
Generic Programming with Inferred Models

Richard C. Bilson Glen Ditchfield Peter A. Buhr
University of Waterloo, Canada
rcbilson@plg.uwaterloo.ca

Abstract
The effective design of software systems using generic program-
ming can benefit greatly from appropriate programming language
support. Essential support includes the direct representation of con-
cepts, i.e., collections of type properties, and the ability to statically
determine that concrete types model these concepts. This paper dis-
cusses the languageC∀, which facilitates generic programming by
supporting concepts explicitly and automatically inferring many
cases where types model concepts. It also demonstrates the flex-
ibility of C∀ in expressing relationships among types, especially
so-called associated types, and presents some possible extensions
to the language to improve support for these relationships.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—abstract data types,
constraints, polymorphism; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries; D.3.2 [Programming Languages]:
Language Classifications—C

General Terms Languages, Design

Keywords generic programming, generics, polymorphism

1. Introduction
Stemming from the pioneering work of Musser and Stepanov [10],
generic programming has become an important paradigm for en-
couraging the design of reusable and composable software. Fun-
damental to generic programming is the idea that algorithmsare
expressed in terms of properties of types, rather than in terms of
specific types. Aconceptbrings together a set of useful properties.
An example is the mathematical concept of a semigroup, whichab-
stracts the existence of a binary operation. If a type possesses all of
the properties specified by a concept, it is said tomodelthe concept.

Although this approach to software design can be used in many
different programming languages, certain language features are
especially conducive. Key among them is parametric polymor-
phism [3], the ability to write type-generic functions and data types
that can be statically type-checked. Polymorphism itself,however,
may still leave much complexity to be managed by the generic pro-
grammer. Based on their experience in implementing large-scale
generic libraries in a variety of polymorphic programming lan-
guages, Garciaet al. [7] identified five refinements that can sig-
nificantly ease generic programming:

[copyright notice will appear here]

• It should be possible to precisely represent and verify the mod-
elling relation between types and concepts at compile time,and
possible to extend this relation independently of both the defi-
nition of the type and the definition of the concept.

• It should be possible for a concept to express a relationship
among multiple types.

• It should be possible for concepts to include types (associated
types) as well as values and operations.

• It should be possible for generic functions to be instantiated
implicitly, with type variables inferred from argument types at
a call site.

• It should be possible to provide an alternative name for a type,
i.e., atype alias.

Recently, Siek and Lumsdaine [12, 13] have created the G lan-
guage, designed to support all of these features. For the past 15
years, we have been exploring and refining properties of the lan-
guageC∀ [5] (pronounced ”C for all”), which is an imperative,
statically-typed programming language that extends the popular C
language with overloading, polymorphism, multiple return-values,
and other features. TheC∀ type system possesses the desirable fea-
tures for generic programming, except associated types. Unlike G,
C∀ provides all of these features without requiring explicit declara-
tions to establish the modelling relation; we believe it to be unique
in this respect. This paper describes how the design ofC∀ facilitates
generic programming, and various approaches for dealing with the
issues of associated types.

2. C∀ Language
This section presents a brief, practical overview ofC∀. A formal
treatment of the underlying type system can be found in the sec-
ond author’s Ph.D thesis [6]. The first author’s M.Math thesis [1]
describes a practical implementation of the language.

2.1 Overloading

Overload resolution is the process by which the use of an over-
loaded name is matched with one particular definition of thatname,
based on the context in which the name is used. In simple over-
loading systems, multiple functions can be defined with the same
name but with different parameter types and/or a different number
of parameters, e.g., C++ or Java. InC∀, overloaded functions may
be defined with identical parameters but with different return types
and/or a different number of return types:

void f(int); // different return types

int f(int);
[int, int] f (int); // return 2 values

To select the proper function for a call, both the call arguments and
the context in which the result of an expression is used must be con-
sidered. In this complex overloading system, overload resolution
can still be efficient but requires a more sophisticated algorithm for

1 2014/8/10

expression analysis. Once an algorithm can deal with return-type
overloading, it is straightforward to extend it to variables:

int x; // multiple variable names

double x; // in same scope
char x;

The appropriate variable is selected based on the context inwhich
the name is used. The constants0 and1 can be overloaded because
of their special meaning in many application domains:

struct complex { double re; double im; };
complex 0 = { 0., 0. }; // declare useful constants

complex 1 = { 1., 1. };

Finally, an interesting extension to overload resolution is required
for functions returning multiple values when the result canbe used
for multiple assignment and function composition (i.e., multiple
results can provide multiple arguments for another call):

[char, int] f(void); // return 2 values

[int, double] f(void);
void g(int, double, char, int); // 4 parameters

// multiple assignment: 2 variables assigned by 1 call

[i, d] = f();
// function composition: 4 arguments provided by 2 calls

g(f(), f());

Although the topic of expression analysis and code generation
for routines returning multiple values has been discussed previ-
ously [2], the combination of multiple return values with over-
loaded names leads to significant new complexity in the analysis
of expressions.

2.2 Polymorphism

A polymorphic function is written using aforall clause:
forall(type T)
T identity(T x) {

return x;
}

The resulting function can be applied to values of any type.1

Non-trivial polymorphic functions are written by constraining
type parameters using contexts, which specify operations or values
that must be provided. Contexts are analogous to the concepts of
G or the type classes of Haskell [14]. For example, this context
specifies the set of types that have a binary+ operator:

context semigroup(type T) {
T ?+?(T, T);

};

where “?+?” is C∀ syntax used to name this operator. A function
that constrains a type parameter using contextsemigroup can then
make use of+:

forall(type T | semigroup(T))
T twice(T x) {

return x + x;
}

A similar syntax allows one context to refine another, addingaddi-
tional constraints:

context monoid(type T | semigroup(T)) {
T 0;

};

A function that operates on amonoid can use both the operation+
and the value0.

C∀ contexts differ from G concepts in two important ways:

• C∀ does not have the model declarations of G. Verifying a type
models a concept is done implicitly by the compiler whenever
necessary, based on the presence of variables and functionsin
accessible scopes having the proper names and types.

1 Strictly speaking, anycompletedata type, i.e., a type that is not a function
type and whose size is known to the compiler.

• C∀ has no direct equivalent for the associated types and same-
type constraints of G. Equivalent constraints are expressed in
C∀ using multi-parameter contexts.

Implicit modelling means the following fragment is valid, given the
above declaration ofsemigroup:

int ?+?(int, int);
int f(int x, int y) {

return twice(x, y);
}

The declaration of?+? is sufficient to establish that the built-in type
int models the contextsemigroup. In this particular situation, this
declaration is provided automatically by the compiler, since integer
addition is defined by the language. In general, the name?+? may
be overloaded with other meanings to allow other types to model
semigroup. The context members serve as implicit parameters to
a polymorphic function; their precise interpretation is defined as
if they are explicit parameters. That is, the declaration oftwice is
interpreted as:

forall(type T | semigroup(T))
T twice(T (

*

plus)(T, T), T x) {
return plus(x, x);

}

and the corresponding use within the functionf is interpreted as:
return twice(?+?, x, y);

The typeT is inferred by attempting pair-wise unification of the
types of the resulting formal parameters with the types of different
combinations of interpretations of the arguments. In this case, the
fact that?+? is defined with an appropriate signature onint allows
the inference to succeed. If there is no appropriate definition of?+?,
the inference fails and a compile-time error is reported at the point
of use. The dependence on names to establish modelling meansthat
overloading inC∀ is essential and pervasive.

Combining parametric polymorphism with operation inference
in this way was first suggested by Cormack and Wright [4]. The
alternative is an explicit language mechanism, such as themodel
declaration of G or theinstance declaration of Haskell. These lan-
guages require a declaration for every combination of type and con-
cept in the modelling relation. In comparison,C∀ needs none of
these declarations, which we believe to be a real and significant
saving.

3. Accidental Conformance
Implicit modelling gives additional flexibility and economy of no-
tation, but adds the risk that a type may accidentally conform to a
context by defining operations with the appropriate names but inap-
propriate semantics. Gregor and Siek [8] provide good examples of
cases where accidental conformance arises. One example, adapted
into C∀ syntax, is:

context Groupoid(type T) {
T ?+?(T, T);

};
context Semigroup(type T | Groupoid(T)) {

// operator + is associative

};

A type can modelSemigroup with an operation of the same name
and type as is needed to modelGroupoid. The difference is that
there are additional constraints on the behaviour of the operation.
Since implicit modelling is inferred based only on names and
types, there is no way for it to be robust in the face of subtle
semantic differences such as this.C∀ accepts any type that models
Groupoid as a model ofSemigroup, even when the+ operation
is not associative. In some cases of accidental conformance, an
appropriate renaming of operations can solve the problem (albeit
painfully), but not in a case of semantic refinement such as this:

2 2014/8/10

a type with a+ operation that modelsSemigroup should use the
same operation to modelGroupoid; it is only the reverse case that is
in error. As a result, there are certain cases where explicitmodelling
is necessary.

Explicit modelling can be expressed inC∀ by using an over-
loaded identifier to indicate conformance:

context Semigroup(type T | Groupoid(T)) {
T plus is associative; // operator + is associative

};

With this new requirement, a type defining the+ operator by itself
only modelsGroupoid, notSemigroup; if the operator is associative,
a variableplus is associative can be defined for that type, which
allows it to also modelSemigroup.

In practice, it seems accidental conformance should be the ex-
ception, rather than the rule. Garciaet al. note that “...in our ex-
perience, accidental conformance is not a significant source of pro-
gramming errors” [7, p. 130]. While explicit modelling removes the
possibility of accidental conformance, the disadvantage is that it re-
quires a model declaration for every pair of type and context, even
when there is no semantic confusion. There is no way to provide
implicit modelling given explicit modelling, whereas it isstraight-
forward to require explicit modelling in an implicit language such
asC∀. It is therefore appropriate to allow a context designer the
choice of explicit modelling, rather than the designer of the lan-
guage.

4. Associated Types
The fundamental purpose of associated types is to establisha re-
lationship between the primary type or types in a concept andthe
associated type, the latter being uniquely determined by the for-
mer. This section explores the way in which type relationships are
currently expressed inC∀ contexts and ways in whichC∀ could be
extended to provide the advantages of associated types while re-
taining implicit modelling.

4.1 Representing Associated Types

Here is an example of an iterator concept with an associated type,
as expressed in G:

concept Iterator<Iter> {

type Elt;
next : fn(Iter)->Iter;
curr : fn(Iter)->Elt;
at end : fn(Iter)->bool;

}

Each type that is a model ofIterator must have a corresponding
type Elt, which serves as a return type for the functioncurr. The
primary type (Iter) uniquely determines the associated type. Given
a type that modelsIterator, its associatedElt type can be accessed
using a qualified name, to be constrained in awhere clause or used
in a declaration, e.g.:

fun accumulate<Iter>
where { Iterator<Iter>, Groupoid<Iterator<Iter>.Elt> }

(Iter first, Iter last, Iterator<Iter>.Elt init) -> Iterator<Iter>.Elt

This declaration declares a functionaccumulate, parameterized on a
type Iter that modelsIterator and whose associatedElt type models
Groupoid. The function takes two values of typeIter and one of type
Elt as parameters, and returns a value of typeElt.

By contrast,C∀ makes no provision for types to be included in
contexts, except as context parameters. This restriction rules out
associated types as found in G.C∀ establishes type relationships
without associated types or same-type constraints by usingmulti-
parameter contexts. To represent an associated type in aC∀ context,
it is only necessary to add a corresponding name to the type pa-
rameter list, and introduce an operation to the context whose type
relates the associated type to the primary type:

context Iterator(type Iter, type Elt) {
// functional dependency

Elt iterator elt(Iter);
// context operations

Iter next(Iter);
Elt curr(Iter);
bool at end(Iter);

};

The run-time behaviour of theiterator elt operation is irrelevant;
it is useful only to guide the inference. In this way, the added
operation plays the role of afunctional dependencyin Haskell [9],
defining relationships among type parameters. As a result, there
is no explicit notion of primary and associated type. The various
overloads ofiterator elt must uniquely determine, for eachIter, the
correspondingElt. Rather than use a qualified name, the associated
type is declared separately in theforall clause:

forall(type Iter, type Elt
| Iterator(Iter, Elt), Groupoid(Elt))

Elt accumulate(Iter first, Iter last, Elt init);

A type can model the contextIterator by defining theiterator elt
operation to encode an appropriate choice of associated type, just
as it would specify the type in an explicit model declaration:

struct MyType {
// implementation

};
struct MyIterator {

// implementation

};
MyType iterator elt(MyIterator) {}

The striking feature ofC∀ contexts, however, is that in most cases
this additional operation is unnecessary. Usually if one type is as-
sociated with another, that relationship is already expressed within
the context by some useful operation. In theIterator context, for
instance, theiterator elt function is superfluous: it has the same
signature ascurr, which suffices to relate the two types, eliminat-
ing the need for an additional operation. In the worst case, sets of
unrelated types can be associated within the context using extra op-
erations to guide inference; in the usual case, the set of associated
types is already encoded within the context, so the type associations
can be made implicitly and automatically.

In addition, multi-parameter contexts are capable of express-
ing other relationships among concepts. For instance, consider
expressing mixed-type multiplication as a context (adapted from
Jones [9]):

context Multiplicable(type X, type Y, type Z) {
Z multiply(X, Y);

};
int multiply(int, int);
double multiply(int, double);
double multiply(double, int);
double multiply(double, double);

These declarations specify that multiplication of twoints returns
an int, while multiplication of anint and adouble, or twodoubles,
returns adouble. A multi-parameter context is necessary since there
is no single primary type: it is a particular combination of the two
typesX and Y that determinesZ. Contexts inC∀ are therefore
sufficient to represent concepts with associated types, as well as
other type relationships that cannot be represented using associated
types.

4.2 Associated Types and Notation

Even if associated types are logically unnecessary, they may still
be useful if they provide a more concise or convenient notation.
Multi-parameter contexts can express complex type relationships,
but they have the side effect of giving all types equal prominence
in the interface. The context parameter list and every function

3 2014/8/10

constraint or refinement that uses the context must mention every
associated type. In a highly-generic system using many contexts,
each involving many associated types, significant complexity and
reduced readability can occur [7].

Furthermore, a consequence of the notational economy of as-
sociated types is that the resulting program is better prepared for
augmentation of the concepts. A concept can be extended to in-
clude more associated types without requiring all functions using
the concept to be changed as well, so long as those functions re-
main independent of the choice of associated type.

In order to assess the impact of associated types on notation,
four cases are identified:

1. A function whose signature uses a context involving an associ-
ated type, where the signature does not constrain the associated
type, and where the function implementation does not mention
the associated type.

2. A function such as in case 1, but where the associated type is
used in the implementation of the function.

3. A function such as in case 1 or 2, but where the associated type
is used in the signature of the function.

4. A context that refines one or more contexts involving associated
types.

To illustrate these cases, consider anSequence context that,
conceptually, has two associated types:

context Sequence(type Seq, type Elt, type Iter
| Iterator(Iter, Elt)) {

Iter begin(Seq);
void insert(Seq, Iter, Elt);
void remove(Seq, Iter);
bool is empty(Seq);
void push back(Seq, Elt);

};

Case 1 presents the most obvious benefit: the function does not
need to name the associated type. In implementing such a function
in C∀, the need to mention all associated types in the signature
makes the function overly verbose and sensitive to additions to the
context. An example is a function that uses theSequence concept,
without referring to theIter type:

// push back n copies of e

forall(type Seq, type Elt, type Iter
| Sequence(Seq, Elt, Iter))

void push back n(Seq s, Elt e, int n) {
for(int i = 0; i < n; i += 1) {

push back(s, e);
}

}

Here, the function is completely independent of the typeIter, yet it
must give that type a name in its signature.

In case 2, theC∀ function must give the type a name, but that
name is used within the implementation of the function.

// add e if not already present in s

forall(type Seq, type Elt, type Iter
| Sequence(Seq, Elt, Iter),
EqualityComparable(Elt))

void set add(Seq s, Elt e) {
for(Iter i = s.begin(); ! at end(i); next(i)) {

if(e == curr(i)) return;
}

push back(s, e);
}

Assume that the contextEqualityComparable provides the== oper-
ator. Here, the use of the typeIter is confined to the implementation.
In this case, the convenience of associated types is solely that the
type need not be named in the function signature; the implemen-

tation still relies on the type, and must refer to it using a qualified
access. An informal survey of large C++ template libraries (e.g., the
Boost Graph Library [11]) shows that programmers tend to avoid
such qualifications by introducing local names for associated types.
If a local name is desirable in any case, the fact thatC∀ requires a
local name is of little concern. One other disadvantage, however, is
that given a separately declared interface signature for the function,
the name must appear there as well. As a result implementation de-
tails are exposed to users of the function.

In case 3, it is necessary to mention the type in the function
signature; an example is the use of theElt type in the aboveset add
function. The advantage of associated types is minimized, since the
type must be mentioned using a qualified name. In fact, multiple
uses of an associated type might render the associated type version
moreverbose than aC∀ equivalent, without a facility to define a
local name for an associated type for use in the signature.

In case 4, a refinement of one or more concepts involves the
complete set of associated types in all of the base concepts.In a
C∀ context, all of these types must be explicitly named in the type
parameter list of the refinement context. As a result, the number
of type parameters can only grow as concepts are progressively
refined and combined.

context Array(type Seq, type Elt, type Iter, type Index
| Sequence(Seq, Elt, Iter)) {

Elt at(Index);
};

Mitigating this problem is the fact that context definitionsshould
be much more rare than uses of the contexts. However, this accu-
mulation of type parameters imposes a burden on all users of the
context, as described in the other cases.

Given that associated types can be represented byC∀ even with-
out special support, it is worth asking whether some of the nota-
tional difficulties mentioned here can be helped by minor changes
to the language, while preserving implicit modelling. One approach
is to allow function signatures to leave some type parameters un-
named:

forall(type Seq, type Elt | Sequence(Seq, Elt)) // no Iter

void push back n(Seq s, Elt e, int n);

Here, theSeq type is subject to the same constraints as before; the
difference is only that there is no name defined for the sequence’s
Iter type now, so it cannot play a role in the signature or in the im-
plementation. Since theSeq type uniquely determines theIter type,
there is no resulting ambiguity. This construct can be converted into
an equivalent form by a translator that generates an arbitrary name
for the omitted type; this version can be interpreted according to
the traditionalC∀ rules. To provide the most flexibility, it should
be possible to mention an arbitrary set of context arguments, while
leaving the rest out. This capability can be achieved using named,
rather than (or in addition to) positional associations in context pa-
rameter lists.

forall(type Seq, type It
| Sequence(Seq, Iter = It)) // no Elt

It nth iterator(Seq s, int n) {
for(It i = s.begin(); ! at end(i) && n > 0; n -= 1) {

next(i);
}

return i;
}

The ability to omit types fromcontext argument lists addresses
case 1 above. It also mitigates case 2, since the interface signature
can omit arguments, even if the implementation signature needs to
name the type; i.e., the type constraint is the same regardless of
which types are named, so long as the named types are sufficient to
uniquely determine the unnamed types. This condition holdsfor
any type that could be otherwise written as an associated type.

4 2014/8/10

Unfortunately, this extension does little to mitigate the direct issue
of case 4. If a context declaration leaves some type parameters
unnamed in a refinement, it precludes any users of that context from
naming those parameters:

context Array(type Seq, type Elt, type Index
| Sequence(Seq, Elt)) { // no Iter

Elt index(Index);
};

While this definition ofArray might be useful in cases where ele-
ments are only accessed usingindex, it prevents users from taking
full advantages ofSequence, since theIter type cannot be named.
This seems presumptuous, and is not a general solution in anycase.
However, this solution does help the users of a refined context,
since they can pick and choose relevant type parameters.

The advantage of this extension is that it succeeds without
significantly affecting the syntax or semantics of the language. A
different approach is to explicitly add associated types into C∀
contexts. This method adds more complexity to the definitionof the
language, since it involves introducing new rules for thesetypes as
well as a new syntax to qualify associated type names. However, it
is technically possible, and can be done while preserving implicit
modelling. The meaning of:

context Iterator(type Iter) {
type Elt;
Iter next(Iter);
Elt curr(Iter);
bool at end(Iter);

};

can be defined to be the same as:
context Iterator(type Iter, type Elt) {

Iter next(Iter);
Elt curr(Iter);
bool at end(Iter);

};

with the exception that the associated type version omits the Elt
type from the type parameter list, requiring a qualified namein
situations where it must be used. The signature for theaccumulate
function above changes correspondingly to use a qualified name:

forall(type Iter
| Iterator(Iter), Groupoid(Iterator(Iter).Elt))

Iterator(Iter).Elt accumulate(Iter first, Iter last,
Iterator(Iter).Elt init);

Implicit modelling still requires that the operations in the context
uniquely determine the associated types. In some cases, this restric-
tion may require the introduction of an additional operation to the
context in order to capture the functional dependency, as described
in the previous section.

5. Conclusion
Generic programming has great potential to facilitate software
reuse. With greater abstraction, however, comes a greater need
for languages and tools that help to structure and manage theab-
stractions. Details matter: as Garciaet al. found in their survey [7],
small inconveniences can become large as problems increasein
size. Two relevant inconveniences are the need to establishconcept
conformance, and the need to manage associated types. This paper
presents, inC∀, an example of a language that significantly reduces
the burden of modelling through automatic inference. At thesame
time,C∀ can represent associated types in their full generality, and
it is possible to make minor adjustments to the language to ease
the use of these types while still preserving implicit modelling.
While the choice between implicit and explicit modelling islikely
to remain controversial, it is important to expose the possibilities
for future discussion;C∀ serves to illustrate these possibilities by
example.

References
[1] Bilson, R. C. “Implementing Overloading and Polymorphism in

Cforall”. Master’s thesis, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 2003.

[2] Buhr, P. A., Till, D., and Zarnke, C. R. “Assignment as theSole
Means of Updating Objects”.Software—Practice and Experience,
24(9):835–870, Sept. 1994.

[3] Cardelli, L. and Wegner, P. “On Understanding Types, Data
Abstractions, and Polymorphism”.ACM Comput. Surv., 17(4):471–
522, Dec. 1985.

[4] Cormack, G. V. and Wright, A. K. “Type-dependent Parameter Infer-
ence”. SIGPLAN Notices, 25(6):127–136, June 1990. Proceedings
of the ACM Sigplan’90 Conference on Programming Language De-
sign and Implementation June 20-22, 1990, White Plains, NewYork,
U.S.A.

[5] Ditchfield, G. Cforall Reference Manual and Rationale, revision
1.82 edition, Jan. 1998.ftp://plg.uwaterloo.ca/pub/Cforall/-
refrat.ps.gz.

[6] Ditchfield, G. J.Contextual Polymorphism. PhD thesis, Department
of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, 1992.ftp://plg.uwaterloo.ca/pub/theses/-
DitchfieldThesis.ps.gz.

[7] Garcia, R., Järvi, J., Lumsdaine, A., Siek, J. G., and Willcock,
J. “A Comparative Study of Language Support for Generic
Programming”. InProceedings of the 2003 ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications (OOPSLA’03), Oct. 2003.

[8] Gregor, D. and Siek, J. “Explicit model definitions are necessary”.
Technical Report N1798=05-0058, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++,
May 2005.

[9] Jones, M. P. “Type Classes with Functional Dependencies”. In
Proceedings of the 9th European Symposium on Programming,
volume 1782 ofLecture Notes in Computer Science, pages 230–244.
Springer-Verlag, 2000.

[10] Musser, D. R. and Stepanov, A. A. “Generic Programming”. In ISAAC
’88: Proceedings of the International Symposium on Symbolic and
Algebraic Computation, volume 358 ofLecture Notes in Computer
Science, pages 13–25. Springer-Verlag, 1989.

[11] Siek, J., Lee, L.-Q., and Lumsdaine, A.The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley, 2002.

[12] Siek, J. and Lumsdaine, A. “Essential Language Supportfor
Generic Programming”. InPLDI ’05: Proceedings of the ACM
SIGPLAN 2005 conference on Programming language design and
implementation, pages 73–84, New York, NY, USA, June 2005.
ACM Press.

[13] Siek, J. and Lumsdaine, A. “Language Requirements for Large-
Scale Generic Libraries”. InGPCE ’05: Proceedings of the
fourth international conference on Generative Programming and
Component Engineering, September 2005. accepted for publication.

[14] Wadler, P. and Blott, S. “How to makeAd-Hoc Polymorphism
LessAd-Hoc”. In Conference Record of the ACM Symposium on
Principles of Programming Languages, pages 60–76. Association for
Computing Machinery, 1989.

5 2014/8/10

