantly reduces
the burden of modelling through automatic inference. Atshme
time, Cv can represent associated types in their full generality, an
it is possible to make minor adjustments to the language se ea
the use of these types while still preserving implicit mdidel
While the choice between implicit and explicit modellindilely

to remain controversial, it is important to expose the fokses

for future discussionCv serves to illustrate these possibilities by
example.

References

[1] Bilson, R. C. “Implementing Overloading and Polymorgni in
Cforall”. Master’s thesis, School of Computer Science,udrsity of
Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 2003.

[2] Buhr, P. A., Till, D., and Zarnke, C. R. “Assignment as tfele
Means of Updating Objects”"Software—Practice and Experience
24(9):835-870, Sept. 1994.

[3] Cardelli, L. and Wegner, P. “On Understanding Types,aDat
Abstractions, and PolymorphismACM Comput. Sury17(4):471—
522, Dec. 1985.

Cormack, G. V. and Wright, A. K. “Type-dependent Paraenétfer-
ence”. SIGPLAN Notices25(6):127-136, June 1990. Proceedings
of the ACM Sigplan’90 Conference on Programming Language De
sign and Implementation June 20-22, 1990, White Plains, Xaxk,
U.S.A.

Ditchfield, G. Cforall Reference Manual and Rationalevision
1.82 edition, Jan. 1998ftp://plg.uwaterloo.ca/pub/Cforall /-
refrat.ps.gz.

[4

fla.aer

[5

—_

[6

—

Ditchfield, G. J. Contextual PolymorphismPhD thesis, Department
of Computer Science, University of Waterloo, Waterloo, &iat,
Canada, N2L 3G1, 1992ftp://plg.uwaterloo.ca/pub/theses/-
DitchfieldThesis.ps.gz.

[7] Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J. G., andldatk,
J. “A Comparative Study of Language Support for Generic
Programming”. InProceedings of the 2003 ACM SIGPLAN
conference on Object-oriented programming, systems,ulages,
and applications (OOPSLA'03Dct. 2003.

[8] Gregor, D. and Siek, J. “Explicit model definitions arecassary”.
Technical Report N1798=05-0058, ISO/IEC JTC 1, Infornmatio
Technology, Subcommittee SC 22, Programming Language C++,
May 2005.

[9] Jones, M. P. “Type Classes with Functional Dependehcids
Proceedings of the 9th European Symposium on Programming
volume 1782 ol ecture Notes in Computer Scienpages 230-244.
Springer-Verlag, 2000.

[10] Musser, D. R. and Stepanov, A. A. “Generic Programmimg1SAAC
'88: Proceedings of the International Symposium on Syrataid
Algebraic Computationvolume 358 oflecture Notes in Computer
Sciencepages 13-25. Springer-Verlag, 1989.

[11] Siek, J., Lee, L.-Q., and Lumsdaine, Ahe Boost Graph Library:
User Guide and Reference Manu&ddison-Wesley, 2002.

[12] Siek, J. and Lumsdaine, A. “Essential Language Supfuort
Generic Programming”. IfPLDI '05: Proceedings of the ACM
SIGPLAN 2005 conference on Programming language design and
implementation pages 73-84, New York, NY, USA, June 2005.
ACM Press.

[13] Siek, J. and Lumsdaine, A. “Language Requirements finge-
Scale Generic Libraries”. IiGPCE '05: Proceedings of the
fourth international conference on Generative Programgnand
Component Engineeringeptember 2005. accepted for publication.

[14] Wadler, P. and Blott, S. “How to makad-Hoc Polymorphism
LessAd-Hoc. In Conference Record of the ACM Symposium on
Principles of Programming Languagegsages 60—76. Association for
Computing Machinery, 1989.

2014/8/10

