// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // parser.yy -- // // Author : Peter A. Buhr // Created On : Sat Sep 1 20:22:55 2001 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Jul 26 14:09:30 2024 // Update Count : 6733 // // This grammar is based on the ANSI99/11 C grammar, specifically parts of EXPRESSION and STATEMENTS, and on the C // grammar by James A. Roskind, specifically parts of DECLARATIONS and EXTERNAL DEFINITIONS. While parts have been // copied, important changes have been made in all sections; these changes are sufficient to constitute a new grammar. // In particular, this grammar attempts to be more syntactically precise, i.e., it parses less incorrect language syntax // that must be subsequently rejected by semantic checks. Nevertheless, there are still several semantic checks // required and many are noted in the grammar. Finally, the grammar is extended with GCC and CFA language extensions. // Acknowledgments to Richard Bilson, Glen Ditchfield, and Rodolfo Gabriel Esteves who all helped when I got stuck with // the grammar. // The root language for this grammar is ANSI99/11 C. All of ANSI99/11 is parsed, except for: // // designation with '=' (use ':' instead) // // This incompatibility is discussed in detail before the "designation" grammar rule. Most of the syntactic extensions // from ANSI90 to ANSI11 C are marked with the comment "C99/C11". // This grammar also has two levels of extensions. The first extensions cover most of the GCC C extensions. All of the // syntactic extensions for GCC C are marked with the comment "GCC". The second extensions are for Cforall (CFA), which // fixes several of C's outstanding problems and extends C with many modern language concepts. All of the syntactic // extensions for CFA C are marked with the comment "CFA". %{ #define YYDEBUG_LEXER_TEXT( yylval ) // lexer loads this up each time #define YYDEBUG 1 // get the pretty debugging code to compile #define YYERROR_VERBOSE // more information in syntax errors #undef __GNUC_MINOR__ #include #include #include using namespace std; #include "DeclarationNode.hpp" // for DeclarationNode, ... #include "ExpressionNode.hpp" // for ExpressionNode, ... #include "InitializerNode.hpp" // for InitializerNode, ... #include "ParserTypes.hpp" #include "StatementNode.hpp" // for build_... #include "TypedefTable.hpp" #include "TypeData.hpp" #include "AST/Type.hpp" // for BasicType, BasicKind #include "Common/SemanticError.hpp" // error_str #include "Common/Utility.hpp" // for maybeMoveBuild, maybeBuild, CodeLo... // lex uses __null in a boolean context, it's fine. #ifdef __clang__ #pragma GCC diagnostic ignored "-Wparentheses-equality" #endif extern DeclarationNode * parseTree; extern ast::Linkage::Spec linkage; extern TypedefTable typedefTable; stack linkageStack; bool appendStr( string & to, string & from ) { // 1. Multiple strings are concatenated into a single string but not combined internally. The reason is that // "\x12" "3" is treated as 2 characters versus 1 because "escape sequences are converted into single members of // the execution character set just prior to adjacent string literal concatenation" (C11, Section 6.4.5-8). It is // easier to let the C compiler handle this case. // // 2. String encodings are transformed into canonical form (one encoding at start) so the encoding can be found // without searching the string, e.g.: "abc" L"def" L"ghi" => L"abc" "def" "ghi". Multiple encodings must match, // e.g., u"a" U"b" L"c" is disallowed. if ( from[0] != '"' ) { // encoding ? if ( to[0] != '"' ) { // encoding ? if ( to[0] != from[0] || to[1] != from[1] ) { // different encodings ? yyerror( "non-matching string encodings for string-literal concatenation" ); return false; // parse error, must call YYERROR in action } else if ( from[1] == '8' ) { from.erase( 0, 1 ); // remove 2nd encoding } // if } else { if ( from[1] == '8' ) { // move encoding to start to = "u8" + to; from.erase( 0, 1 ); // remove 2nd encoding } else { to = from[0] + to; } // if } // if from.erase( 0, 1 ); // remove 2nd encoding } // if to += " " + from; // concatenated into single string return true; } // appendStr DeclarationNode * distAttr( DeclarationNode * typeSpec, DeclarationNode * declList ) { // Distribute type specifier across all declared variables, e.g., static, const, __attribute__. assert( declList ); // Do not distribute attributes for aggregates because the attributes surrounding the aggregate belong it not the // variables in the declaration list, e.g., // // struct __attribute__(( aligned(128) )) S { ... // } v1 __attribute__(( aligned(64) )), v2 __attribute__(( aligned(32) )), v3; // struct S v4; // // v1 => 64, v2 =>32, v3 => 128, v2 => 128 // // Anonymous aggregates are a special case because there is no aggregate to bind the attribute to; hence it floats // to the declaration list. // // struct __attribute__(( aligned(128) )) /*anonymous */ { ... } v1; // // v1 => 128 bool copyattr = ! (typeSpec->type && typeSpec->type->kind == TypeData::Aggregate && ! typeSpec->type->aggregate.anon ); // addType copies the type information for the aggregate instances from typeSpec into cl's aggInst.aggregate. DeclarationNode * cl = (new DeclarationNode)->addType( typeSpec ); // typeSpec IS DELETED!!! // Start at second variable in declaration list and clone the type specifiers for each variable. for ( DeclarationNode * cur = declList->next ; cur != nullptr; cur = cur->next ) { cl->cloneBaseType( cur, copyattr ); // cur is modified } // for // Add first variable in declaration list with hidden type information in aggInst.aggregate, which is used by // extractType to recover the type for the aggregate instances. declList->addType( cl, copyattr ); // cl IS DELETED!!! return declList; } // distAttr void distExt( DeclarationNode * declaration ) { // distribute EXTENSION across all declarations for ( DeclarationNode *iter = declaration ; iter != nullptr ; iter = iter->next ) { iter->set_extension( true ); } // for } // distExt void distInl( DeclarationNode * declaration ) { // distribute INLINE across all declarations for ( DeclarationNode *iter = declaration ; iter != nullptr ; iter = iter->next ) { iter->set_inLine( true ); } // for } // distInl void distQual( DeclarationNode * declaration, DeclarationNode * qualifiers ) { // distribute qualifiers across all non-variable declarations in a distribution statemement for ( DeclarationNode * iter = declaration ; iter != nullptr ; iter = iter->next ) { // SKULLDUGGERY: Distributions are parsed inside out, so qualifiers are added to declarations inside out. Since // addQualifiers appends to the back of the list, the forall clauses are in the wrong order (right to left). To // get the qualifiers in the correct order and still use addQualifiers (otherwise, 90% of addQualifiers has to // be copied to add to front), the appropriate forall pointers are interchanged before calling addQualifiers. DeclarationNode * clone = qualifiers->clone(); if ( qualifiers->type ) { // forall clause ? (handles SC) if ( iter->type->kind == TypeData::Aggregate ) { // struct/union ? swap( clone->type->forall, iter->type->aggregate.params ); iter->addQualifiers( clone ); } else if ( iter->type->kind == TypeData::AggregateInst && iter->type->aggInst.aggregate->aggregate.body ) { // struct/union ? // Create temporary node to hold aggregate, call addQualifiers as above, then put nodes back together. DeclarationNode newnode; swap( newnode.type, iter->type->aggInst.aggregate ); swap( clone->type->forall, newnode.type->aggregate.params ); newnode.addQualifiers( clone ); swap( newnode.type, iter->type->aggInst.aggregate ); } else if ( iter->type->kind == TypeData::Function ) { // routines ? swap( clone->type->forall, iter->type->forall ); iter->addQualifiers( clone ); } // if } else { // just SC qualifiers iter->addQualifiers( clone ); } // if } // for delete qualifiers; } // distQual // There is an ambiguity for inline generic-routine return-types and generic routines. // forall( otype T ) struct S { int i; } bar( T ) {} // Does the forall bind to the struct or the routine, and how would it be possible to explicitly specify the binding. // forall( otype T ) struct S { int T; } forall( otype W ) bar( W ) {} // Currently, the forall is associated with the routine, and the generic type has to be separately defined: // forall( otype T ) struct S { int T; }; // forall( otype W ) bar( W ) {} void rebindForall( DeclarationNode * declSpec, DeclarationNode * funcDecl ) { if ( declSpec->type->kind == TypeData::Aggregate ) { // ignore aggregate definition funcDecl->type->forall = declSpec->type->aggregate.params; // move forall from aggregate to function type declSpec->type->aggregate.params = nullptr; } // if } // rebindForall string * build_postfix_name( string * name ) { *name = string("__postfix_func_") + *name; return name; } // build_postfix_name DeclarationNode * fieldDecl( DeclarationNode * typeSpec, DeclarationNode * fieldList ) { if ( nullptr == fieldList ) { if ( !( typeSpec->type && typeSpec->type->kind == TypeData::Aggregate ) ) { stringstream ss; // printf( "fieldDecl1 typeSpec %p\n", typeSpec ); typeSpec->type->print( std::cout ); SemanticWarning( yylloc, Warning::SuperfluousDecl, ss.str().c_str() ); return nullptr; } // if // printf( "fieldDecl2 typeSpec %p\n", typeSpec ); typeSpec->type->print( std::cout ); fieldList = DeclarationNode::newName( nullptr ); } // if // printf( "fieldDecl3 typeSpec %p\n", typeSpec ); typeSpec->print( std::cout, 0 ); DeclarationNode * temp = distAttr( typeSpec, fieldList ); // mark all fields in list // printf( "fieldDecl4 temp %p\n", temp ); temp->print( std::cout, 0 ); return temp; } // fieldDecl #define NEW_ZERO new ExpressionNode( build_constantInteger( yylloc, *new string( "0" ) ) ) #define NEW_ONE new ExpressionNode( build_constantInteger( yylloc, *new string( "1" ) ) ) #define UPDOWN( compop, left, right ) (compop == OperKinds::LThan || compop == OperKinds::LEThan ? left : right) #define MISSING_ANON_FIELD "illegal syntax, missing loop fields with an anonymous loop index is meaningless as loop index is unavailable in loop body." #define MISSING_LOW "illegal syntax, missing low value for ascanding range so index is uninitialized." #define MISSING_HIGH "illegal syntax, missing high value for descending range so index is uninitialized." static ForCtrl * makeForCtrl( const CodeLocation & location, DeclarationNode * init, OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { // Wrap both comp/inc if they are non-null. if ( comp ) comp = new ExpressionNode( build_binary_val( location, compop, new ExpressionNode( build_varref( location, new string( *init->name ) ) ), comp ) ); if ( inc ) inc = new ExpressionNode( build_binary_val( location, // choose += or -= for upto/downto compop == OperKinds::LThan || compop == OperKinds::LEThan ? OperKinds::PlusAssn : OperKinds::MinusAssn, new ExpressionNode( build_varref( location, new string( *init->name ) ) ), inc ) ); // The StatementNode call frees init->name, it must happen later. return new ForCtrl( new StatementNode( init ), comp, inc ); } ForCtrl * forCtrl( const CodeLocation & location, DeclarationNode * index, ExpressionNode * start, OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { if ( index->initializer ) { SemanticError( yylloc, "illegal syntax, direct initialization disallowed. Use instead: type var; initialization ~ comparison ~ increment." ); } // if if ( index->next ) { SemanticError( yylloc, "illegal syntax, multiple loop indexes disallowed in for-loop declaration." ); } // if DeclarationNode * initDecl = index->addInitializer( new InitializerNode( start ) ); return makeForCtrl( location, initDecl, compop, comp, inc ); } // forCtrl ForCtrl * forCtrl( const CodeLocation & location, ExpressionNode * type, string * index, ExpressionNode * start, OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { ast::ConstantExpr * constant = dynamic_cast(type->expr.get()); if ( constant && (constant->rep == "0" || constant->rep == "1") ) { type = new ExpressionNode( new ast::CastExpr( location, maybeMoveBuild(type), new ast::BasicType( ast::BasicKind::SignedInt ) ) ); } // if DeclarationNode * initDecl = distAttr( DeclarationNode::newTypeof( type, true ), DeclarationNode::newName( index )->addInitializer( new InitializerNode( start ) ) ); return makeForCtrl( location, initDecl, compop, comp, inc ); } // forCtrl #define MISSING_LOOP_INDEX "illegal syntax, only a single identifier or declaration allowed in initialization, e.g., for ( i; ... ) or for ( int i; ... ). Expression disallowed." ForCtrl * forCtrl( const CodeLocation & location, ExpressionNode * type, ExpressionNode * index, ExpressionNode * start, OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { if ( auto identifier = dynamic_cast(index->expr.get()) ) { return forCtrl( location, type, new string( identifier->name ), start, compop, comp, inc ); } else { SemanticError( yylloc, MISSING_LOOP_INDEX ); return nullptr; } // if } // forCtrl ForCtrl * enumRangeCtrl( ExpressionNode * index_expr, OperKinds compop, ExpressionNode * range_over_expr, DeclarationNode * type ) { assert( compop == OperKinds::LEThan || compop == OperKinds::GEThan ); if ( auto identifier = dynamic_cast(index_expr->expr.get()) ) { DeclarationNode * indexDecl = DeclarationNode::newName( new std::string(identifier->name) )->addType( type ); return new ForCtrl( new StatementNode( indexDecl ), range_over_expr, compop ); } else { SemanticError( yylloc, MISSING_LOOP_INDEX ); return nullptr; } // if } // enumRangeCtrl static void IdentifierBeforeIdentifier( string & identifier1, string & identifier2, const char * kind ) { SemanticError( yylloc, "illegal syntax, adjacent identifiers \"%s\" and \"%s\" are not meaningful in an %s.\n" "Possible cause is misspelled type name or missing generic parameter.", identifier1.c_str(), identifier2.c_str(), kind ); } // IdentifierBeforeIdentifier static void IdentifierBeforeType( string & identifier, const char * kind ) { SemanticError( yylloc, "illegal syntax, identifier \"%s\" cannot appear before a %s.\n" "Possible cause is misspelled storage/CV qualifier, misspelled typename, or missing generic parameter.", identifier.c_str(), kind ); } // IdentifierBeforeType bool forall = false; // aggregate have one or more forall qualifiers ? // https://www.gnu.org/software/bison/manual/bison.html#Location-Type #define YYLLOC_DEFAULT(Cur, Rhs, N) \ if ( N ) { \ (Cur).first_line = YYRHSLOC( Rhs, 1 ).first_line; \ (Cur).first_column = YYRHSLOC( Rhs, 1 ).first_column; \ (Cur).last_line = YYRHSLOC( Rhs, N ).last_line; \ (Cur).last_column = YYRHSLOC( Rhs, N ).last_column; \ (Cur).filename = YYRHSLOC( Rhs, 1 ).filename; \ } else { \ (Cur).first_line = (Cur).last_line = YYRHSLOC( Rhs, 0 ).last_line; \ (Cur).first_column = (Cur).last_column = YYRHSLOC( Rhs, 0 ).last_column; \ (Cur).filename = YYRHSLOC( Rhs, 0 ).filename; \ } %} %define parse.error verbose // Types declaration for productions %union { // A raw token can be used. Token tok; // The general node types hold some generic node or list of nodes. DeclarationNode * decl; InitializerNode * init; ExpressionNode * expr; StatementNode * stmt; ClauseNode * clause; TypeData * type; // Special "nodes" containing compound information. CondCtl * ifctl; ForCtrl * forctl; LabelNode * labels; // Various flags and single values that become fields later. ast::AggregateDecl::Aggregate aggKey; ast::TypeDecl::Kind tclass; OperKinds oper; bool is_volatile; EnumHiding enum_hiding; ast::ExceptionKind except_kind; // String passes ownership with it. std::string * str; // Narrower node types are used to avoid constant unwrapping. ast::WaitForStmt * wfs; ast::WaitUntilStmt::ClauseNode * wucn; ast::GenericExpr * genexpr; } // ************************ TERMINAL TOKENS ******************************** // keywords %token TYPEDEF %token EXTERN STATIC AUTO REGISTER %token THREADLOCALGCC THREADLOCALC11 // GCC, C11 %token INLINE FORTRAN // C99, extension ISO/IEC 9899:1999 Section J.5.9(1) %token NORETURN // C11 %token CONST VOLATILE %token RESTRICT // C99 %token ATOMIC // C11 %token FORALL MUTEX VIRTUAL VTABLE COERCE // CFA %token VOID CHAR SHORT INT LONG FLOAT DOUBLE SIGNED UNSIGNED %token BOOL COMPLEX IMAGINARY // C99 %token INT128 UINT128 uuFLOAT80 uuFLOAT128 // GCC %token uFLOAT16 uFLOAT32 uFLOAT32X uFLOAT64 uFLOAT64X uFLOAT128 // GCC %token DECIMAL32 DECIMAL64 DECIMAL128 // GCC %token ZERO_T ONE_T // CFA %token SIZEOF TYPEOF VA_LIST VA_ARG AUTO_TYPE COUNTOF // GCC %token OFFSETOF BASETYPEOF TYPEID // CFA %token ENUM STRUCT UNION %token EXCEPTION // CFA %token GENERATOR COROUTINE MONITOR THREAD // CFA %token OTYPE FTYPE DTYPE TTYPE TRAIT // CFA // %token RESUME // CFA %token LABEL // GCC %token SUSPEND // CFA %token ATTRIBUTE EXTENSION // GCC %token IF ELSE SWITCH CASE DEFAULT DO WHILE FOR BREAK CONTINUE GOTO RETURN %token CHOOSE FALLTHRU FALLTHROUGH WITH WHEN WAITFOR WAITUNTIL // CFA %token CORUN COFOR %token DISABLE ENABLE TRY THROW THROWRESUME AT // CFA %token ASM // C99, extension ISO/IEC 9899:1999 Section J.5.10(1) %token ALIGNAS ALIGNOF GENERIC STATICASSERT // C11 // names and constants: lexer differentiates between identifier and typedef names %token IDENTIFIER TYPEDIMname TYPEDEFname TYPEGENname %token TIMEOUT WAND WOR CATCH RECOVER CATCHRESUME FIXUP FINALLY // CFA %token INTEGERconstant CHARACTERconstant STRINGliteral %token DIRECTIVE // Floating point constant is broken into three kinds of tokens because of the ambiguity with tuple indexing and // overloading constants 0/1, e.g., x.1 is lexed as (x)(.1), where (.1) is a factional constant, but is semantically // converted into the tuple index (.)(1). e.g., 3.x %token FLOATING_DECIMALconstant FLOATING_FRACTIONconstant FLOATINGconstant // multi-character operators %token ARROW // -> %token ICR DECR // ++ -- %token LS RS // << >> %token LE GE EQ NE // <= >= == != %token ANDAND OROR // && || %token ATTR ELLIPSIS // @@ ... %token EXPassign MULTassign DIVassign MODassign // \= *= /= %= %token PLUSassign MINUSassign // += -= %token LSassign RSassign // <<= >>= %token ANDassign ERassign ORassign // &= ^= |= %token ErangeUp ErangeUpEq ErangeDown ErangeDownEq // +~ +~=/~= -~ -~= %token ATassign // @= %type identifier identifier_at identifier_or_type_name attr_name %type quasi_keyword %type string_literal %type string_literal_list %type hide_opt visible_hide_opt // expressions %type constant %type tuple tuple_expression_list %type ptrref_operator unary_operator assignment_operator simple_assignment_operator compound_assignment_operator %type primary_expression postfix_expression unary_expression %type cast_expression_list cast_expression exponential_expression multiplicative_expression additive_expression %type shift_expression relational_expression equality_expression %type AND_expression exclusive_OR_expression inclusive_OR_expression %type logical_AND_expression logical_OR_expression %type conditional_expression constant_expression assignment_expression assignment_expression_opt %type comma_expression comma_expression_opt %type argument_expression_list_opt argument_expression_list argument_expression default_initializer_opt %type conditional_declaration %type for_control_expression for_control_expression_list %type upupeq updown updowneq downupdowneq %type subrange %type asm_name_opt %type asm_operands_opt asm_operands_list asm_operand %type label_list %type asm_clobbers_list_opt %type asm_volatile_opt %type handler_predicate_opt %type generic_association generic_assoc_list // statements %type statement labeled_statement compound_statement %type statement_decl statement_decl_list statement_list_nodecl %type selection_statement %type switch_clause_list_opt switch_clause_list %type case_value %type case_clause case_value_list case_label case_label_list %type iteration_statement jump_statement %type expression_statement asm_statement %type with_statement %type with_clause_opt %type corun_statement cofor_statement %type exception_statement %type handler_clause finally_clause %type handler_key %type mutex_statement %type when_clause when_clause_opt waitfor waituntil timeout %type waitfor_statement waituntil_statement %type wor_waitfor_clause %type waituntil_clause wand_waituntil_clause wor_waituntil_clause // declarations %type abstract_declarator abstract_ptr abstract_array abstract_function array_dimension multi_array_dimension %type abstract_parameter_declarator_opt abstract_parameter_declarator abstract_parameter_ptr abstract_parameter_array abstract_parameter_function array_parameter_dimension array_parameter_1st_dimension %type abstract_parameter_declaration %type aggregate_key aggregate_data aggregate_control %type aggregate_type aggregate_type_nobody %type assertion assertion_list assertion_list_opt %type bit_subrange_size_opt bit_subrange_size %type basic_declaration_specifier basic_type_name basic_type_specifier direct_type indirect_type %type basic_type_name_type %type vtable vtable_opt default_opt %type trait_declaration trait_declaration_list trait_declaring_list trait_specifier %type declaration declaration_list declaration_list_opt declaration_qualifier_list %type declaration_specifier declaration_specifier_nobody declarator declaring_list %type elaborated_type elaborated_type_nobody %type enumerator_list enum_type enum_type_nobody enum_key enumerator_type %type enumerator_value_opt %type external_definition external_definition_list external_definition_list_opt %type exception_declaration %type field_declaration_list_opt field_declaration field_declaring_list_opt field_declarator field_abstract_list_opt field_abstract %type field field_name_list field_name fraction_constants_opt %type external_function_definition function_definition function_array function_declarator function_no_ptr function_ptr %type identifier_parameter_declarator identifier_parameter_ptr identifier_parameter_array identifier_parameter_function %type identifier_list %type cfa_abstract_array cfa_abstract_declarator_no_tuple cfa_abstract_declarator_tuple %type cfa_abstract_function cfa_abstract_parameter_declaration cfa_abstract_parameter_list %type cfa_abstract_ptr cfa_abstract_tuple %type cfa_array_parameter_1st_dimension %type cfa_trait_declaring_list cfa_declaration cfa_field_declaring_list cfa_field_abstract_list %type cfa_function_declaration cfa_function_return cfa_function_specifier %type cfa_identifier_parameter_array cfa_identifier_parameter_declarator_no_tuple %type cfa_identifier_parameter_declarator_tuple cfa_identifier_parameter_ptr %type cfa_parameter_declaration cfa_parameter_list cfa_parameter_list_ellipsis_opt %type cfa_typedef_declaration cfa_variable_declaration cfa_variable_specifier %type c_declaration static_assert %type KR_function_declarator KR_function_no_ptr KR_function_ptr KR_function_array %type KR_parameter_list KR_parameter_list_opt %type parameter_declaration parameter_list parameter_list_ellipsis_opt %type paren_identifier paren_type %type storage_class storage_class_list %type sue_declaration_specifier sue_declaration_specifier_nobody sue_type_specifier sue_type_specifier_nobody %type type_class new_type_class %type type_declarator type_declarator_name type_declaring_list %type type_declaration_specifier type_type_specifier %type type_name typegen_name %type typedef_name typedef_declaration typedef_expression %type variable_type_redeclarator variable_type_ptr variable_type_array variable_type_function %type general_function_declarator function_type_redeclarator function_type_array function_type_no_ptr function_type_ptr %type type_parameter_redeclarator type_parameter_ptr type_parameter_array type_parameter_function %type type type_no_function %type type_parameter type_parameter_list type_initializer_opt %type type_parameters_opt type_list array_type_list // array_dimension_list %type type_qualifier forall type_qualifier_list_opt type_qualifier_list %type type_qualifier_name %type type_specifier type_specifier_nobody %type variable_declarator variable_ptr variable_array variable_function %type variable_abstract_declarator variable_abstract_ptr variable_abstract_array variable_abstract_function %type attribute_list_opt attribute_list attribute attribute_name_list attribute_name // initializers %type initializer initializer_list_opt initializer_opt // designators %type designator designator_list designation // Handle shift/reduce conflict for dangling else by shifting the ELSE token. For example, this string is ambiguous: // .---------. matches IF '(' comma_expression ')' statement . (reduce) // if ( C ) S1 else S2 // `-----------------' matches IF '(' comma_expression ')' statement . (shift) ELSE statement */ // Similar issues exit with the waitfor statement. // Order of these lines matters (low-to-high precedence). THEN is left associative over WAND/WOR/TIMEOUT/ELSE, WAND/WOR // is left associative over TIMEOUT/ELSE, and TIMEOUT is left associative over ELSE. %precedence THEN // rule precedence for IF/WAITFOR statement %precedence ANDAND // token precedence for start of WAND in WAITFOR statement %precedence WAND // token precedence for start of WAND in WAITFOR statement %precedence OROR // token precedence for start of WOR in WAITFOR statement %precedence WOR // token precedence for start of WOR in WAITFOR statement %precedence TIMEOUT // token precedence for start of TIMEOUT in WAITFOR statement %precedence CATCH // token precedence for start of TIMEOUT in WAITFOR statement %precedence RECOVER // token precedence for start of TIMEOUT in WAITFOR statement %precedence CATCHRESUME // token precedence for start of TIMEOUT in WAITFOR statement %precedence FIXUP // token precedence for start of TIMEOUT in WAITFOR statement %precedence FINALLY // token precedence for start of TIMEOUT in WAITFOR statement %precedence ELSE // token precedence for start of else clause in IF/WAITFOR statement // Handle shift/reduce conflict for generic type by shifting the '(' token. For example, this string is ambiguous: // forall( otype T ) struct Foo { T v; }; // .-----. matches pointer to function returning a generic (which is impossible without a type) // Foo ( *fp )( int ); // `---' matches start of TYPEGENname '(' // must be: // Foo( int ) ( *fp )( int ); // The same problem occurs here: // forall( otype T ) struct Foo { T v; } ( *fp )( int ); // must be: // forall( otype T ) struct Foo { T v; } ( int ) ( *fp )( int ); // Order of these lines matters (low-to-high precedence). %precedence TYPEGENname %precedence '}' %precedence '(' // %precedence RESUME // %precedence '{' // %precedence ')' %locations // support location tracking for error messages %start translation_unit // parse-tree root %% // ************************ Namespace Management ******************************** // The C grammar is not context free because it relies on the distinct terminal symbols "identifier" and "TYPEDEFname", // which are lexically identical. // // typedef int foo; // identifier foo must now be scanned as TYPEDEFname // foo f; // to allow it to appear in this context // // While it may be possible to write a purely context-free grammar, such a grammar would obscure the relationship // between syntactic and semantic constructs. Cforall compounds this problem by introducing type names local to the // scope of a declaration (for instance, those introduced through "forall" qualifiers), and by introducing "type // generators" -- parameterized types. This latter type name creates a third class of identifiers, "TYPEGENname", which // must be distinguished by the lexical scanner. // // Since the scanner cannot distinguish among the different classes of identifiers without some context information, // there is a type table (typedefTable), which holds type names and identifiers that override type names, for each named // scope. During parsing, semantic actions update the type table by adding new identifiers in the current scope. For // each context that introduces a name scope, a new level is created in the type table and that level is popped on // exiting the scope. Since type names can be local to a particular declaration, each declaration is itself a scope. // This requires distinguishing between type names that are local to the current declaration scope and those that // persist past the end of the declaration (i.e., names defined in "typedef" or "otype" declarations). // // The non-terminals "push" and "pop" denote the opening and closing of named scopes. Every push has a matching pop in // the production rule. There are multiple lists of declarations, where each declaration is a named scope, so pop/push // around the list separator. // // XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX // push pop push pop push: { typedefTable.enterScope(); } ; pop: { typedefTable.leaveScope(); } ; // ************************ CONSTANTS ******************************** constant: // ENUMERATIONconstant is not included here; it is treated as a variable with type "enumeration constant". INTEGERconstant { $$ = new ExpressionNode( build_constantInteger( yylloc, *$1 ) ); } | FLOATING_DECIMALconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } | FLOATING_FRACTIONconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } | FLOATINGconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } | CHARACTERconstant { $$ = new ExpressionNode( build_constantChar( yylloc, *$1 ) ); } ; quasi_keyword: // CFA TIMEOUT | WAND | WOR | CATCH | RECOVER | CATCHRESUME | FIXUP | FINALLY ; identifier: IDENTIFIER | quasi_keyword ; identifier_at: identifier | '@' // CFA { Token tok = { new string( DeclarationNode::anonymous.newName() ), yylval.tok.loc }; $$ = tok; } ; identifier_or_type_name: identifier | TYPEDEFname | TYPEGENname ; string_literal: string_literal_list { $$ = new ExpressionNode( build_constantStr( yylloc, *$1 ) ); } ; string_literal_list: // juxtaposed strings are concatenated STRINGliteral { $$ = $1; } // conversion from tok to str | string_literal_list STRINGliteral { if ( ! appendStr( *$1, *$2 ) ) YYERROR; // append 2nd juxtaposed string to 1st delete $2; // allocated by lexer $$ = $1; // conversion from tok to str } ; // ************************ EXPRESSIONS ******************************** primary_expression: IDENTIFIER // typedef name cannot be used as a variable name { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } | quasi_keyword { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } | TYPEDIMname // CFA, generic length argument { $$ = new ExpressionNode( build_dimensionref( yylloc, $1 ) ); } | tuple | '(' comma_expression ')' { $$ = $2; } | '(' compound_statement ')' // GCC, lambda expression { $$ = new ExpressionNode( new ast::StmtExpr( yylloc, dynamic_cast( maybeMoveBuild( $2 ) ) ) ); } | type_name '.' identifier // CFA, nested type { $$ = new ExpressionNode( build_qualified_expr( yylloc, DeclarationNode::newFromTypeData( $1 ), build_varref( yylloc, $3 ) ) ); } | type_name '.' '[' field_name_list ']' // CFA, nested type / tuple field selector { SemanticError( yylloc, "Qualified name is currently unimplemented." ); $$ = nullptr; } | GENERIC '(' assignment_expression ',' generic_assoc_list ')' // C11 { // add the missing control expression to the GenericExpr and return it $5->control = maybeMoveBuild( $3 ); $$ = new ExpressionNode( $5 ); } // | RESUME '(' comma_expression ')' // { SemanticError( yylloc, "Resume expression is currently unimplemented." ); $$ = nullptr; } // | RESUME '(' comma_expression ')' compound_statement // { SemanticError( yylloc, "Resume expression is currently unimplemented." ); $$ = nullptr; } | IDENTIFIER IDENTIFIER // invalid syntax rule { IdentifierBeforeIdentifier( *$1.str, *$2.str, "expression" ); $$ = nullptr; } | IDENTIFIER type_qualifier // invalid syntax rule { IdentifierBeforeType( *$1.str, "type qualifier" ); $$ = nullptr; } | IDENTIFIER storage_class // invalid syntax rule { IdentifierBeforeType( *$1.str, "storage class" ); $$ = nullptr; } | IDENTIFIER basic_type_name // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } | IDENTIFIER TYPEDEFname // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } | IDENTIFIER TYPEGENname // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } ; generic_assoc_list: // C11 generic_association | generic_assoc_list ',' generic_association { // steal the association node from the singleton and delete the wrapper assert( 1 == $3->associations.size() ); $1->associations.push_back( $3->associations.front() ); delete $3; $$ = $1; } ; generic_association: // C11 type_no_function ':' assignment_expression { // create a GenericExpr wrapper with one association pair $$ = new ast::GenericExpr( yylloc, nullptr, { { maybeMoveBuildType( $1 ), maybeMoveBuild( $3 ) } } ); } | DEFAULT ':' assignment_expression { $$ = new ast::GenericExpr( yylloc, nullptr, { { maybeMoveBuild( $3 ) } } ); } ; postfix_expression: primary_expression | postfix_expression '[' assignment_expression ',' tuple_expression_list ']' // Historic, transitional: Disallow commas in subscripts. // Switching to this behaviour may help check if a C compatibilty case uses comma-exprs in subscripts. // Current: Commas in subscripts make tuples. { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, new ExpressionNode( build_tuple( yylloc, $3->set_last( $5 ) ) ) ) ); } | postfix_expression '[' assignment_expression ']' // CFA, comma_expression disallowed in this context because it results in a common user error: subscripting a // matrix with x[i,j] instead of x[i][j]. While this change is not backwards compatible, there seems to be // little advantage to this feature and many disadvantages. It is possible to write x[(i,j)] in CFA, which is // equivalent to the old x[i,j]. { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } | constant '[' assignment_expression ']' // 3[a], 'a'[a], 3.5[a] { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } | string_literal '[' assignment_expression ']' // "abc"[3], 3["abc"] { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } | postfix_expression '{' argument_expression_list_opt '}' // CFA, constructor call { Token fn; fn.str = new std::string( "?{}" ); // location undefined - use location of '{'? $$ = new ExpressionNode( new ast::ConstructorExpr( yylloc, build_func( yylloc, new ExpressionNode( build_varref( yylloc, fn ) ), $1->set_last( $3 ) ) ) ); } | postfix_expression '(' argument_expression_list_opt ')' { $$ = new ExpressionNode( build_func( yylloc, $1, $3 ) ); } | VA_ARG '(' primary_expression ',' declaration_specifier_nobody abstract_parameter_declarator_opt ')' // { SemanticError( yylloc, "va_arg is currently unimplemented." ); $$ = nullptr; } { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, new string( "__builtin_va_arg" ) ) ), $3->set_last( (ExpressionNode *)($6 ? $6->addType( $5 ) : $5) ) ) ); } | postfix_expression '`' identifier // CFA, postfix call { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } | constant '`' identifier // CFA, postfix call { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } | string_literal '`' identifier // CFA, postfix call { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } // SKULLDUGGERY: The typedef table used for parsing does not store fields in structures. To parse a qualified // name, it is assumed all name-tokens after the first are identifiers, regardless of how the lexer identifies // them. For example: // // struct S; // forall(T) struct T; // union U; // enum E { S, T, E }; // struct Z { int S, T, Z, E, U; }; // void fred () { // Z z; // z.S; // lexer returns S is TYPEDEFname // z.T; // lexer returns T is TYPEGENname // z.Z; // lexer returns Z is TYPEDEFname // z.U; // lexer returns U is TYPEDEFname // z.E; // lexer returns E is TYPEDEFname // } | postfix_expression '.' identifier_or_type_name { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_varref( yylloc, $3 ) ) ); } | postfix_expression '.' INTEGERconstant // CFA, tuple index { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_constantInteger( yylloc, *$3 ) ) ); } | postfix_expression FLOATING_FRACTIONconstant // CFA, tuple index { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_field_name_FLOATING_FRACTIONconstant( yylloc, *$2 ) ) ); } | postfix_expression '.' '[' field_name_list ']' // CFA, tuple field selector { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } | postfix_expression '.' aggregate_control { $$ = new ExpressionNode( build_keyword_cast( yylloc, $3, $1 ) ); } | postfix_expression ARROW identifier { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_varref( yylloc, $3 ) ) ); } | postfix_expression ARROW INTEGERconstant // CFA, tuple index { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_constantInteger( yylloc, *$3 ) ) ); } | postfix_expression ARROW '[' field_name_list ']' // CFA, tuple field selector { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } | postfix_expression ICR { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::IncrPost, $1 ) ); } | postfix_expression DECR { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::DecrPost, $1 ) ); } | '(' type_no_function ')' '{' initializer_list_opt comma_opt '}' // C99, compound-literal { $$ = new ExpressionNode( build_compoundLiteral( yylloc, $2, new InitializerNode( $5, true ) ) ); } | '(' type_no_function ')' '@' '{' initializer_list_opt comma_opt '}' // CFA, explicit C compound-literal { $$ = new ExpressionNode( build_compoundLiteral( yylloc, $2, (new InitializerNode( $6, true ))->set_maybeConstructed( false ) ) ); } | '^' primary_expression '{' argument_expression_list_opt '}' // CFA, destructor call { Token fn; fn.str = new string( "^?{}" ); // location undefined $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, fn ) ), $2->set_last( $4 ) ) ); } ; field_name_list: // CFA, tuple field selector field | field_name_list ',' field { $$ = $1->set_last( $3 ); } ; field: // CFA, tuple field selector field_name | FLOATING_DECIMALconstant field { $$ = new ExpressionNode( build_fieldSel( yylloc, new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( yylloc, *$1 ) ), maybeMoveBuild( $2 ) ) ); } | FLOATING_DECIMALconstant '[' field_name_list ']' { $$ = new ExpressionNode( build_fieldSel( yylloc, new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( yylloc, *$1 ) ), build_tuple( yylloc, $3 ) ) ); } | field_name '.' field { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, maybeMoveBuild( $3 ) ) ); } | field_name '.' '[' field_name_list ']' { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } | field_name ARROW field { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, maybeMoveBuild( $3 ) ) ); } | field_name ARROW '[' field_name_list ']' { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } ; field_name: INTEGERconstant fraction_constants_opt { $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_constantInteger( yylloc, *$1 ), $2 ) ); } | FLOATINGconstant fraction_constants_opt { $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_field_name_FLOATINGconstant( yylloc, *$1 ), $2 ) ); } | identifier_at fraction_constants_opt // CFA, allow anonymous fields { $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_varref( yylloc, $1 ), $2 ) ); } ; fraction_constants_opt: // empty { $$ = nullptr; } | fraction_constants_opt FLOATING_FRACTIONconstant { ast::Expr * constant = build_field_name_FLOATING_FRACTIONconstant( yylloc, *$2 ); $$ = $1 != nullptr ? new ExpressionNode( build_fieldSel( yylloc, $1, constant ) ) : new ExpressionNode( constant ); } ; unary_expression: postfix_expression // first location where constant/string can have operator applied: sizeof 3/sizeof "abc" still requires // semantics checks, e.g., ++3, 3--, *3, &&3 | constant | string_literal { $$ = $1; } | EXTENSION cast_expression // GCC { $$ = $2->set_extension( true ); } // '*' ('&') is separated from unary_operator because of shift/reduce conflict in: // { * X; } // dereference X // { * int X; } // CFA declaration of pointer to int | ptrref_operator cast_expression // CFA { switch ( $1 ) { case OperKinds::AddressOf: $$ = new ExpressionNode( new ast::AddressExpr( maybeMoveBuild( $2 ) ) ); break; case OperKinds::PointTo: $$ = new ExpressionNode( build_unary_val( yylloc, $1, $2 ) ); break; case OperKinds::And: $$ = new ExpressionNode( new ast::AddressExpr( new ast::AddressExpr( maybeMoveBuild( $2 ) ) ) ); break; default: assert( false ); } } | unary_operator cast_expression { $$ = new ExpressionNode( build_unary_val( yylloc, $1, $2 ) ); } | ICR unary_expression { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::Incr, $2 ) ); } | DECR unary_expression { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::Decr, $2 ) ); } | SIZEOF unary_expression { $$ = new ExpressionNode( new ast::SizeofExpr( yylloc, maybeMoveBuild( $2 ) ) ); } | SIZEOF '(' type_no_function ')' { $$ = new ExpressionNode( new ast::SizeofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } | ALIGNOF unary_expression // GCC, variable alignment { $$ = new ExpressionNode( new ast::AlignofExpr( yylloc, maybeMoveBuild( $2 ) ) ); } | ALIGNOF '(' type_no_function ')' // GCC, type alignment { $$ = new ExpressionNode( new ast::AlignofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } // Cannot use rule "type", which includes cfa_abstract_function, for sizeof/alignof, because of S/R problems on // look ahead, so the cfa_abstract_function is factored out. | SIZEOF '(' cfa_abstract_function ')' { $$ = new ExpressionNode( new ast::SizeofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } | ALIGNOF '(' cfa_abstract_function ')' // GCC, type alignment { $$ = new ExpressionNode( new ast::AlignofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } | OFFSETOF '(' type_no_function ',' identifier ')' { $$ = new ExpressionNode( build_offsetOf( yylloc, $3, build_varref( yylloc, $5 ) ) ); } | TYPEID '(' type ')' { SemanticError( yylloc, "typeid name is currently unimplemented." ); $$ = nullptr; // $$ = new ExpressionNode( build_offsetOf( $3, build_varref( $5 ) ) ); } | COUNTOF unary_expression { $$ = new ExpressionNode( new ast::CountExpr( yylloc, maybeMoveBuild( $2 ) ) ); } | COUNTOF '(' type_no_function ')' { $$ = new ExpressionNode( new ast::CountExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } ; ptrref_operator: '*' { $$ = OperKinds::PointTo; } | '&' { $$ = OperKinds::AddressOf; } // GCC, address of label must be handled by semantic check for ref,ref,label | ANDAND { $$ = OperKinds::And; } ; unary_operator: '+' { $$ = OperKinds::UnPlus; } | '-' { $$ = OperKinds::UnMinus; } | '!' { $$ = OperKinds::Neg; } | '~' { $$ = OperKinds::BitNeg; } ; cast_expression: unary_expression | '(' type_no_function ')' cast_expression { $$ = new ExpressionNode( build_cast( yylloc, $2, $4 ) ); } | '(' aggregate_control '&' ')' cast_expression // CFA { $$ = new ExpressionNode( build_keyword_cast( yylloc, $2, $5 ) ); } | '(' aggregate_control '*' ')' cast_expression // CFA { $$ = new ExpressionNode( build_keyword_cast( yylloc, $2, $5 ) ); } | '(' VIRTUAL ')' cast_expression // CFA { $$ = new ExpressionNode( new ast::VirtualCastExpr( yylloc, maybeMoveBuild( $4 ), nullptr ) ); } | '(' VIRTUAL type_no_function ')' cast_expression // CFA { $$ = new ExpressionNode( new ast::VirtualCastExpr( yylloc, maybeMoveBuild( $5 ), maybeMoveBuildType( $3 ) ) ); } | '(' RETURN type_no_function ')' cast_expression // CFA { $$ = new ExpressionNode( build_cast( yylloc, $3, $5, ast::CastExpr::Return ) ); } | '(' COERCE type_no_function ')' cast_expression // CFA { SemanticError( yylloc, "Coerce cast is currently unimplemented." ); $$ = nullptr; } | '(' qualifier_cast_list ')' cast_expression // CFA { SemanticError( yylloc, "Qualifier cast is currently unimplemented." ); $$ = nullptr; } // | '(' type_no_function ')' tuple // { $$ = new ast::ExpressionNode( build_cast( yylloc, $2, $4 ) ); } ; qualifier_cast_list: cast_modifier type_qualifier_name | cast_modifier MUTEX | qualifier_cast_list cast_modifier type_qualifier_name | qualifier_cast_list cast_modifier MUTEX ; cast_modifier: '-' | '+' ; exponential_expression: cast_expression | exponential_expression '\\' cast_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Exp, $1, $3 ) ); } ; multiplicative_expression: exponential_expression | multiplicative_expression '*' exponential_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Mul, $1, $3 ) ); } | multiplicative_expression '/' exponential_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Div, $1, $3 ) ); } | multiplicative_expression '%' exponential_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Mod, $1, $3 ) ); } ; additive_expression: multiplicative_expression | additive_expression '+' multiplicative_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Plus, $1, $3 ) ); } | additive_expression '-' multiplicative_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Minus, $1, $3 ) ); } ; shift_expression: additive_expression | shift_expression LS additive_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LShift, $1, $3 ) ); } | shift_expression RS additive_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::RShift, $1, $3 ) ); } ; relational_expression: shift_expression | relational_expression '<' shift_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LThan, $1, $3 ) ); } | relational_expression '>' shift_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::GThan, $1, $3 ) ); } | relational_expression LE shift_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LEThan, $1, $3 ) ); } | relational_expression GE shift_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::GEThan, $1, $3 ) ); } ; equality_expression: relational_expression | equality_expression EQ relational_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Eq, $1, $3 ) ); } | equality_expression NE relational_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Neq, $1, $3 ) ); } ; AND_expression: equality_expression | AND_expression '&' equality_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::BitAnd, $1, $3 ) ); } ; exclusive_OR_expression: AND_expression | exclusive_OR_expression '^' AND_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Xor, $1, $3 ) ); } ; inclusive_OR_expression: exclusive_OR_expression | inclusive_OR_expression '|' exclusive_OR_expression { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::BitOr, $1, $3 ) ); } ; logical_AND_expression: inclusive_OR_expression | logical_AND_expression ANDAND inclusive_OR_expression { $$ = new ExpressionNode( build_and_or( yylloc, $1, $3, ast::AndExpr ) ); } ; logical_OR_expression: logical_AND_expression | logical_OR_expression OROR logical_AND_expression { $$ = new ExpressionNode( build_and_or( yylloc, $1, $3, ast::OrExpr ) ); } ; conditional_expression: logical_OR_expression | logical_OR_expression '?' comma_expression ':' conditional_expression { $$ = new ExpressionNode( build_cond( yylloc, $1, $3, $5 ) ); } | logical_OR_expression '?' /* empty */ ':' conditional_expression // GCC, omitted first operand { $$ = new ExpressionNode( build_cond( yylloc, $1, nullptr, $4 ) ); } ; constant_expression: conditional_expression ; argument_expression_list_opt: // empty { $$ = nullptr; } | argument_expression_list ; argument_expression_list: argument_expression // | argument_expression_list_opt ',' argument_expression // CFA, allow empty argument | argument_expression_list ',' argument_expression // no empty argument { $$ = $1->set_last( $3 ); } ; argument_expression: '?' // CFA, default parameter // { SemanticError( yylloc, "Argument to default parameter is currently unimplemented." ); $$ = nullptr; } { $$ = new ExpressionNode( build_constantInteger( yylloc, *new string( "2" ) ) ); } | '?' identifier '=' assignment_expression // CFA, keyword argument // { SemanticError( yylloc, "keyword argument is currently unimplemented." ); $$ = nullptr; } { $$ = $4; } | assignment_expression ; assignment_expression: // CFA, assignment is separated from assignment_operator to ensure no assignment operations for tuples conditional_expression | unary_expression assignment_operator assignment_expression { // if ( $2 == OperKinds::AtAssn ) { // SemanticError( yylloc, "C @= assignment is currently unimplemented." ); $$ = nullptr; // } else { $$ = new ExpressionNode( build_binary_val( yylloc, $2, $1, $3 ) ); // } // if } | unary_expression '=' '{' initializer_list_opt comma_opt '}' { SemanticError( yylloc, "Initializer assignment is currently unimplemented." ); $$ = nullptr; } ; assignment_expression_opt: // empty { $$ = nullptr; } | assignment_expression ; assignment_operator: simple_assignment_operator | compound_assignment_operator ; simple_assignment_operator: '=' { $$ = OperKinds::Assign; } | ATassign { $$ = OperKinds::AtAssn; } // CFA ; compound_assignment_operator: EXPassign { $$ = OperKinds::ExpAssn; } | MULTassign { $$ = OperKinds::MulAssn; } | DIVassign { $$ = OperKinds::DivAssn; } | MODassign { $$ = OperKinds::ModAssn; } | PLUSassign { $$ = OperKinds::PlusAssn; } | MINUSassign { $$ = OperKinds::MinusAssn; } | LSassign { $$ = OperKinds::LSAssn; } | RSassign { $$ = OperKinds::RSAssn; } | ANDassign { $$ = OperKinds::AndAssn; } | ERassign { $$ = OperKinds::ERAssn; } | ORassign { $$ = OperKinds::OrAssn; } ; tuple: // CFA, tuple // CFA, one assignment_expression is factored out of comma_expression to eliminate a shift/reduce conflict with // comma_expression in cfa_identifier_parameter_array and cfa_abstract_array // '[' ']' // { $$ = new ExpressionNode( build_tuple() ); } // | '[' push assignment_expression pop ']' // { $$ = new ExpressionNode( build_tuple( $3 ) ); } '[' ',' tuple_expression_list ']' { $$ = new ExpressionNode( build_tuple( yylloc, (new ExpressionNode( nullptr ))->set_last( $3 ) ) ); } | '[' push assignment_expression pop ',' tuple_expression_list ']' { $$ = new ExpressionNode( build_tuple( yylloc, $3->set_last( $6 ) ) ); } ; tuple_expression_list: assignment_expression | '@' // CFA { SemanticError( yylloc, "Eliding tuple element with '@' is currently unimplemented." ); $$ = nullptr; } | tuple_expression_list ',' assignment_expression { $$ = $1->set_last( $3 ); } | tuple_expression_list ',' '@' { SemanticError( yylloc, "Eliding tuple element with '@' is currently unimplemented." ); $$ = nullptr; } ; comma_expression: assignment_expression | comma_expression ',' assignment_expression { $$ = new ExpressionNode( new ast::CommaExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } ; comma_expression_opt: // empty { $$ = nullptr; } | comma_expression ; // ************************** STATEMENTS ******************************* statement: labeled_statement | compound_statement | expression_statement | selection_statement | iteration_statement | jump_statement | with_statement | mutex_statement | waitfor_statement | waituntil_statement | corun_statement | cofor_statement | exception_statement | enable_disable_statement { SemanticError( yylloc, "enable/disable statement is currently unimplemented." ); $$ = nullptr; } | asm_statement | DIRECTIVE { $$ = new StatementNode( build_directive( yylloc, $1 ) ); } ; labeled_statement: // labels cannot be identifiers 0 or 1 identifier_or_type_name ':' attribute_list_opt statement { $$ = $4->add_label( yylloc, $1, $3 ); } | identifier_or_type_name ':' attribute_list_opt error // invalid syntax rule { SemanticError( yylloc, "syntx error, label \"%s\" must be associated with a statement, " "where a declaration, case, or default is not a statement.\n" "Move the label or terminate with a semicolon.", $1.str->c_str() ); $$ = nullptr; } ; compound_statement: '{' '}' { $$ = new StatementNode( build_compound( yylloc, (StatementNode *)0 ) ); } | '{' push local_label_declaration_opt // GCC, local labels appear at start of block statement_decl_list // C99, intermix declarations and statements pop '}' { $$ = new StatementNode( build_compound( yylloc, $4 ) ); } ; statement_decl_list: // C99 statement_decl | statement_decl_list statement_decl { assert( $1 ); $1->set_last( $2 ); $$ = $1; } ; statement_decl: declaration // CFA, new & old style declarations { $$ = new StatementNode( $1 ); } | EXTENSION declaration // GCC { distExt( $2 ); $$ = new StatementNode( $2 ); } | function_definition { $$ = new StatementNode( $1 ); } | EXTENSION function_definition // GCC { distExt( $2 ); $$ = new StatementNode( $2 ); } | statement ; statement_list_nodecl: statement | statement_list_nodecl statement { assert( $1 ); $1->set_last( $2 ); $$ = $1; } | statement_list_nodecl error // invalid syntax rule { SemanticError( yylloc, "illegal syntax, declarations only allowed at the start of the switch body," " i.e., after the '{'." ); $$ = nullptr; } ; expression_statement: comma_expression_opt ';' { $$ = new StatementNode( build_expr( yylloc, $1 ) ); } ; // "if", "switch", and "choose" require parenthesis around the conditional. See the following ambiguities without // parenthesis: // // if x + y + z; => if ( x ) + y + z or if ( x + y ) + z // // switch O { } // // O{} => object-constructor for conditional, switch body ??? // O{} => O for conditional followed by switch body // // C++ has this problem, as it has the same constructor syntax. // // switch sizeof ( T ) { } // // sizeof ( T ) => sizeof of T for conditional followed by switch body // sizeof ( T ) => sizeof of compound literal (T){ }, closing parenthesis ??? // // Note the two grammar rules for sizeof (alignof) // // | SIZEOF unary_expression // | SIZEOF '(' type_no_function ')' // // where the first DOES NOT require parenthesis! And C++ inherits this problem from C. selection_statement: IF '(' conditional_declaration ')' statement %prec THEN // explicitly deal with the shift/reduce conflict on if/else { $$ = new StatementNode( build_if( yylloc, $3, maybe_build_compound( yylloc, $5 ), nullptr ) ); } | IF '(' conditional_declaration ')' statement ELSE statement { $$ = new StatementNode( build_if( yylloc, $3, maybe_build_compound( yylloc, $5 ), maybe_build_compound( yylloc, $7 ) ) ); } | SWITCH '(' comma_expression ')' case_clause { $$ = new StatementNode( build_switch( yylloc, true, $3, $5 ) ); } | SWITCH '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt pop '}' // CFA { StatementNode *sw = new StatementNode( build_switch( yylloc, true, $3, $8 ) ); // The semantics of the declaration list is changed to include associated initialization, which is performed // *before* the transfer to the appropriate case clause by hoisting the declarations into a compound // statement around the switch. Statements after the initial declaration list can never be executed, and // therefore, are removed from the grammar even though C allows it. The change also applies to choose // statement. $$ = $7 ? new StatementNode( build_compound( yylloc, (new StatementNode( $7 ))->set_last( sw ) ) ) : sw; } | SWITCH '(' comma_expression ')' '{' error '}' // CFA, invalid syntax rule error { SemanticError( yylloc, "synatx error, declarations can only appear before the list of case clauses." ); $$ = nullptr; } | CHOOSE '(' comma_expression ')' case_clause // CFA { $$ = new StatementNode( build_switch( yylloc, false, $3, $5 ) ); } | CHOOSE '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt pop '}' // CFA { StatementNode *sw = new StatementNode( build_switch( yylloc, false, $3, $8 ) ); $$ = $7 ? new StatementNode( build_compound( yylloc, (new StatementNode( $7 ))->set_last( sw ) ) ) : sw; } | CHOOSE '(' comma_expression ')' '{' error '}' // CFA, invalid syntax rule { SemanticError( yylloc, "illegal syntax, declarations can only appear before the list of case clauses." ); $$ = nullptr; } ; conditional_declaration: comma_expression { $$ = new CondCtl( nullptr, $1 ); } | c_declaration // no semi-colon { $$ = new CondCtl( $1, nullptr ); } | cfa_declaration // no semi-colon { $$ = new CondCtl( $1, nullptr ); } | declaration comma_expression // semi-colon separated { $$ = new CondCtl( $1, $2 ); } ; // CASE and DEFAULT clauses are only allowed in the SWITCH statement, precluding Duff's device. In addition, a case // clause allows a list of values and subranges. case_value: // CFA constant_expression { $$ = $1; } | constant_expression ELLIPSIS constant_expression // GCC, subrange { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } | subrange // CFA, subrange ; case_value_list: // CFA case_value { $$ = new ClauseNode( build_case( yylloc, $1 ) ); } // convert case list, e.g., "case 1, 3, 5:" into "case 1: case 3: case 5" | case_value_list ',' case_value { $$ = $1->set_last( new ClauseNode( build_case( yylloc, $3 ) ) ); } ; case_label: // CFA CASE error // invalid syntax rule { SemanticError( yylloc, "illegal syntax, case list missing after case." ); $$ = nullptr; } | CASE case_value_list ':' { $$ = $2; } | CASE case_value_list error // invalid syntax rule { SemanticError( yylloc, "illegal syntax, colon missing after case list." ); $$ = nullptr; } | DEFAULT ':' { $$ = new ClauseNode( build_default( yylloc ) ); } // A semantic check is required to ensure only one default clause per switch/choose statement. | DEFAULT error // invalid syntax rule { SemanticError( yylloc, "illegal syntax, colon missing after default." ); $$ = nullptr; } ; case_label_list: // CFA case_label | case_label_list case_label { $$ = $1->set_last( $2 ); } ; case_clause: // CFA case_label_list statement { $$ = $1->append_last_case( maybe_build_compound( yylloc, $2 ) ); } ; switch_clause_list_opt: // CFA // empty { $$ = nullptr; } | switch_clause_list ; switch_clause_list: // CFA case_label_list statement_list_nodecl { $$ = $1->append_last_case( new StatementNode( build_compound( yylloc, $2 ) ) ); } | switch_clause_list case_label_list statement_list_nodecl { $$ = $1->set_last( $2->append_last_case( new StatementNode( build_compound( yylloc, $3 ) ) ) ); } ; iteration_statement: WHILE '(' ')' statement %prec THEN // CFA => while ( 1 ) { $$ = new StatementNode( build_while( yylloc, new CondCtl( nullptr, NEW_ONE ), maybe_build_compound( yylloc, $4 ) ) ); } | WHILE '(' ')' statement ELSE statement // CFA { $$ = new StatementNode( build_while( yylloc, new CondCtl( nullptr, NEW_ONE ), maybe_build_compound( yylloc, $4 ) ) ); SemanticWarning( yylloc, Warning::SuperfluousElse ); } | WHILE '(' conditional_declaration ')' statement %prec THEN { $$ = new StatementNode( build_while( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } | WHILE '(' conditional_declaration ')' statement ELSE statement // CFA { $$ = new StatementNode( build_while( yylloc, $3, maybe_build_compound( yylloc, $5 ), $7 ) ); } | DO statement WHILE '(' ')' ';' // CFA => do while( 1 ) { $$ = new StatementNode( build_do_while( yylloc, NEW_ONE, maybe_build_compound( yylloc, $2 ) ) ); } | DO statement WHILE '(' ')' ELSE statement // CFA { $$ = new StatementNode( build_do_while( yylloc, NEW_ONE, maybe_build_compound( yylloc, $2 ) ) ); SemanticWarning( yylloc, Warning::SuperfluousElse ); } | DO statement WHILE '(' comma_expression ')' ';' { $$ = new StatementNode( build_do_while( yylloc, $5, maybe_build_compound( yylloc, $2 ) ) ); } | DO statement WHILE '(' comma_expression ')' ELSE statement // CFA { $$ = new StatementNode( build_do_while( yylloc, $5, maybe_build_compound( yylloc, $2 ), $8 ) ); } | FOR '(' ')' statement %prec THEN // CFA => for ( ;; ) { $$ = new StatementNode( build_for( yylloc, new ForCtrl( nullptr, nullptr, nullptr ), maybe_build_compound( yylloc, $4 ) ) ); } | FOR '(' ')' statement ELSE statement // CFA { $$ = new StatementNode( build_for( yylloc, new ForCtrl( nullptr, nullptr, nullptr ), maybe_build_compound( yylloc, $4 ) ) ); SemanticWarning( yylloc, Warning::SuperfluousElse ); } | FOR '(' for_control_expression_list ')' statement %prec THEN { $$ = new StatementNode( build_for( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } | FOR '(' for_control_expression_list ')' statement ELSE statement // CFA { $$ = new StatementNode( build_for( yylloc, $3, maybe_build_compound( yylloc, $5 ), $7 ) ); } ; for_control_expression_list: for_control_expression | for_control_expression_list ':' for_control_expression // ForCtrl + ForCtrl: // init + init => multiple declaration statements that are hoisted // condition + condition => (expression) && (expression) // change + change => (expression), (expression) { $1->init->set_last( $3->init ); if ( $1->condition ) { if ( $3->condition ) { $1->condition->expr.reset( new ast::LogicalExpr( yylloc, $1->condition->expr.release(), $3->condition->expr.release(), ast::AndExpr ) ); } // if } else $1->condition = $3->condition; if ( $1->change ) { if ( $3->change ) { $1->change->expr.reset( new ast::CommaExpr( yylloc, $1->change->expr.release(), $3->change->expr.release() ) ); } // if } else $1->change = $3->change; $$ = $1; } ; for_control_expression: ';' comma_expression_opt ';' comma_expression_opt { $$ = new ForCtrl( nullptr, $2, $4 ); } | comma_expression ';' comma_expression_opt ';' comma_expression_opt { $$ = new ForCtrl( $1 ? new StatementNode( new ast::ExprStmt( yylloc, maybeMoveBuild( $1 ) ) ) : nullptr, $3, $5 ); } | declaration comma_expression_opt ';' comma_expression_opt // C99, declaration has ';' { $$ = new ForCtrl( new StatementNode( $1 ), $2, $4 ); } | '@' ';' comma_expression // CFA, empty loop-index { $$ = new ForCtrl( nullptr, $3, nullptr ); } | '@' ';' comma_expression ';' comma_expression // CFA, empty loop-index { $$ = new ForCtrl( nullptr, $3, $5 ); } | comma_expression // CFA, anonymous loop-index { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), NEW_ZERO, OperKinds::LThan, $1->clone(), NEW_ONE ); } | downupdowneq comma_expression // CFA, anonymous loop-index { $$ = forCtrl( yylloc, $2, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $1, NEW_ZERO, $2->clone() ), $1, UPDOWN( $1, $2->clone(), NEW_ZERO ), NEW_ONE ); } | comma_expression updowneq comma_expression // CFA, anonymous loop-index { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), NEW_ONE ); } | '@' updowneq comma_expression // CFA, anonymous loop-index { if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, NEW_ONE ); } | comma_expression updowneq '@' // CFA, anonymous loop-index { if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } else { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } } | comma_expression updowneq comma_expression '~' comma_expression // CFA, anonymous loop-index { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), $5 ); } | '@' updowneq comma_expression '~' comma_expression // CFA, anonymous loop-index { if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, $5 ); } | comma_expression updowneq '@' '~' comma_expression // CFA, anonymous loop-index { if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } else { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } } | comma_expression updowneq comma_expression '~' '@' // CFA, invalid syntax rule { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } | '@' updowneq '@' // CFA, invalid syntax rule { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } | '@' updowneq comma_expression '~' '@' // CFA, invalid syntax rule { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } | comma_expression updowneq '@' '~' '@' // CFA, invalid syntax rule { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } | '@' updowneq '@' '~' '@' // CFA, invalid syntax rule { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; } // These rules accept a comma_expression for the initialization, when only an identifier is correct. Being // permissive allows for a better error message from forCtrl. | comma_expression ';' comma_expression // CFA { $$ = forCtrl( yylloc, $3, $1, NEW_ZERO, OperKinds::LThan, $3->clone(), NEW_ONE ); } | comma_expression ';' downupdowneq comma_expression // CFA { $$ = forCtrl( yylloc, $4, $1, UPDOWN( $3, NEW_ZERO, $4->clone() ), $3, UPDOWN( $3, $4->clone(), NEW_ZERO ), NEW_ONE ); } | comma_expression ';' comma_expression updowneq comma_expression // CFA { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), NEW_ONE ); } | comma_expression ';' '@' updowneq comma_expression // CFA { if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, NEW_ONE ); } | comma_expression ';' comma_expression updowneq '@' // CFA { if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, NEW_ONE ); } | comma_expression ';' '@' updowneq '@' // CFA, invalid syntax rule { SemanticError( yylloc, "illegal syntax, missing low/high value for ascending/descending range so index is uninitialized." ); $$ = nullptr; } | comma_expression ';' comma_expression updowneq comma_expression '~' comma_expression // CFA { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), $7 ); } | comma_expression ';' '@' updowneq comma_expression '~' comma_expression // CFA, invalid syntax rule { if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, $7 ); } | comma_expression ';' comma_expression updowneq '@' '~' comma_expression // CFA { if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, $7 ); } | comma_expression ';' comma_expression updowneq comma_expression '~' '@' // CFA { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), nullptr ); } | comma_expression ';' '@' updowneq comma_expression '~' '@' // CFA, invalid syntax rule { if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, nullptr ); } | comma_expression ';' comma_expression updowneq '@' '~' '@' // CFA { if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, nullptr ); } | comma_expression ';' '@' updowneq '@' '~' '@' // CFA { SemanticError( yylloc, "illegal syntax, missing low/high value for ascending/descending range so index is uninitialized." ); $$ = nullptr; } | declaration comma_expression // CFA { $$ = forCtrl( yylloc, $1, NEW_ZERO, OperKinds::LThan, $2, NEW_ONE ); } | declaration downupdowneq comma_expression // CFA { $$ = forCtrl( yylloc, $1, UPDOWN( $2, NEW_ZERO, $3 ), $2, UPDOWN( $2, $3->clone(), NEW_ZERO ), NEW_ONE ); } | declaration comma_expression updowneq comma_expression // CFA { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2->clone(), $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), NEW_ONE ); } | declaration '@' updowneq comma_expression // CFA { if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, NEW_ONE ); } | declaration comma_expression updowneq '@' // CFA { if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, NEW_ONE ); } | declaration comma_expression updowneq comma_expression '~' comma_expression // CFA { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), $6 ); } | declaration '@' updowneq comma_expression '~' comma_expression // CFA { if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, $6 ); } | declaration comma_expression updowneq '@' '~' comma_expression // CFA { if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, $6 ); } | declaration comma_expression updowneq comma_expression '~' '@' // CFA { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), nullptr ); } | declaration '@' updowneq comma_expression '~' '@' // CFA { if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, nullptr ); } | declaration comma_expression updowneq '@' '~' '@' // CFA { if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "illegal syntax, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, nullptr ); } | declaration '@' updowneq '@' '~' '@' // CFA, invalid syntax rule { SemanticError( yylloc, "illegal syntax, missing low/high value for ascending/descending range so index is uninitialized." ); $$ = nullptr; } | comma_expression ';' type_type_specifier // CFA, enum type { $$ = enumRangeCtrl( $1, OperKinds::LEThan, new ExpressionNode( new ast::TypeExpr( yylloc, $3->clone()->buildType() ) ), $3 ); } | comma_expression ';' downupdowneq enum_key // CFA, enum type, reverse direction { if ( $3 == OperKinds::GThan ) { SemanticError( yylloc, "all enumeration ranges are equal (all values). Add an equal, e.g., ~=, -~=." ); $$ = nullptr; $3 = OperKinds::GEThan; } // if $$ = enumRangeCtrl( $1, $3, new ExpressionNode( new ast::TypeExpr( yylloc, $4->clone()->buildType() ) ), $4 ); } ; enum_key: type_name { typedefTable.makeTypedef( *$1->symbolic.name, "enum_type_nobody 1" ); $$ = DeclarationNode::newEnum( $1->symbolic.name, nullptr, false, false ); } | ENUM identifier { typedefTable.makeTypedef( *$2, "enum_type_nobody 2" ); $$ = DeclarationNode::newEnum( $2, nullptr, false, false ); } | ENUM type_name { typedefTable.makeTypedef( *$2->symbolic.name, "enum_type_nobody 3" ); $$ = DeclarationNode::newEnum( $2->symbolic.name, nullptr, false, false ); } ; // This rule exists to handle the ambiguity with unary operator '~'. The rule is the same as updowneq minus the '~'. // Specifically, "for ( ~5 )" means the complement of 5, not loop 0..4. Hence, in this case "for ( ~= 5 )", i.e., 0..5, // it is not possible to just remove the '='. The entire '~=' must be removed. downupdowneq: ErangeUp { $$ = OperKinds::LThan; } | ErangeDown { $$ = OperKinds::GThan; } | ErangeUpEq { $$ = OperKinds::LEThan; } | ErangeDownEq { $$ = OperKinds::GEThan; } ; updown: '~' // shorthand 0 ~ 10 => 0 +~ 10 { $$ = OperKinds::LThan; } | ErangeUp { $$ = OperKinds::LThan; } | ErangeDown { $$ = OperKinds::GThan; } ; updowneq: updown | ErangeUpEq { $$ = OperKinds::LEThan; } | ErangeDownEq { $$ = OperKinds::GEThan; } ; jump_statement: GOTO identifier_or_type_name ';' { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Goto ) ); } | GOTO '*' comma_expression ';' // GCC, computed goto // The syntax for the GCC computed goto violates normal expression precedence, e.g., goto *i+3; => goto *(i+3); // whereas normal operator precedence yields goto (*i)+3; { $$ = new StatementNode( build_computedgoto( $3 ) ); } // A semantic check is required to ensure fallthru appears only in the body of a choose statement. | fall_through_name ';' // CFA { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::FallThrough ) ); } | fall_through_name identifier_or_type_name ';' // CFA { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::FallThrough ) ); } | fall_through_name DEFAULT ';' // CFA { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::FallThroughDefault ) ); } | CONTINUE ';' // A semantic check is required to ensure this statement appears only in the body of an iteration statement. { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::Continue ) ); } | CONTINUE identifier_or_type_name ';' // CFA, multi-level continue // A semantic check is required to ensure this statement appears only in the body of an iteration statement, and // the target of the transfer appears only at the start of an iteration statement. { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Continue ) ); } | BREAK ';' // A semantic check is required to ensure this statement appears only in the body of an iteration statement. { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::Break ) ); } | BREAK identifier_or_type_name ';' // CFA, multi-level exit // A semantic check is required to ensure this statement appears only in the body of an iteration statement, and // the target of the transfer appears only at the start of an iteration statement. { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Break ) ); } | RETURN comma_expression_opt ';' { $$ = new StatementNode( build_return( yylloc, $2 ) ); } | RETURN '{' initializer_list_opt comma_opt '}' ';' { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } | SUSPEND ';' { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::None ) ); } | SUSPEND compound_statement { $$ = new StatementNode( build_suspend( yylloc, $2, ast::SuspendStmt::None ) ); } | SUSPEND COROUTINE ';' { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::Coroutine ) ); } | SUSPEND COROUTINE compound_statement { $$ = new StatementNode( build_suspend( yylloc, $3, ast::SuspendStmt::Coroutine ) ); } | SUSPEND GENERATOR ';' { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::Generator ) ); } | SUSPEND GENERATOR compound_statement { $$ = new StatementNode( build_suspend( yylloc, $3, ast::SuspendStmt::Generator ) ); } | THROW assignment_expression_opt ';' // handles rethrow { $$ = new StatementNode( build_throw( yylloc, $2 ) ); } | THROWRESUME assignment_expression_opt ';' // handles reresume { $$ = new StatementNode( build_resume( yylloc, $2 ) ); } | THROWRESUME assignment_expression_opt AT assignment_expression ';' // handles reresume { $$ = new StatementNode( build_resume_at( $2, $4 ) ); } ; fall_through_name: // CFA FALLTHRU | FALLTHROUGH ; with_statement: WITH '(' type_list ')' statement // support scoped enumeration { $$ = new StatementNode( build_with( yylloc, $3, $5 ) ); } ; // If MUTEX becomes a general qualifier, there are shift/reduce conflicts, so possibly change syntax to "with mutex". mutex_statement: MUTEX '(' argument_expression_list_opt ')' statement { if ( ! $3 ) { SemanticError( yylloc, "illegal syntax, mutex argument list cannot be empty." ); $$ = nullptr; } $$ = new StatementNode( build_mutex( yylloc, $3, $5 ) ); } ; when_clause: WHEN '(' comma_expression ')' { $$ = $3; } ; when_clause_opt: // empty { $$ = nullptr; } | when_clause ; cast_expression_list: cast_expression | cast_expression_list ',' cast_expression { SemanticError( yylloc, "List of mutex member is currently unimplemented." ); $$ = nullptr; } ; timeout: TIMEOUT '(' comma_expression ')' { $$ = $3; } ; wor: OROR | WOR waitfor: WAITFOR '(' cast_expression ')' { $$ = $3; } | WAITFOR '(' cast_expression_list ':' argument_expression_list_opt ')' { $$ = $3->set_last( $5 ); } ; wor_waitfor_clause: when_clause_opt waitfor statement %prec THEN // Called first: create header for WaitForStmt. { $$ = build_waitfor( yylloc, new ast::WaitForStmt( yylloc ), $1, $2, maybe_build_compound( yylloc, $3 ) ); } | wor_waitfor_clause wor when_clause_opt waitfor statement { $$ = build_waitfor( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ); } | wor_waitfor_clause wor when_clause_opt ELSE statement { $$ = build_waitfor_else( yylloc, $1, $3, maybe_build_compound( yylloc, $5 ) ); } | wor_waitfor_clause wor when_clause_opt timeout statement %prec THEN { $$ = build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ); } // "else" must be conditional after timeout or timeout is never triggered (i.e., it is meaningless) | wor_waitfor_clause wor when_clause_opt timeout statement wor ELSE statement // invalid syntax rule { SemanticError( yylloc, "illegal syntax, else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; } | wor_waitfor_clause wor when_clause_opt timeout statement wor when_clause ELSE statement { $$ = build_waitfor_else( yylloc, build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ), $7, maybe_build_compound( yylloc, $9 ) ); } ; waitfor_statement: wor_waitfor_clause %prec THEN { $$ = new StatementNode( $1 ); } ; wand: ANDAND | WAND ; waituntil: WAITUNTIL '(' comma_expression ')' { $$ = $3; } ; waituntil_clause: when_clause_opt waituntil statement { $$ = build_waituntil_clause( yylloc, $1, $2, maybe_build_compound( yylloc, $3 ) ); } | '(' wor_waituntil_clause ')' { $$ = $2; } ; wand_waituntil_clause: waituntil_clause %prec THEN { $$ = $1; } | waituntil_clause wand wand_waituntil_clause { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::AND, $1, $3 ); } ; wor_waituntil_clause: wand_waituntil_clause { $$ = $1; } | wor_waituntil_clause wor wand_waituntil_clause { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::OR, $1, $3 ); } | wor_waituntil_clause wor when_clause_opt ELSE statement { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1, build_waituntil_else( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } ; waituntil_statement: wor_waituntil_clause %prec THEN { $$ = new StatementNode( build_waituntil_stmt( yylloc, $1 ) ); } ; corun_statement: CORUN statement { $$ = new StatementNode( build_corun( yylloc, $2 ) ); } ; cofor_statement: COFOR '(' for_control_expression_list ')' statement { $$ = new StatementNode( build_cofor( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } ; exception_statement: TRY compound_statement handler_clause %prec THEN { $$ = new StatementNode( build_try( yylloc, $2, $3, nullptr ) ); } | TRY compound_statement finally_clause { $$ = new StatementNode( build_try( yylloc, $2, nullptr, $3 ) ); } | TRY compound_statement handler_clause finally_clause { $$ = new StatementNode( build_try( yylloc, $2, $3, $4 ) ); } ; handler_clause: handler_key '(' push exception_declaration pop handler_predicate_opt ')' compound_statement { $$ = new ClauseNode( build_catch( yylloc, $1, $4, $6, $8 ) ); } | handler_clause handler_key '(' push exception_declaration pop handler_predicate_opt ')' compound_statement { $$ = $1->set_last( new ClauseNode( build_catch( yylloc, $2, $5, $7, $9 ) ) ); } ; handler_predicate_opt: // empty { $$ = nullptr; } | ';' conditional_expression { $$ = $2; } ; handler_key: CATCH { $$ = ast::Terminate; } | RECOVER { $$ = ast::Terminate; } | CATCHRESUME { $$ = ast::Resume; } | FIXUP { $$ = ast::Resume; } ; finally_clause: FINALLY compound_statement { $$ = new ClauseNode( build_finally( yylloc, $2 ) ); } ; exception_declaration: // No SUE declaration in parameter list. type_specifier_nobody | type_specifier_nobody declarator { $$ = $2->addType( $1 ); } | type_specifier_nobody variable_abstract_declarator { $$ = $2->addType( $1 ); } | cfa_abstract_declarator_tuple identifier // CFA { $$ = $1->addName( $2 ); } | cfa_abstract_declarator_tuple // CFA ; enable_disable_statement: enable_disable_key identifier_list compound_statement ; enable_disable_key: ENABLE | DISABLE ; asm_statement: ASM asm_volatile_opt '(' string_literal ')' ';' { $$ = new StatementNode( build_asm( yylloc, $2, $4, nullptr ) ); } | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ')' ';' // remaining GCC { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6 ) ); } | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ':' asm_operands_opt ')' ';' { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6, $8 ) ); } | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ':' asm_operands_opt ':' asm_clobbers_list_opt ')' ';' { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6, $8, $10 ) ); } | ASM asm_volatile_opt GOTO '(' string_literal ':' ':' asm_operands_opt ':' asm_clobbers_list_opt ':' label_list ')' ';' { $$ = new StatementNode( build_asm( yylloc, $2, $5, nullptr, $8, $10, $12 ) ); } ; asm_volatile_opt: // GCC // empty { $$ = false; } | VOLATILE { $$ = true; } ; asm_operands_opt: // GCC // empty { $$ = nullptr; } // use default argument | asm_operands_list ; asm_operands_list: // GCC asm_operand | asm_operands_list ',' asm_operand { $$ = $1->set_last( $3 ); } ; asm_operand: // GCC string_literal '(' constant_expression ')' { $$ = new ExpressionNode( new ast::AsmExpr( yylloc, "", maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } | '[' IDENTIFIER ']' string_literal '(' constant_expression ')' { $$ = new ExpressionNode( new ast::AsmExpr( yylloc, *$2.str, maybeMoveBuild( $4 ), maybeMoveBuild( $6 ) ) ); delete $2.str; } ; asm_clobbers_list_opt: // GCC // empty { $$ = nullptr; } // use default argument | string_literal { $$ = $1; } | asm_clobbers_list_opt ',' string_literal { $$ = $1->set_last( $3 ); } ; label_list: identifier { $$ = new LabelNode(); $$->labels.emplace_back( yylloc, *$1 ); delete $1; // allocated by lexer } | label_list ',' identifier { $$ = $1; $1->labels.emplace_back( yylloc, *$3 ); delete $3; // allocated by lexer } ; // ****************************** DECLARATIONS ********************************* declaration_list_opt: // used at beginning of switch statement // empty { $$ = nullptr; } | declaration_list ; declaration_list: declaration | declaration_list declaration { $$ = $1->set_last( $2 ); } ; KR_parameter_list_opt: // used to declare parameter types in K&R style functions // empty { $$ = nullptr; } | KR_parameter_list ; KR_parameter_list: c_declaration ';' { $$ = $1; } | KR_parameter_list c_declaration ';' { $$ = $1->set_last( $2 ); } ; local_label_declaration_opt: // GCC, local label // empty | local_label_declaration_list ; local_label_declaration_list: // GCC, local label LABEL local_label_list ';' | local_label_declaration_list LABEL local_label_list ';' ; local_label_list: // GCC, local label identifier_or_type_name | local_label_list ',' identifier_or_type_name ; declaration: // old & new style declarations c_declaration ';' | cfa_declaration ';' // CFA | static_assert ';' // C11 ; static_assert: STATICASSERT '(' constant_expression ',' string_literal ')' // C11 { $$ = DeclarationNode::newStaticAssert( $3, maybeMoveBuild( $5 ) ); } | STATICASSERT '(' constant_expression ')' // CFA { $$ = DeclarationNode::newStaticAssert( $3, build_constantStr( yylloc, *new string( "\"\"" ) ) ); } // C declaration syntax is notoriously confusing and error prone. Cforall provides its own type, variable and function // declarations. CFA declarations use the same declaration tokens as in C; however, CFA places declaration modifiers to // the left of the base type, while C declarations place modifiers to the right of the base type. CFA declaration // modifiers are interpreted from left to right and the entire type specification is distributed across all variables in // the declaration list (as in Pascal). ANSI C and the new CFA declarations may appear together in the same program // block, but cannot be mixed within a specific declaration. // // CFA C // [10] int x; int x[10]; // array of 10 integers // [10] * char y; char *y[10]; // array of 10 pointers to char cfa_declaration: // CFA cfa_variable_declaration | cfa_typedef_declaration | cfa_function_declaration | type_declaring_list { SemanticError( yylloc, "otype declaration is currently unimplemented." ); $$ = nullptr; } | trait_specifier ; cfa_variable_declaration: // CFA cfa_variable_specifier initializer_opt { $$ = $1->addInitializer( $2 ); } | declaration_qualifier_list cfa_variable_specifier initializer_opt // declaration_qualifier_list also includes type_qualifier_list, so a semantic check is necessary to preclude // them as a type_qualifier cannot appear in that context. { $$ = $2->addQualifiers( $1 )->addInitializer( $3 ); } | cfa_variable_declaration pop ',' push identifier_or_type_name initializer_opt { $$ = $1->set_last( $1->cloneType( $5 )->addInitializer( $6 ) ); } ; cfa_variable_specifier: // CFA // A semantic check is required to ensure asm_name only appears on declarations with implicit or explicit static // storage-class cfa_abstract_declarator_no_tuple identifier_or_type_name asm_name_opt { $$ = $1->addName( $2 )->addAsmName( $3 ); } | cfa_abstract_tuple identifier_or_type_name asm_name_opt { $$ = $1->addName( $2 )->addAsmName( $3 ); } | type_qualifier_list cfa_abstract_tuple identifier_or_type_name asm_name_opt { $$ = $2->addQualifiers( $1 )->addName( $3 )->addAsmName( $4 ); } // [ int s, int t ]; // declare s and t // [ int, int ] f(); // [] g( int ); // [ int x, int y ] = f(); // declare x and y, initialize each from f // g( x + y ); | cfa_function_return asm_name_opt { SemanticError( yylloc, "tuple-element declarations is currently unimplemented." ); $$ = nullptr; } | type_qualifier_list cfa_function_return asm_name_opt { SemanticError( yylloc, "tuple variable declaration is currently unimplemented." ); $$ = nullptr; } ; cfa_function_declaration: // CFA cfa_function_specifier | type_qualifier_list cfa_function_specifier { $$ = $2->addQualifiers( $1 ); } | declaration_qualifier_list cfa_function_specifier { $$ = $2->addQualifiers( $1 ); } | declaration_qualifier_list type_qualifier_list cfa_function_specifier { $$ = $3->addQualifiers( $1 )->addQualifiers( $2 ); } | cfa_function_declaration ',' identifier_or_type_name '(' push cfa_parameter_list_ellipsis_opt pop ')' { // Append the return type at the start (left-hand-side) to each identifier in the list. DeclarationNode * ret = new DeclarationNode; ret->type = maybeCopy( $1->type->base ); $$ = $1->set_last( DeclarationNode::newFunction( $3, ret, $6, nullptr ) ); } ; cfa_function_specifier: // CFA '[' ']' identifier '(' push cfa_parameter_list_ellipsis_opt pop ')' attribute_list_opt { $$ = DeclarationNode::newFunction( $3, DeclarationNode::newTuple( nullptr ), $6, nullptr )->addQualifiers( $9 ); } | '[' ']' TYPEDEFname '(' push cfa_parameter_list_ellipsis_opt pop ')' attribute_list_opt { $$ = DeclarationNode::newFunction( $3, DeclarationNode::newTuple( nullptr ), $6, nullptr )->addQualifiers( $9 ); } // | '[' ']' TYPEGENname '(' push cfa_parameter_list_ellipsis_opt pop ')' attribute_list_opt // { $$ = DeclarationNode::newFunction( $3, DeclarationNode::newTuple( nullptr ), $6, nullptr )->addQualifiers( $9 ); } // identifier_or_type_name must be broken apart because of the sequence: // // '[' ']' identifier_or_type_name '(' cfa_parameter_list_ellipsis_opt ')' // '[' ']' type_specifier // // type_specifier can resolve to just TYPEDEFname (e.g., typedef int T; int f( T );). Therefore this must be // flattened to allow lookahead to the '(' without having to reduce identifier_or_type_name. | cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_list_ellipsis_opt pop ')' attribute_list_opt // To obtain LR(1 ), this rule must be factored out from function return type (see cfa_abstract_declarator). { $$ = DeclarationNode::newFunction( $2, $1, $5, nullptr )->addQualifiers( $8 ); } | cfa_function_return identifier_or_type_name '(' push cfa_parameter_list_ellipsis_opt pop ')' attribute_list_opt { $$ = DeclarationNode::newFunction( $2, $1, $5, nullptr )->addQualifiers( $8 ); } ; cfa_function_return: // CFA '[' push cfa_parameter_list pop ']' { $$ = DeclarationNode::newTuple( $3 ); } | '[' push cfa_parameter_list ',' cfa_abstract_parameter_list pop ']' // To obtain LR(1 ), the last cfa_abstract_parameter_list is added into this flattened rule to lookahead to the ']'. { $$ = DeclarationNode::newTuple( $3->set_last( $5 ) ); } ; cfa_typedef_declaration: // CFA TYPEDEF cfa_variable_specifier { typedefTable.addToEnclosingScope( *$2->name, TYPEDEFname, "cfa_typedef_declaration 1" ); $$ = $2->addTypedef(); } | TYPEDEF cfa_function_specifier { typedefTable.addToEnclosingScope( *$2->name, TYPEDEFname, "cfa_typedef_declaration 2" ); $$ = $2->addTypedef(); } | cfa_typedef_declaration ',' identifier { typedefTable.addToEnclosingScope( *$3, TYPEDEFname, "cfa_typedef_declaration 3" ); $$ = $1->set_last( $1->cloneType( $3 ) ); } ; // Traditionally typedef is part of storage-class specifier for syntactic convenience only. Here, it is factored out as // a separate form of declaration, which syntactically precludes storage-class specifiers and initialization. typedef_declaration: TYPEDEF type_specifier declarator { typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "typedef_declaration 1" ); if ( $2->type->forall || ($2->type->kind == TypeData::Aggregate && $2->type->aggregate.params) ) { SemanticError( yylloc, "forall qualifier in typedef is currently unimplemented." ); $$ = nullptr; } else $$ = $3->addType( $2 )->addTypedef(); // watchout frees $2 and $3 } | typedef_declaration ',' declarator { typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "typedef_declaration 2" ); $$ = $1->set_last( $1->cloneBaseType( $3 )->addTypedef() ); } | type_qualifier_list TYPEDEF type_specifier declarator // remaining OBSOLESCENT (see 2 ) { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } | type_specifier TYPEDEF declarator { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } | type_specifier TYPEDEF type_qualifier_list declarator { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } ; typedef_expression: // deprecated GCC, naming expression type: typedef name = exp; gives a name to the type of an expression TYPEDEF identifier '=' assignment_expression { SemanticError( yylloc, "TYPEDEF expression is deprecated, use typeof(...) instead." ); $$ = nullptr; } | typedef_expression ',' identifier '=' assignment_expression { SemanticError( yylloc, "TYPEDEF expression is deprecated, use typeof(...) instead." ); $$ = nullptr; } ; c_declaration: declaration_specifier declaring_list { $$ = distAttr( $1, $2 ); } | typedef_declaration | typedef_expression // deprecated GCC, naming expression type | sue_declaration_specifier { assert( $1->type ); if ( $1->type->qualifiers.any() ) { // CV qualifiers ? SemanticError( yylloc, "illegal syntax, useless type qualifier(s) in empty declaration." ); $$ = nullptr; } // enums are never empty declarations because there must have at least one enumeration. if ( $1->type->kind == TypeData::AggregateInst && $1->storageClasses.any() ) { // storage class ? SemanticError( yylloc, "illegal syntax, useless storage qualifier(s) in empty aggregate declaration." ); $$ = nullptr; } } ; declaring_list: // A semantic check is required to ensure asm_name only appears on declarations with implicit or explicit static // storage-class variable_declarator asm_name_opt initializer_opt { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); } | variable_type_redeclarator asm_name_opt initializer_opt { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); } | general_function_declarator asm_name_opt { $$ = $1->addAsmName( $2 )->addInitializer( nullptr ); } | general_function_declarator asm_name_opt '=' VOID { $$ = $1->addAsmName( $2 )->addInitializer( new InitializerNode( true ) ); } | declaring_list ',' attribute_list_opt declarator asm_name_opt initializer_opt { $$ = $1->set_last( $4->addQualifiers( $3 )->addAsmName( $5 )->addInitializer( $6 ) ); } ; general_function_declarator: function_type_redeclarator | function_declarator ; declaration_specifier: // type specifier + storage class basic_declaration_specifier | type_declaration_specifier | sue_declaration_specifier | sue_declaration_specifier invalid_types // invalid syntax rule { SemanticError( yylloc, "illegal syntax, expecting ';' at end of \"%s\" declaration.", ast::AggregateDecl::aggrString( $1->type->aggregate.kind ) ); $$ = nullptr; } ; invalid_types: aggregate_key | basic_type_name | indirect_type ; declaration_specifier_nobody: // type specifier + storage class - {...} // Preclude SUE declarations in restricted scopes: // // int f( struct S { int i; } s1, Struct S s2 ) { struct S s3; ... } // // because it is impossible to call f due to name equivalence. basic_declaration_specifier | sue_declaration_specifier_nobody | type_declaration_specifier ; type_specifier: // type specifier basic_type_specifier | sue_type_specifier | type_type_specifier ; type_specifier_nobody: // type specifier - {...} // Preclude SUE declarations in restricted scopes: // // int f( struct S { int i; } s1, Struct S s2 ) { struct S s3; ... } // // because it is impossible to call f due to name equivalence. basic_type_specifier | sue_type_specifier_nobody | type_type_specifier ; type_qualifier_list_opt: // GCC, used in asm_statement // empty { $$ = nullptr; } | type_qualifier_list ; type_qualifier_list: // A semantic check is necessary to ensure a type qualifier is appropriate for the kind of declaration. // // ISO/IEC 9899:1999 Section 6.7.3(4 ) : If the same qualifier appears more than once in the same // specifier-qualifier-list, either directly or via one or more typedefs, the behavior is the same as if it // appeared only once. type_qualifier | type_qualifier_list type_qualifier { $$ = $1->addQualifiers( $2 ); } ; type_qualifier: type_qualifier_name { $$ = DeclarationNode::newFromTypeData( $1 ); } | attribute // trick handles most attribute locations ; type_qualifier_name: CONST { $$ = build_type_qualifier( ast::CV::Const ); } | RESTRICT { $$ = build_type_qualifier( ast::CV::Restrict ); } | VOLATILE { $$ = build_type_qualifier( ast::CV::Volatile ); } | ATOMIC { $$ = build_type_qualifier( ast::CV::Atomic ); } // forall is a CV qualifier because it can appear in places where SC qualifiers are disallowed. // // void foo( forall( T ) T (*)( T ) ); // forward declaration // void bar( static int ); // static disallowed (gcc/CFA) | forall { $$ = build_forall( $1 ); } ; forall: FORALL '(' type_parameter_list ')' // CFA { $$ = $3; } ; declaration_qualifier_list: storage_class_list | type_qualifier_list storage_class_list // remaining OBSOLESCENT (see 2 ) { $$ = $1->addQualifiers( $2 ); } | declaration_qualifier_list type_qualifier_list storage_class_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; storage_class_list: // A semantic check is necessary to ensure a storage class is appropriate for the kind of declaration and that // only one of each is specified, except for inline, which can appear with the others. // // ISO/IEC 9899:1999 Section 6.7.1(2) : At most, one storage-class specifier may be given in the declaration // specifiers in a declaration. storage_class | storage_class_list storage_class { $$ = $1->addQualifiers( $2 ); } ; storage_class: EXTERN { $$ = DeclarationNode::newStorageClass( ast::Storage::Extern ); } | STATIC { $$ = DeclarationNode::newStorageClass( ast::Storage::Static ); } | AUTO { $$ = DeclarationNode::newStorageClass( ast::Storage::Auto ); } | REGISTER { $$ = DeclarationNode::newStorageClass( ast::Storage::Register ); } | THREADLOCALGCC // GCC { $$ = DeclarationNode::newStorageClass( ast::Storage::ThreadLocalGcc ); } | THREADLOCALC11 // C11 { $$ = DeclarationNode::newStorageClass( ast::Storage::ThreadLocalC11 ); } // Put function specifiers here to simplify parsing rules, but separate them semantically. | INLINE // C99 { $$ = DeclarationNode::newFuncSpecifier( ast::Function::Inline ); } | FORTRAN // C99 { $$ = DeclarationNode::newFuncSpecifier( ast::Function::Fortran ); } | NORETURN // C11 { $$ = DeclarationNode::newFuncSpecifier( ast::Function::Noreturn ); } ; basic_type_name: basic_type_name_type { $$ = DeclarationNode::newFromTypeData( $1 ); } ; // Just an intermediate value for conversion. basic_type_name_type: VOID { $$ = build_basic_type( TypeData::Void ); } | BOOL // C99 { $$ = build_basic_type( TypeData::Bool ); } | CHAR { $$ = build_basic_type( TypeData::Char ); } | INT { $$ = build_basic_type( TypeData::Int ); } | INT128 { $$ = build_basic_type( TypeData::Int128 ); } | UINT128 { $$ = addType( build_basic_type( TypeData::Int128 ), build_signedness( TypeData::Unsigned ) ); } | FLOAT { $$ = build_basic_type( TypeData::Float ); } | DOUBLE { $$ = build_basic_type( TypeData::Double ); } | uuFLOAT80 { $$ = build_basic_type( TypeData::uuFloat80 ); } | uuFLOAT128 { $$ = build_basic_type( TypeData::uuFloat128 ); } | uFLOAT16 { $$ = build_basic_type( TypeData::uFloat16 ); } | uFLOAT32 { $$ = build_basic_type( TypeData::uFloat32 ); } | uFLOAT32X { $$ = build_basic_type( TypeData::uFloat32x ); } | uFLOAT64 { $$ = build_basic_type( TypeData::uFloat64 ); } | uFLOAT64X { $$ = build_basic_type( TypeData::uFloat64x ); } | uFLOAT128 { $$ = build_basic_type( TypeData::uFloat128 ); } | DECIMAL32 { SemanticError( yylloc, "_Decimal32 is currently unimplemented." ); $$ = nullptr; } | DECIMAL64 { SemanticError( yylloc, "_Decimal64 is currently unimplemented." ); $$ = nullptr; } | DECIMAL128 { SemanticError( yylloc, "_Decimal128 is currently unimplemented." ); $$ = nullptr; } | COMPLEX // C99 { $$ = build_complex_type( TypeData::Complex ); } | IMAGINARY // C99 { $$ = build_complex_type( TypeData::Imaginary ); } | SIGNED { $$ = build_signedness( TypeData::Signed ); } | UNSIGNED { $$ = build_signedness( TypeData::Unsigned ); } | SHORT { $$ = build_length( TypeData::Short ); } | LONG { $$ = build_length( TypeData::Long ); } | VA_LIST // GCC, __builtin_va_list { $$ = build_builtin_type( TypeData::Valist ); } | AUTO_TYPE { $$ = build_builtin_type( TypeData::AutoType ); } | vtable ; vtable_opt: // empty { $$ = nullptr; } | vtable ; vtable: VTABLE '(' type_name ')' default_opt { $$ = build_vtable_type( $3 ); } ; default_opt: // empty { $$ = nullptr; } | DEFAULT { SemanticError( yylloc, "vtable default is currently unimplemented." ); $$ = nullptr; } ; basic_declaration_specifier: // A semantic check is necessary for conflicting storage classes. basic_type_specifier | declaration_qualifier_list basic_type_specifier { $$ = $2->addQualifiers( $1 ); } | basic_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | basic_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } | basic_declaration_specifier storage_class basic_type_specifier { $$ = $3->addQualifiers( $2 )->addType( $1 ); } ; basic_type_specifier: direct_type // Cannot have type modifiers, e.g., short, long, etc. | type_qualifier_list_opt indirect_type type_qualifier_list_opt { $$ = $2->addQualifiers( $1 )->addQualifiers( $3 ); } ; direct_type: basic_type_name | type_qualifier_list basic_type_name { $$ = $2->addQualifiers( $1 ); } | direct_type type_qualifier { $$ = $1->addQualifiers( $2 ); } | direct_type basic_type_name { $$ = $1->addType( $2 ); } ; indirect_type: TYPEOF '(' type ')' // GCC: typeof( x ) y; { $$ = $3; } | TYPEOF '(' comma_expression ')' // GCC: typeof( a+b ) y; { $$ = DeclarationNode::newTypeof( $3 ); } | BASETYPEOF '(' type ')' // CFA: basetypeof( x ) y; { $$ = DeclarationNode::newTypeof( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ), true ); } | BASETYPEOF '(' comma_expression ')' // CFA: basetypeof( a+b ) y; { $$ = DeclarationNode::newTypeof( $3, true ); } | ZERO_T // CFA { $$ = DeclarationNode::newFromTypeData( build_builtin_type( TypeData::Zero ) ); } | ONE_T // CFA { $$ = DeclarationNode::newFromTypeData( build_builtin_type( TypeData::One ) ); } ; sue_declaration_specifier: // struct, union, enum + storage class + type specifier sue_type_specifier | declaration_qualifier_list sue_type_specifier { $$ = $2->addQualifiers( $1 ); } | sue_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | sue_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; sue_type_specifier: // struct, union, enum + type specifier elaborated_type | type_qualifier_list { if ( $1->type != nullptr && $1->type->forall ) forall = true; } // remember generic type elaborated_type { $$ = $3->addQualifiers( $1 ); } | sue_type_specifier type_qualifier { if ( $2->type != nullptr && $2->type->forall ) forall = true; // remember generic type $$ = $1->addQualifiers( $2 ); } ; sue_declaration_specifier_nobody: // struct, union, enum - {...} + storage class + type specifier sue_type_specifier_nobody | declaration_qualifier_list sue_type_specifier_nobody { $$ = $2->addQualifiers( $1 ); } | sue_declaration_specifier_nobody storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | sue_declaration_specifier_nobody storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; sue_type_specifier_nobody: // struct, union, enum - {...} + type specifier elaborated_type_nobody | type_qualifier_list elaborated_type_nobody { $$ = $2->addQualifiers( $1 ); } | sue_type_specifier_nobody type_qualifier { $$ = $1->addQualifiers( $2 ); } ; type_declaration_specifier: type_type_specifier | declaration_qualifier_list type_type_specifier { $$ = $2->addQualifiers( $1 ); } | type_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | type_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; type_type_specifier: // typedef types type_name { $$ = DeclarationNode::newFromTypeData( $1 ); } | type_qualifier_list type_name { $$ = DeclarationNode::newFromTypeData( $2 )->addQualifiers( $1 ); } | type_type_specifier type_qualifier { $$ = $1->addQualifiers( $2 ); } ; type_name: TYPEDEFname { $$ = build_typedef( $1 ); } | '.' TYPEDEFname { $$ = build_qualified_type( build_global_scope(), build_typedef( $2 ) ); } | type_name '.' TYPEDEFname { $$ = build_qualified_type( $1, build_typedef( $3 ) ); } | typegen_name | '.' typegen_name { $$ = build_qualified_type( build_global_scope(), $2 ); } | type_name '.' typegen_name { $$ = build_qualified_type( $1, $3 ); } ; typegen_name: // CFA TYPEGENname { $$ = build_type_gen( $1, nullptr ); } | TYPEGENname '(' ')' { $$ = build_type_gen( $1, nullptr ); } | TYPEGENname '(' type_list ')' { $$ = build_type_gen( $1, $3 ); } ; elaborated_type: // struct, union, enum aggregate_type | enum_type ; elaborated_type_nobody: // struct, union, enum - {...} aggregate_type_nobody | enum_type_nobody ; // ************************** AGGREGATE ******************************* aggregate_type: // struct, union aggregate_key attribute_list_opt { forall = false; } // reset '{' field_declaration_list_opt '}' type_parameters_opt { $$ = DeclarationNode::newAggregate( $1, nullptr, $7, $5, true )->addQualifiers( $2 ); } | aggregate_key attribute_list_opt identifier { typedefTable.makeTypedef( *$3, forall || typedefTable.getEnclForall() ? TYPEGENname : TYPEDEFname, "aggregate_type: 1" ); forall = false; // reset } '{' field_declaration_list_opt '}' type_parameters_opt { $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); } | aggregate_key attribute_list_opt TYPEDEFname // unqualified type name { typedefTable.makeTypedef( *$3, forall || typedefTable.getEnclForall() ? TYPEGENname : TYPEDEFname, "aggregate_type: 2" ); forall = false; // reset } '{' field_declaration_list_opt '}' type_parameters_opt { DeclarationNode::newFromTypeData( build_typedef( $3 ) ); $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); } | aggregate_key attribute_list_opt TYPEGENname // unqualified type name { typedefTable.makeTypedef( *$3, forall || typedefTable.getEnclForall() ? TYPEGENname : TYPEDEFname, "aggregate_type: 3" ); forall = false; // reset } '{' field_declaration_list_opt '}' type_parameters_opt { DeclarationNode::newFromTypeData( build_type_gen( $3, nullptr ) ); $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); } | aggregate_type_nobody ; type_parameters_opt: // empty { $$ = nullptr; } %prec '}' | '(' type_list ')' { $$ = $2; } ; aggregate_type_nobody: // struct, union - {...} aggregate_key attribute_list_opt identifier { typedefTable.makeTypedef( *$3, forall || typedefTable.getEnclForall() ? TYPEGENname : TYPEDEFname, "aggregate_type_nobody" ); forall = false; // reset $$ = DeclarationNode::newAggregate( $1, $3, nullptr, nullptr, false )->addQualifiers( $2 ); } | aggregate_key attribute_list_opt type_name { forall = false; // reset // Create new generic declaration with same name as previous forward declaration, where the IDENTIFIER is // switched to a TYPEGENname. Link any generic arguments from typegen_name to new generic declaration and // delete newFromTypeGen. if ( $3->kind == TypeData::SymbolicInst && ! $3->symbolic.isTypedef ) { $$ = DeclarationNode::newFromTypeData( $3 )->addQualifiers( $2 ); } else { $$ = DeclarationNode::newAggregate( $1, $3->symbolic.name, $3->symbolic.actuals, nullptr, false )->addQualifiers( $2 ); $3->symbolic.name = nullptr; // copied to $$ $3->symbolic.actuals = nullptr; delete $3; } } ; aggregate_key: aggregate_data | aggregate_control ; aggregate_data: STRUCT vtable_opt { $$ = ast::AggregateDecl::Struct; } | UNION { $$ = ast::AggregateDecl::Union; } | EXCEPTION // CFA { $$ = ast::AggregateDecl::Exception; } ; aggregate_control: // CFA MONITOR { $$ = ast::AggregateDecl::Monitor; } | MUTEX STRUCT { $$ = ast::AggregateDecl::Monitor; } | GENERATOR { $$ = ast::AggregateDecl::Generator; } | MUTEX GENERATOR { SemanticError( yylloc, "monitor generator is currently unimplemented." ); $$ = ast::AggregateDecl::NoAggregate; } | COROUTINE { $$ = ast::AggregateDecl::Coroutine; } | MUTEX COROUTINE { SemanticError( yylloc, "monitor coroutine is currently unimplemented." ); $$ = ast::AggregateDecl::NoAggregate; } | THREAD { $$ = ast::AggregateDecl::Thread; } | MUTEX THREAD { SemanticError( yylloc, "monitor thread is currently unimplemented." ); $$ = ast::AggregateDecl::NoAggregate; } ; field_declaration_list_opt: // empty { $$ = nullptr; } | field_declaration_list_opt field_declaration { $$ = $1 ? $1->set_last( $2 ) : $2; } ; field_declaration: type_specifier field_declaring_list_opt ';' { // printf( "type_specifier1 %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); $$ = fieldDecl( $1, $2 ); // printf( "type_specifier2 %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { // printf( "\tattr %s\n", attr->name.c_str() ); // } // for } | type_specifier field_declaring_list_opt '}' // invalid syntax rule { SemanticError( yylloc, "illegal syntax, expecting ';' at end of previous declaration." ); $$ = nullptr; } | EXTENSION type_specifier field_declaring_list_opt ';' // GCC { $$ = fieldDecl( $2, $3 ); distExt( $$ ); } | STATIC type_specifier field_declaring_list_opt ';' // CFA { SemanticError( yylloc, "STATIC aggregate field qualifier currently unimplemented." ); $$ = nullptr; } | INLINE type_specifier field_abstract_list_opt ';' // CFA { if ( ! $3 ) { // field declarator ? $3 = DeclarationNode::newName( nullptr ); } // if $3->inLine = true; $$ = distAttr( $2, $3 ); // mark all fields in list distInl( $3 ); } | INLINE aggregate_control ';' // CFA { SemanticError( yylloc, "INLINE aggregate control currently unimplemented." ); $$ = nullptr; } | typedef_declaration ';' // CFA | cfa_field_declaring_list ';' // CFA, new style field declaration | EXTENSION cfa_field_declaring_list ';' // GCC { distExt( $2 ); $$ = $2; } // mark all fields in list | INLINE cfa_field_abstract_list ';' // CFA, new style field declaration { $$ = $2; } // mark all fields in list | cfa_typedef_declaration ';' // CFA | static_assert ';' // C11 ; field_declaring_list_opt: // empty { $$ = nullptr; } | field_declarator | field_declaring_list_opt ',' attribute_list_opt field_declarator { $$ = $1->set_last( $4->addQualifiers( $3 ) ); } ; field_declarator: bit_subrange_size // C special case, no field name { $$ = DeclarationNode::newBitfield( $1 ); } | variable_declarator bit_subrange_size_opt // A semantic check is required to ensure bit_subrange only appears on integral types. { $$ = $1->addBitfield( $2 ); } | variable_type_redeclarator bit_subrange_size_opt // A semantic check is required to ensure bit_subrange only appears on integral types. { $$ = $1->addBitfield( $2 ); } | function_type_redeclarator bit_subrange_size_opt // A semantic check is required to ensure bit_subrange only appears on integral types. { $$ = $1->addBitfield( $2 ); } ; field_abstract_list_opt: // empty { $$ = nullptr; } | field_abstract | field_abstract_list_opt ',' attribute_list_opt field_abstract { $$ = $1->set_last( $4->addQualifiers( $3 ) ); } ; field_abstract: // no bit fields variable_abstract_declarator ; cfa_field_declaring_list: // CFA, new style field declaration // bit-fields are handled by C declarations cfa_abstract_declarator_tuple identifier_or_type_name { $$ = $1->addName( $2 ); } | cfa_field_declaring_list ',' identifier_or_type_name { $$ = $1->set_last( $1->cloneType( $3 ) ); } ; cfa_field_abstract_list: // CFA, new style field declaration // bit-fields are handled by C declarations cfa_abstract_declarator_tuple | cfa_field_abstract_list ',' { $$ = $1->set_last( $1->cloneType( 0 ) ); } ; bit_subrange_size_opt: // empty { $$ = nullptr; } | bit_subrange_size ; bit_subrange_size: ':' assignment_expression { $$ = $2; } ; // ************************** ENUMERATION ******************************* enum_type: // anonymous, no type name ENUM attribute_list_opt hide_opt '{' enumerator_list comma_opt '}' { if ( $3 == EnumHiding::Hide ) { SemanticError( yylloc, "illegal syntax, hiding ('!') the enumerator names of an anonymous enumeration means the names are inaccessible." ); $$ = nullptr; } // if $$ = DeclarationNode::newEnum( nullptr, $5, true, false )->addQualifiers( $2 ); } | ENUM enumerator_type attribute_list_opt hide_opt '{' enumerator_list comma_opt '}' { if ( $2 && ($2->storageClasses.val != 0 || $2->type->qualifiers.any()) ) { SemanticError( yylloc, "illegal syntax, storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); } if ( $4 == EnumHiding::Hide ) { SemanticError( yylloc, "illegal syntax, hiding ('!') the enumerator names of an anonymous enumeration means the names are inaccessible." ); $$ = nullptr; } // if $$ = DeclarationNode::newEnum( nullptr, $6, true, true, $2 )->addQualifiers( $3 ); } // named type | ENUM attribute_list_opt identifier { typedefTable.makeTypedef( *$3, "enum_type 1" ); } hide_opt '{' enumerator_list comma_opt '}' { $$ = DeclarationNode::newEnum( $3, $7, true, false, nullptr, $5 )->addQualifiers( $2 ); } | ENUM attribute_list_opt typedef_name hide_opt '{' enumerator_list comma_opt '}' // unqualified type name { $$ = DeclarationNode::newEnum( $3->name, $6, true, false, nullptr, $4 )->addQualifiers( $2 ); } | ENUM enumerator_type attribute_list_opt identifier attribute_list_opt { if ( $2 && ($2->storageClasses.any() || $2->type->qualifiers.val != 0) ) { SemanticError( yylloc, "illegal syntax, storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); } typedefTable.makeTypedef( *$4, "enum_type 2" ); } hide_opt '{' enumerator_list comma_opt '}' { $$ = DeclarationNode::newEnum( $4, $9, true, true, $2, $7 )->addQualifiers( $3 )->addQualifiers( $5 ); } | ENUM enumerator_type attribute_list_opt typedef_name attribute_list_opt hide_opt '{' enumerator_list comma_opt '}' { $$ = DeclarationNode::newEnum( $4->name, $8, true, true, $2, $6 )->addQualifiers( $3 )->addQualifiers( $5 ); } // forward declaration | enum_type_nobody ; enumerator_type: '(' ')' // pure enumeration { $$ = nullptr; } | '(' cfa_abstract_parameter_declaration ')' // typed enumeration { $$ = $2; } ; hide_opt: // empty { $$ = EnumHiding::Visible; } | '!' { $$ = EnumHiding::Hide; } ; enum_type_nobody: // enum - {...} ENUM attribute_list_opt identifier { typedefTable.makeTypedef( *$3, "enum_type_nobody 1" ); $$ = DeclarationNode::newEnum( $3, nullptr, false, false )->addQualifiers( $2 ); } | ENUM attribute_list_opt type_name { typedefTable.makeTypedef( *$3->symbolic.name, "enum_type_nobody 2" ); $$ = DeclarationNode::newEnum( $3->symbolic.name, nullptr, false, false )->addQualifiers( $2 ); } ; enumerator_list: visible_hide_opt identifier_or_type_name enumerator_value_opt { $$ = DeclarationNode::newEnumValueGeneric( $2, $3 ); } | INLINE type_name { $$ = DeclarationNode::newEnumInLine( $2->symbolic.name ); $2->symbolic.name = nullptr; delete $2; } | enumerator_list ',' visible_hide_opt identifier_or_type_name enumerator_value_opt { $$ = $1->set_last( DeclarationNode::newEnumValueGeneric( $4, $5 ) ); } | enumerator_list ',' INLINE type_name { $$ = $1->set_last( DeclarationNode::newEnumInLine( $4->symbolic.name ) ); } ; visible_hide_opt: hide_opt | '^' { $$ = EnumHiding::Visible; } ; enumerator_value_opt: // empty { $$ = nullptr; } | '=' constant_expression { $$ = new InitializerNode( $2 ); } | '=' '{' initializer_list_opt comma_opt '}' { $$ = new InitializerNode( $3, true ); } // | simple_assignment_operator initializer // { $$ = $1 == OperKinds::Assign ? $2 : $2->set_maybeConstructed( false ); } ; // ************************** FUNCTION PARAMETERS ******************************* parameter_list_ellipsis_opt: // empty { $$ = nullptr; } | ELLIPSIS { $$ = nullptr; } | parameter_list | parameter_list ',' ELLIPSIS { $$ = $1->addVarArgs(); } ; parameter_list: // abstract + real parameter_declaration | abstract_parameter_declaration | parameter_list ',' parameter_declaration { $$ = $1->set_last( $3 ); } | parameter_list ',' abstract_parameter_declaration { $$ = $1->set_last( $3 ); } ; cfa_parameter_list_ellipsis_opt: // CFA, abstract + real // empty { $$ = DeclarationNode::newFromTypeData( build_basic_type( TypeData::Void ) ); } | ELLIPSIS { $$ = nullptr; } | cfa_parameter_list | cfa_abstract_parameter_list | cfa_parameter_list ',' cfa_abstract_parameter_list { $$ = $1->set_last( $3 ); } | cfa_parameter_list ',' ELLIPSIS { $$ = $1->addVarArgs(); } | cfa_abstract_parameter_list ',' ELLIPSIS { $$ = $1->addVarArgs(); } ; cfa_parameter_list: // CFA // To obtain LR(1) between cfa_parameter_list and cfa_abstract_tuple, the last cfa_abstract_parameter_list is // factored out from cfa_parameter_list, flattening the rules to get lookahead to the ']'. cfa_parameter_declaration | cfa_abstract_parameter_list ',' cfa_parameter_declaration { $$ = $1->set_last( $3 ); } | cfa_parameter_list ',' cfa_parameter_declaration { $$ = $1->set_last( $3 ); } | cfa_parameter_list ',' cfa_abstract_parameter_list ',' cfa_parameter_declaration { $$ = $1->set_last( $3 )->set_last( $5 ); } ; cfa_abstract_parameter_list: // CFA, new & old style abstract cfa_abstract_parameter_declaration | cfa_abstract_parameter_list ',' cfa_abstract_parameter_declaration { $$ = $1->set_last( $3 ); } ; // Provides optional identifier names (abstract_declarator/variable_declarator), no initialization, different semantics // for typedef name by using type_parameter_redeclarator instead of typedef_redeclarator, and function prototypes. parameter_declaration: // No SUE declaration in parameter list. declaration_specifier_nobody identifier_parameter_declarator default_initializer_opt { $$ = $2->addType( $1 )->addInitializer( $3 ? new InitializerNode( $3 ) : nullptr ); } | declaration_specifier_nobody type_parameter_redeclarator default_initializer_opt { $$ = $2->addType( $1 )->addInitializer( $3 ? new InitializerNode( $3 ) : nullptr ); } ; abstract_parameter_declaration: declaration_specifier_nobody default_initializer_opt { $$ = $1->addInitializer( $2 ? new InitializerNode( $2 ) : nullptr ); } | declaration_specifier_nobody abstract_parameter_declarator default_initializer_opt { $$ = $2->addType( $1 )->addInitializer( $3 ? new InitializerNode( $3 ) : nullptr ); } ; cfa_parameter_declaration: // CFA, new & old style parameter declaration parameter_declaration | cfa_identifier_parameter_declarator_no_tuple identifier_or_type_name default_initializer_opt { $$ = $1->addName( $2 ); } | cfa_abstract_tuple identifier_or_type_name default_initializer_opt // To obtain LR(1), these rules must be duplicated here (see cfa_abstract_declarator). { $$ = $1->addName( $2 ); } | type_qualifier_list cfa_abstract_tuple identifier_or_type_name default_initializer_opt { $$ = $2->addName( $3 )->addQualifiers( $1 ); } | cfa_function_specifier // int f( "int fp()" ); ; cfa_abstract_parameter_declaration: // CFA, new & old style parameter declaration abstract_parameter_declaration | cfa_identifier_parameter_declarator_no_tuple | cfa_abstract_tuple // To obtain LR(1), these rules must be duplicated here (see cfa_abstract_declarator). | type_qualifier_list cfa_abstract_tuple { $$ = $2->addQualifiers( $1 ); } | cfa_abstract_function // int f( "int ()" ); ; // ISO/IEC 9899:1999 Section 6.9.1(6) : "An identifier declared as a typedef name shall not be redeclared as a // parameter." Because the scope of the K&R-style parameter-list sees the typedef first, the following is based only on // identifiers. The ANSI-style parameter-list can redefine a typedef name. identifier_list: // K&R-style parameter list => no types identifier { $$ = DeclarationNode::newName( $1 ); } | identifier_list ',' identifier { $$ = $1->set_last( DeclarationNode::newName( $3 ) ); } ; type_no_function: // sizeof, alignof, cast (constructor) cfa_abstract_declarator_tuple // CFA | type_specifier // cannot be type_specifier_nobody, e.g., (struct S {}){} is a thing | type_specifier abstract_declarator { $$ = $2->addType( $1 ); } ; type: // typeof, assertion type_no_function | cfa_abstract_function // CFA ; initializer_opt: // empty { $$ = nullptr; } | simple_assignment_operator initializer { $$ = $1 == OperKinds::Assign ? $2 : $2->set_maybeConstructed( false ); } | '=' VOID { $$ = new InitializerNode( true ); } | '{' initializer_list_opt comma_opt '}' { $$ = new InitializerNode( $2, true ); } ; initializer: assignment_expression { $$ = new InitializerNode( $1 ); } | '{' initializer_list_opt comma_opt '}' { $$ = new InitializerNode( $2, true ); } ; initializer_list_opt: // empty { $$ = nullptr; } | initializer | designation initializer { $$ = $2->set_designators( $1 ); } | initializer_list_opt ',' initializer { $$ = $1->set_last( $3 ); } | initializer_list_opt ',' designation initializer { $$ = $1->set_last( $4->set_designators( $3 ) ); } ; // There is an unreconcileable parsing problem between C99 and CFA with respect to designators. The problem is use of // '=' to separator the designator from the initializer value, as in: // // int x[10] = { [1] = 3 }; // // The string "[1] = 3" can be parsed as a designator assignment or a tuple assignment. To disambiguate this case, CFA // changes the syntax from "=" to ":" as the separator between the designator and initializer. GCC does uses ":" for // field selection. The optional use of the "=" in GCC, or in this case ":", cannot be supported either due to // shift/reduce conflicts designation: designator_list ':' // C99, CFA uses ":" instead of "=" | identifier_at ':' // GCC, field name { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } ; designator_list: // C99 designator | designator_list designator { $$ = $1->set_last( $2 ); } //| designator_list designator { $$ = new ExpressionNode( $1, $2 ); } ; designator: '.' identifier_at // C99, field name { $$ = new ExpressionNode( build_varref( yylloc, $2 ) ); } | '[' push assignment_expression pop ']' // C99, single array element // assignment_expression used instead of constant_expression because of shift/reduce conflicts with tuple. { $$ = $3; } | '[' push subrange pop ']' // CFA, multiple array elements { $$ = $3; } | '[' push constant_expression ELLIPSIS constant_expression pop ']' // GCC, multiple array elements { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $3 ), maybeMoveBuild( $5 ) ) ); } | '.' '[' push field_name_list pop ']' // CFA, tuple field selector { $$ = $4; } ; // The CFA type system is based on parametric polymorphism, the ability to declare functions with type parameters, // rather than an object-oriented type system. This required four groups of extensions: // // Overloading: function, data, and operator identifiers may be overloaded. // // Type declarations: "otype" is used to generate new types for declaring objects. Similarly, "dtype" is used for object // and incomplete types, and "ftype" is used for function types. Type declarations with initializers provide // definitions of new types. Type declarations with storage class "extern" provide opaque types. // // Polymorphic functions: A forall clause declares a type parameter. The corresponding argument is inferred at the call // site. A polymorphic function is not a template; it is a function, with an address and a type. // // Specifications and Assertions: Specifications are collections of declarations parameterized by one or more // types. They serve many of the purposes of abstract classes, and specification hierarchies resemble subclass // hierarchies. Unlike classes, they can define relationships between types. Assertions declare that a type or // types provide the operations declared by a specification. Assertions are normally used to declare requirements // on type arguments of polymorphic functions. type_parameter_list: // CFA type_parameter | type_parameter_list ',' type_parameter { $$ = $1->set_last( $3 ); } ; type_initializer_opt: // CFA // empty { $$ = nullptr; } | '=' type { $$ = $2; } ; type_parameter: // CFA type_class identifier_or_type_name { typedefTable.addToScope( *$2, TYPEDEFname, "type_parameter 1" ); if ( $1 == ast::TypeDecl::Otype ) { SemanticError( yylloc, "otype keyword is deprecated, use T " ); } if ( $1 == ast::TypeDecl::Dtype ) { SemanticError( yylloc, "dtype keyword is deprecated, use T &" ); } if ( $1 == ast::TypeDecl::Ttype ) { SemanticError( yylloc, "ttype keyword is deprecated, use T ..." ); } } type_initializer_opt assertion_list_opt { $$ = DeclarationNode::newTypeParam( $1, $2 )->addTypeInitializer( $4 )->addAssertions( $5 ); } | identifier_or_type_name new_type_class { typedefTable.addToScope( *$1, TYPEDEFname, "type_parameter 2" ); } type_initializer_opt assertion_list_opt { $$ = DeclarationNode::newTypeParam( $2, $1 )->addTypeInitializer( $4 )->addAssertions( $5 ); } | '[' identifier_or_type_name ']' { typedefTable.addToScope( *$2, TYPEDIMname, "type_parameter 3" ); $$ = DeclarationNode::newTypeParam( ast::TypeDecl::Dimension, $2 ); } // | type_specifier identifier_parameter_declarator | assertion_list { $$ = DeclarationNode::newTypeParam( ast::TypeDecl::Dtype, new string( DeclarationNode::anonymous.newName() ) )->addAssertions( $1 ); } | ENUM '(' identifier_or_type_name ')' identifier_or_type_name new_type_class type_initializer_opt assertion_list_opt { typedefTable.addToScope( *$3, TYPEDIMname, "type_parameter 4" ); typedefTable.addToScope( *$5, TYPEDIMname, "type_parameter 5" ); $$ = DeclarationNode::newTypeParam( $6, $5 )->addTypeInitializer( $7 )->addAssertions( $8 ); } ; new_type_class: // CFA // empty { $$ = ast::TypeDecl::Otype; } | '&' { $$ = ast::TypeDecl::Dtype; } | '*' { $$ = ast::TypeDecl::DStype; } // Dtype + sized // | '(' '*' ')' // Gregor made me do it // { $$ = ast::TypeDecl::Ftype; } | ELLIPSIS { $$ = ast::TypeDecl::Ttype; } ; type_class: // CFA OTYPE { $$ = ast::TypeDecl::Otype; } | DTYPE { $$ = ast::TypeDecl::Dtype; } | FTYPE { $$ = ast::TypeDecl::Ftype; } | TTYPE { $$ = ast::TypeDecl::Ttype; } ; assertion_list_opt: // CFA // empty { $$ = nullptr; } | assertion_list ; assertion_list: // CFA assertion | assertion_list assertion { $$ = $1->set_last( $2 ); } ; assertion: // CFA '|' identifier_or_type_name '(' type_list ')' { $$ = DeclarationNode::newTraitUse( $2, $4 ); } | '|' '{' push trait_declaration_list pop '}' { $$ = $4; } // | '|' '(' push type_parameter_list pop ')' '{' push trait_declaration_list pop '}' '(' type_list ')' // { SemanticError( yylloc, "Generic data-type assertion is currently unimplemented." ); $$ = nullptr; } ; type_list: // CFA type { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } | assignment_expression | type_list ',' type { $$ = $1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) ); } | type_list ',' assignment_expression { $$ = $1->set_last( $3 ); } ; type_declaring_list: // CFA OTYPE type_declarator { $$ = $2; } | storage_class_list OTYPE type_declarator { $$ = $3->addQualifiers( $1 ); } | type_declaring_list ',' type_declarator { $$ = $1->set_last( $3->copySpecifiers( $1 ) ); } ; type_declarator: // CFA type_declarator_name assertion_list_opt { $$ = $1->addAssertions( $2 ); } | type_declarator_name assertion_list_opt '=' type { $$ = $1->addAssertions( $2 )->addType( $4 ); } ; type_declarator_name: // CFA identifier_or_type_name { typedefTable.addToEnclosingScope( *$1, TYPEDEFname, "type_declarator_name 1" ); $$ = DeclarationNode::newTypeDecl( $1, nullptr ); } | identifier_or_type_name '(' type_parameter_list ')' { typedefTable.addToEnclosingScope( *$1, TYPEGENname, "type_declarator_name 2" ); $$ = DeclarationNode::newTypeDecl( $1, $3 ); } ; trait_specifier: // CFA TRAIT identifier_or_type_name '(' type_parameter_list ')' '{' '}' { SemanticWarning( yylloc, Warning::DeprecTraitSyntax ); $$ = DeclarationNode::newTrait( $2, $4, nullptr ); } | forall TRAIT identifier_or_type_name '{' '}' // alternate { $$ = DeclarationNode::newTrait( $3, $1, nullptr ); } | TRAIT identifier_or_type_name '(' type_parameter_list ')' '{' push trait_declaration_list pop '}' { SemanticWarning( yylloc, Warning::DeprecTraitSyntax ); $$ = DeclarationNode::newTrait( $2, $4, $8 ); } | forall TRAIT identifier_or_type_name '{' push trait_declaration_list pop '}' // alternate { $$ = DeclarationNode::newTrait( $3, $1, $6 ); } ; trait_declaration_list: // CFA trait_declaration | trait_declaration_list pop push trait_declaration { $$ = $1->set_last( $4 ); } ; trait_declaration: // CFA cfa_trait_declaring_list ';' | trait_declaring_list ';' ; cfa_trait_declaring_list: // CFA cfa_variable_specifier | cfa_function_specifier | cfa_trait_declaring_list pop ',' push identifier_or_type_name { $$ = $1->set_last( $1->cloneType( $5 ) ); } ; trait_declaring_list: // CFA type_specifier declarator { $$ = $2->addType( $1 ); } | trait_declaring_list pop ',' push declarator { $$ = $1->set_last( $1->cloneBaseType( $5 ) ); } ; // **************************** EXTERNAL DEFINITIONS ***************************** translation_unit: // empty, input file | external_definition_list { parseTree = parseTree ? parseTree->set_last( $1 ) : $1; } ; external_definition_list: push external_definition pop { $$ = $2; } | external_definition_list push external_definition pop { $$ = $1 ? $1->set_last( $3 ) : $3; } ; external_definition_list_opt: // empty { $$ = nullptr; } | external_definition_list ; up: { typedefTable.up( forall ); forall = false; } ; down: { typedefTable.down(); } ; external_definition: DIRECTIVE { $$ = DeclarationNode::newDirectiveStmt( new StatementNode( build_directive( yylloc, $1 ) ) ); } | declaration { // Variable declarations of anonymous types requires creating a unique type-name across multiple translation // unit, which is a dubious task, especially because C uses name rather than structural typing; hence it is // disallowed at the moment. if ( $1->linkage == ast::Linkage::Cforall && ! $1->storageClasses.is_static && $1->type && $1->type->kind == TypeData::AggregateInst ) { if ( $1->type->aggInst.aggregate->aggregate.anon ) { SemanticError( yylloc, "extern anonymous aggregate is currently unimplemented." ); $$ = nullptr; } } } | IDENTIFIER IDENTIFIER { IdentifierBeforeIdentifier( *$1.str, *$2.str, " declaration" ); $$ = nullptr; } | IDENTIFIER type_qualifier // invalid syntax rule { IdentifierBeforeType( *$1.str, "type qualifier" ); $$ = nullptr; } | IDENTIFIER storage_class // invalid syntax rule { IdentifierBeforeType( *$1.str, "storage class" ); $$ = nullptr; } | IDENTIFIER basic_type_name // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } | IDENTIFIER TYPEDEFname // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } | IDENTIFIER TYPEGENname // invalid syntax rule { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; } | external_function_definition | EXTENSION external_definition // GCC, multiple __extension__ allowed, meaning unknown { distExt( $2 ); // mark all fields in list $$ = $2; } | ASM '(' string_literal ')' ';' // GCC, global assembler statement { $$ = DeclarationNode::newAsmStmt( new StatementNode( build_asm( yylloc, false, $3, nullptr ) ) ); } | EXTERN STRINGliteral { linkageStack.push( linkage ); // handle nested extern "C"/"Cforall" linkage = ast::Linkage::update( yylloc, linkage, $2 ); } up external_definition down { linkage = linkageStack.top(); linkageStack.pop(); $$ = $5; } | EXTERN STRINGliteral // C++-style linkage specifier { linkageStack.push( linkage ); // handle nested extern "C"/"Cforall" linkage = ast::Linkage::update( yylloc, linkage, $2 ); } '{' up external_definition_list_opt down '}' { linkage = linkageStack.top(); linkageStack.pop(); $$ = $6; } // global distribution | type_qualifier_list { if ( $1->type->qualifiers.any() ) { SemanticError( yylloc, "illegal syntax, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } if ( $1->type->forall ) forall = true; // remember generic type } '{' up external_definition_list_opt down '}' // CFA, namespace { distQual( $5, $1 ); forall = false; $$ = $5; } | declaration_qualifier_list { if ( $1->type && $1->type->qualifiers.any() ) { SemanticError( yylloc, "illegal syntax, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } if ( $1->type && $1->type->forall ) forall = true; // remember generic type } '{' up external_definition_list_opt down '}' // CFA, namespace { distQual( $5, $1 ); forall = false; $$ = $5; } | declaration_qualifier_list type_qualifier_list { if ( ($1->type && $1->type->qualifiers.any()) || ($2->type && $2->type->qualifiers.any()) ) { SemanticError( yylloc, "illegal syntax, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } if ( ($1->type && $1->type->forall) || ($2->type && $2->type->forall) ) forall = true; // remember generic type } '{' up external_definition_list_opt down '}' // CFA, namespace { distQual( $6, $1->addQualifiers( $2 ) ); forall = false; $$ = $6; } | ';' // empty declaration { $$ = nullptr; } ; external_function_definition: function_definition // These rules are a concession to the "implicit int" type_specifier because there is a significant amount of // legacy code with global functions missing the type-specifier for the return type, and assuming "int". // Parsing is possible because function_definition does not appear in the context of an expression (nested // functions preclude this concession, i.e., all nested function must have a return type). A function prototype // declaration must still have a type_specifier. OBSOLESCENT (see 1) | function_declarator compound_statement { $$ = $1->addFunctionBody( $2 ); } | KR_function_declarator KR_parameter_list_opt compound_statement { $$ = $1->addOldDeclList( $2 )->addFunctionBody( $3 ); } ; with_clause_opt: // empty { $$ = nullptr; forall = false; } | WITH '(' type_list ')' attribute_list_opt // support scoped enumeration { $$ = $3; forall = false; if ( $5 ) { SemanticError( yylloc, "illegal syntax, attributes cannot be associated with function body. Move attribute(s) before \"with\" clause." ); $$ = nullptr; } // if } ; function_definition: cfa_function_declaration with_clause_opt compound_statement // CFA { // Add the function body to the last identifier in the function definition list, i.e., foo3: // [const double] foo1(), foo2( int ), foo3( double ) { return 3.0; } $1->get_last()->addFunctionBody( $3, $2 ); $$ = $1; } | declaration_specifier function_declarator with_clause_opt compound_statement { rebindForall( $1, $2 ); $$ = $2->addFunctionBody( $4, $3 )->addType( $1 ); } | declaration_specifier function_type_redeclarator with_clause_opt compound_statement { rebindForall( $1, $2 ); $$ = $2->addFunctionBody( $4, $3 )->addType( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | type_qualifier_list function_declarator with_clause_opt compound_statement { $$ = $2->addFunctionBody( $4, $3 )->addQualifiers( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | declaration_qualifier_list function_declarator with_clause_opt compound_statement { $$ = $2->addFunctionBody( $4, $3 )->addQualifiers( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | declaration_qualifier_list type_qualifier_list function_declarator with_clause_opt compound_statement { $$ = $3->addFunctionBody( $5, $4 )->addQualifiers( $2 )->addQualifiers( $1 ); } // Old-style K&R function definition, OBSOLESCENT (see 4) | declaration_specifier KR_function_declarator KR_parameter_list_opt with_clause_opt compound_statement { rebindForall( $1, $2 ); $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addType( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | type_qualifier_list KR_function_declarator KR_parameter_list_opt with_clause_opt compound_statement { $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addQualifiers( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | declaration_qualifier_list KR_function_declarator KR_parameter_list_opt with_clause_opt compound_statement { $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addQualifiers( $1 ); } // handles default int return type, OBSOLESCENT (see 1) | declaration_qualifier_list type_qualifier_list KR_function_declarator KR_parameter_list_opt with_clause_opt compound_statement { $$ = $3->addOldDeclList( $4 )->addFunctionBody( $6, $5 )->addQualifiers( $2 )->addQualifiers( $1 ); } ; declarator: variable_declarator | variable_type_redeclarator | function_declarator | function_type_redeclarator ; subrange: constant_expression '~' constant_expression // CFA, integer subrange { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } ; // **************************** ASM ***************************** asm_name_opt: // GCC // empty { $$ = nullptr; } | ASM '(' string_literal ')' attribute_list_opt { DeclarationNode * name = new DeclarationNode(); name->asmName = maybeMoveBuild( $3 ); $$ = name->addQualifiers( $5 ); } ; // **************************** ATTRIBUTE ***************************** attribute_list_opt: // GCC // empty { $$ = nullptr; } | attribute_list ; attribute_list: // GCC attribute | attribute_list attribute { $$ = $2->addQualifiers( $1 ); } ; attribute: // GCC ATTRIBUTE '(' '(' attribute_name_list ')' ')' { $$ = $4; } | ATTRIBUTE '(' attribute_name_list ')' // CFA { $$ = $3; } | ATTR '(' attribute_name_list ')' // CFA { $$ = $3; } ; attribute_name_list: // GCC attribute_name | attribute_name_list ',' attribute_name { $$ = $3->addQualifiers( $1 ); } ; attribute_name: // GCC // empty { $$ = nullptr; } | attr_name { $$ = DeclarationNode::newAttribute( $1 ); } | attr_name '(' argument_expression_list_opt ')' { $$ = DeclarationNode::newAttribute( $1, $3 ); } ; attr_name: // GCC identifier_or_type_name | FALLTHROUGH { $$ = Token{ new string( "fallthrough" ), { nullptr, -1 } }; } | CONST { $$ = Token{ new string( "__const__" ), { nullptr, -1 } }; } ; // ============================================================================ // The following sections are a series of grammar patterns used to parse declarators. Multiple patterns are necessary // because the type of an identifier in wrapped around the identifier in the same form as its usage in an expression, as // in: // // int (*f())[10] { ... }; // ... (*f())[3] += 1; // definition mimics usage // // Because these patterns are highly recursive, changes at a lower level in the recursion require copying some or all of // the pattern. Each of these patterns has some subtle variation to ensure correct syntax in a particular context. // ============================================================================ // ---------------------------------------------------------------------------- // The set of valid declarators before a compound statement for defining a function is less than the set of declarators // to define a variable or function prototype, e.g.: // // valid declaration invalid definition // ----------------- ------------------ // int f; int f {} // int *f; int *f {} // int f[10]; int f[10] {} // int (*f)(int); int (*f)(int) {} // // To preclude this syntactic anomaly requires separating the grammar rules for variable and function declarators, hence // variable_declarator and function_declarator. // ---------------------------------------------------------------------------- // This pattern parses a declaration of a variable that is not redefining a typedef name. The pattern precludes // declaring an array of functions versus a pointer to an array of functions. paren_identifier: identifier_at { $$ = DeclarationNode::newName( $1 ); } | '?' identifier // { SemanticError( yylloc, "keyword parameter is currently unimplemented." ); $$ = nullptr; } { $$ = DeclarationNode::newName( $2 ); } | '(' paren_identifier ')' // redundant parenthesis { $$ = $2; } ; variable_declarator: paren_identifier attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | variable_ptr | variable_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | variable_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; variable_ptr: ptrref_operator variable_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list variable_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' variable_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } | '(' attribute_list variable_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } ; variable_array: paren_identifier array_dimension { $$ = $1->addArray( $2 ); } | '(' variable_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' attribute_list variable_ptr ')' array_dimension { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' variable_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' attribute_list variable_array ')' multi_array_dimension // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' variable_array ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list variable_array ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; variable_function: '(' variable_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' attribute_list variable_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $3->addQualifiers( $2 )->addParamList( $6 ); } | '(' variable_function ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list variable_function ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; // This pattern parses a function declarator that is not redefining a typedef name. For non-nested functions, there is // no context where a function definition can redefine a typedef name, i.e., the typedef and function name cannot exist // is the same scope. The pattern precludes returning arrays and functions versus pointers to arrays and functions. function_declarator: function_no_ptr attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | function_ptr | function_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; function_no_ptr: paren_identifier '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $3 ); } | '(' function_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $2->addParamList( $5 ); } | '(' attribute_list function_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $3->addQualifiers( $2 )->addParamList( $6 ); } | '(' function_no_ptr ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list function_no_ptr ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; function_ptr: ptrref_operator function_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list function_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' function_ptr ')' attribute_list_opt { $$ = $2->addQualifiers( $4 ); } | '(' attribute_list function_ptr ')' attribute_list_opt { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } ; function_array: '(' function_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' attribute_list function_ptr ')' array_dimension { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' function_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' attribute_list function_array ')' multi_array_dimension // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' function_array ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list function_array ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; // This pattern parses an old-style K&R function declarator (OBSOLESCENT, see 4) // // f( a, b, c ) int a, *b, c[]; {} // // that is not redefining a typedef name (see function_declarator for additional comments). The pattern precludes // returning arrays and functions versus pointers to arrays and functions. KR_function_declarator: KR_function_no_ptr | KR_function_ptr | KR_function_array ; KR_function_no_ptr: paren_identifier '(' identifier_list ')' // function_declarator handles empty parameter { $$ = $1->addIdList( $3 ); } | '(' KR_function_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $2->addParamList( $5 ); } | '(' attribute_list KR_function_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $3->addQualifiers( $2 )->addParamList( $6 ); } | '(' KR_function_no_ptr ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list KR_function_no_ptr ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; KR_function_ptr: ptrref_operator KR_function_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list KR_function_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' KR_function_ptr ')' { $$ = $2; } | '(' attribute_list KR_function_ptr ')' { $$ = $3->addQualifiers( $2 ); } ; KR_function_array: '(' KR_function_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' attribute_list KR_function_ptr ')' array_dimension { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' KR_function_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' attribute_list KR_function_array ')' multi_array_dimension // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' KR_function_array ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list KR_function_array ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; // This pattern parses a declaration for a variable that redefines a type name, e.g.: // // typedef int foo; // { // int foo; // redefine typedef name in new scope // } paren_type: typedef_name { // hide type name in enclosing scope by variable name typedefTable.addToEnclosingScope( *$1->name, IDENTIFIER, "paren_type" ); } | '(' paren_type ')' { $$ = $2; } ; variable_type_redeclarator: paren_type attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | variable_type_ptr | variable_type_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | variable_type_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; variable_type_ptr: ptrref_operator variable_type_redeclarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list variable_type_redeclarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' variable_type_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } | '(' attribute_list variable_type_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } ; variable_type_array: paren_type array_dimension { $$ = $1->addArray( $2 ); } | '(' variable_type_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' attribute_list variable_type_ptr ')' array_dimension { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' variable_type_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' attribute_list variable_type_array ')' multi_array_dimension // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' variable_type_array ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list variable_type_array ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; variable_type_function: '(' variable_type_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' attribute_list variable_type_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $3->addQualifiers( $2 )->addParamList( $6 ); } | '(' variable_type_function ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list variable_type_function ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; // This pattern parses a declaration for a function prototype that redefines a type name. It precludes declaring an // array of functions versus a pointer to an array of functions, and returning arrays and functions versus pointers to // arrays and functions. function_type_redeclarator: function_type_no_ptr attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | function_type_ptr | function_type_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; function_type_no_ptr: paren_type '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $3 ); } | '(' function_type_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $2->addParamList( $5 ); } | '(' attribute_list function_type_ptr ')' '(' parameter_list_ellipsis_opt ')' { $$ = $3->addQualifiers( $2 )->addParamList( $6 ); } | '(' function_type_no_ptr ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list function_type_no_ptr ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; function_type_ptr: ptrref_operator function_type_redeclarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list function_type_redeclarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' function_type_ptr ')' attribute_list_opt { $$ = $2->addQualifiers( $4 ); } | '(' attribute_list function_type_ptr ')' attribute_list_opt { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } ; function_type_array: '(' function_type_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' attribute_list function_type_ptr ')' array_dimension { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' function_type_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' attribute_list function_type_array ')' multi_array_dimension // redundant parenthesis { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } | '(' function_type_array ')' // redundant parenthesis { $$ = $2; } | '(' attribute_list function_type_array ')' // redundant parenthesis { $$ = $3->addQualifiers( $2 ); } ; // This pattern parses a declaration for a parameter variable of a function prototype or actual that is not redefining a // typedef name and allows the C99 array options, which can only appear in a parameter list. The pattern precludes // declaring an array of functions versus a pointer to an array of functions, and returning arrays and functions versus // pointers to arrays and functions. identifier_parameter_declarator: paren_identifier attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | '&' MUTEX paren_identifier attribute_list_opt { $$ = $3->addPointer( DeclarationNode::newPointer( DeclarationNode::newFromTypeData( build_type_qualifier( ast::CV::Mutex ) ), OperKinds::AddressOf ) )->addQualifiers( $4 ); } | identifier_parameter_ptr | identifier_parameter_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | identifier_parameter_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; identifier_parameter_ptr: ptrref_operator identifier_parameter_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list identifier_parameter_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' identifier_parameter_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } ; identifier_parameter_array: paren_identifier array_parameter_dimension { $$ = $1->addArray( $2 ); } | '(' identifier_parameter_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' identifier_parameter_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' identifier_parameter_array ')' // redundant parenthesis { $$ = $2; } ; identifier_parameter_function: paren_identifier '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $3 ); } | '(' identifier_parameter_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' identifier_parameter_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a declaration for a parameter variable or function prototype that is redefining a typedef name, // e.g.: // // typedef int foo; // forall( otype T ) struct foo; // int f( int foo ); // redefine typedef name in new scope // // and allows the C99 array options, which can only appear in a parameter list. type_parameter_redeclarator: typedef_name attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | '&' MUTEX typedef_name attribute_list_opt { $$ = $3->addPointer( DeclarationNode::newPointer( DeclarationNode::newFromTypeData( build_type_qualifier( ast::CV::Mutex ) ), OperKinds::AddressOf ) )->addQualifiers( $4 ); } | type_parameter_ptr | type_parameter_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | type_parameter_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; typedef_name: TYPEDEFname { $$ = DeclarationNode::newName( $1 ); } | TYPEGENname { $$ = DeclarationNode::newName( $1 ); } ; type_parameter_ptr: ptrref_operator type_parameter_redeclarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list type_parameter_redeclarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' type_parameter_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } ; type_parameter_array: typedef_name array_parameter_dimension { $$ = $1->addArray( $2 ); } | '(' type_parameter_ptr ')' array_parameter_dimension { $$ = $2->addArray( $4 ); } ; type_parameter_function: typedef_name '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $3 ); } | '(' type_parameter_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } ; // This pattern parses a declaration of an abstract variable or function prototype, i.e., there is no identifier to // which the type applies, e.g.: // // sizeof( int ); // sizeof( int * ); // sizeof( int [10] ); // sizeof( int (*)() ); // sizeof( int () ); // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. abstract_declarator: abstract_ptr | abstract_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | abstract_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; abstract_ptr: ptrref_operator { $$ = DeclarationNode::newPointer( nullptr, $1 ); } | ptrref_operator type_qualifier_list { $$ = DeclarationNode::newPointer( $2, $1 ); } | ptrref_operator abstract_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list abstract_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' abstract_ptr ')' attribute_list_opt { $$ = $2->addQualifiers( $4 ); } ; abstract_array: array_dimension | '(' abstract_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' abstract_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' abstract_array ')' // redundant parenthesis { $$ = $2; } ; abstract_function: '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = DeclarationNode::newFunction( nullptr, nullptr, $2, nullptr ); } | '(' abstract_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' abstract_function ')' // redundant parenthesis { $$ = $2; } ; array_dimension: // Only the first dimension can be empty. '[' ']' { $$ = DeclarationNode::newArray( nullptr, nullptr, false ); } | '[' ']' multi_array_dimension { $$ = DeclarationNode::newArray( nullptr, nullptr, false )->addArray( $3 ); } // Cannot use constant_expression because of tuples => semantic check | '[' push assignment_expression pop ',' comma_expression ']' // CFA { $$ = DeclarationNode::newArray( $3, nullptr, false )->addArray( DeclarationNode::newArray( $6, nullptr, false ) ); } // { SemanticError( yylloc, "New array dimension is currently unimplemented." ); $$ = nullptr; } // If needed, the following parses and does not use comma_expression, so the array structure can be built. // | '[' push assignment_expression pop ',' push array_dimension_list pop ']' // CFA | '[' push array_type_list pop ']' // CFA { $$ = DeclarationNode::newArray( $3, nullptr, false ); } | multi_array_dimension ; // array_dimension_list: // assignment_expression // | array_dimension_list ',' assignment_expression // ; array_type_list: basic_type_name { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } | type_name { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } | assignment_expression upupeq assignment_expression | array_type_list ',' basic_type_name { $$ = $1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) ); } | array_type_list ',' type_name { $$ = $1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) ); } | array_type_list ',' assignment_expression upupeq assignment_expression ; upupeq: '~' { $$ = OperKinds::LThan; } | ErangeUpEq { $$ = OperKinds::LEThan; } ; multi_array_dimension: '[' push assignment_expression pop ']' { $$ = DeclarationNode::newArray( $3, nullptr, false ); } | '[' push '*' pop ']' // C99 { $$ = DeclarationNode::newVarArray( 0 ); } | multi_array_dimension '[' push assignment_expression pop ']' { $$ = $1->addArray( DeclarationNode::newArray( $4, nullptr, false ) ); } | multi_array_dimension '[' push '*' pop ']' // C99 { $$ = $1->addArray( DeclarationNode::newVarArray( 0 ) ); } ; // This pattern parses a declaration of a parameter abstract variable or function prototype, i.e., there is no // identifier to which the type applies, e.g.: // // int f( int ); // not handled here // int f( int * ); // abstract function-prototype parameter; no parameter name specified // int f( int (*)() ); // abstract function-prototype parameter; no parameter name specified // int f( int (int) ); // abstract function-prototype parameter; no parameter name specified // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. In addition, the pattern handles the special meaning of // parenthesis around a typedef name: // // ISO/IEC 9899:1999 Section 6.7.5.3(11) : "In a parameter declaration, a single typedef name in // parentheses is taken to be an abstract declarator that specifies a function with a single parameter, // not as redundant parentheses around the identifier." // // For example: // // typedef float T; // int f( int ( T [5] ) ); // see abstract_parameter_declarator // int g( int ( T ( int ) ) ); // see abstract_parameter_declarator // int f( int f1( T a[5] ) ); // see identifier_parameter_declarator // int g( int g1( T g2( int p ) ) ); // see identifier_parameter_declarator // // In essence, a '(' immediately to the left of typedef name, T, is interpreted as starting a parameter type list, and // not as redundant parentheses around a redeclaration of T. Finally, the pattern also precludes declaring an array of // functions versus a pointer to an array of functions, and returning arrays and functions versus pointers to arrays and // functions. abstract_parameter_declarator_opt: // empty { $$ = nullptr; } | abstract_parameter_declarator ; abstract_parameter_declarator: abstract_parameter_ptr | '&' MUTEX attribute_list_opt { $$ = DeclarationNode::newPointer( DeclarationNode::newFromTypeData( build_type_qualifier( ast::CV::Mutex ) ), OperKinds::AddressOf )->addQualifiers( $3 ); } | abstract_parameter_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | abstract_parameter_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; abstract_parameter_ptr: ptrref_operator { $$ = DeclarationNode::newPointer( nullptr, $1 ); } | ptrref_operator type_qualifier_list { $$ = DeclarationNode::newPointer( $2, $1 ); } | ptrref_operator abstract_parameter_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list abstract_parameter_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' abstract_parameter_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } ; abstract_parameter_array: array_parameter_dimension | '(' abstract_parameter_ptr ')' array_parameter_dimension { $$ = $2->addArray( $4 ); } | '(' abstract_parameter_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' abstract_parameter_array ')' // redundant parenthesis { $$ = $2; } ; abstract_parameter_function: '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = DeclarationNode::newFunction( nullptr, nullptr, $2, nullptr ); } | '(' abstract_parameter_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' abstract_parameter_function ')' // redundant parenthesis { $$ = $2; } ; array_parameter_dimension: // Only the first dimension can be empty or have qualifiers. array_parameter_1st_dimension | array_parameter_1st_dimension multi_array_dimension { $$ = $1->addArray( $2 ); } | multi_array_dimension ; // The declaration of an array parameter has additional syntax over arrays in normal variable declarations: // // ISO/IEC 9899:1999 Section 6.7.5.2(1) : "The optional type qualifiers and the keyword static shall appear only in // a declaration of a function parameter with an array type, and then only in the outermost array type derivation." array_parameter_1st_dimension: '[' ']' { $$ = DeclarationNode::newArray( nullptr, nullptr, false ); } // multi_array_dimension handles the '[' '*' ']' case | '[' push type_qualifier_list '*' pop ']' // remaining C99 { $$ = DeclarationNode::newVarArray( $3 ); } | '[' push type_qualifier_list pop ']' { $$ = DeclarationNode::newArray( nullptr, $3, false ); } // multi_array_dimension handles the '[' assignment_expression ']' case | '[' push type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $4, $3, false ); } | '[' push STATIC type_qualifier_list_opt assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $4, true ); } | '[' push type_qualifier_list STATIC assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $3, true ); } ; // This pattern parses a declaration of an abstract variable, but does not allow "int ()" for a function pointer. // // struct S { // int; // int *; // int [10]; // int (*)(); // }; variable_abstract_declarator: variable_abstract_ptr | variable_abstract_array attribute_list_opt { $$ = $1->addQualifiers( $2 ); } | variable_abstract_function attribute_list_opt { $$ = $1->addQualifiers( $2 ); } ; variable_abstract_ptr: ptrref_operator { $$ = DeclarationNode::newPointer( nullptr, $1 ); } | ptrref_operator type_qualifier_list { $$ = DeclarationNode::newPointer( $2, $1 ); } | ptrref_operator variable_abstract_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | ptrref_operator type_qualifier_list variable_abstract_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } | '(' variable_abstract_ptr ')' attribute_list_opt // redundant parenthesis { $$ = $2->addQualifiers( $4 ); } ; variable_abstract_array: array_dimension | '(' variable_abstract_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' variable_abstract_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' variable_abstract_array ')' // redundant parenthesis { $$ = $2; } ; variable_abstract_function: '(' variable_abstract_ptr ')' '(' parameter_list_ellipsis_opt ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $5 ); } | '(' variable_abstract_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a new-style declaration for a parameter variable or function prototype that is either an // identifier or typedef name and allows the C99 array options, which can only appear in a parameter list. cfa_identifier_parameter_declarator_tuple: // CFA cfa_identifier_parameter_declarator_no_tuple | cfa_abstract_tuple | type_qualifier_list cfa_abstract_tuple { $$ = $2->addQualifiers( $1 ); } ; cfa_identifier_parameter_declarator_no_tuple: // CFA cfa_identifier_parameter_ptr | cfa_identifier_parameter_array ; cfa_identifier_parameter_ptr: // CFA // No SUE declaration in parameter list. ptrref_operator type_specifier_nobody { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator type_specifier_nobody { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } | ptrref_operator cfa_abstract_function { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator cfa_abstract_function { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } | ptrref_operator cfa_identifier_parameter_declarator_tuple { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator cfa_identifier_parameter_declarator_tuple { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } ; cfa_identifier_parameter_array: // CFA // Only the first dimension can be empty or have qualifiers. Empty dimension must be factored out due to // shift/reduce conflict with new-style empty (void) function return type. '[' ']' type_specifier_nobody { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | cfa_array_parameter_1st_dimension type_specifier_nobody { $$ = $2->addNewArray( $1 ); } | '[' ']' multi_array_dimension type_specifier_nobody { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | cfa_array_parameter_1st_dimension multi_array_dimension type_specifier_nobody { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } | multi_array_dimension type_specifier_nobody { $$ = $2->addNewArray( $1 ); } | '[' ']' cfa_identifier_parameter_ptr { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | cfa_array_parameter_1st_dimension cfa_identifier_parameter_ptr { $$ = $2->addNewArray( $1 ); } | '[' ']' multi_array_dimension cfa_identifier_parameter_ptr { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | cfa_array_parameter_1st_dimension multi_array_dimension cfa_identifier_parameter_ptr { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } | multi_array_dimension cfa_identifier_parameter_ptr { $$ = $2->addNewArray( $1 ); } ; cfa_array_parameter_1st_dimension: '[' push type_qualifier_list '*' pop ']' // remaining C99 { $$ = DeclarationNode::newVarArray( $3 ); } | '[' push type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $4, $3, false ); } | '[' push declaration_qualifier_list assignment_expression pop ']' // declaration_qualifier_list must be used because of shift/reduce conflict with // assignment_expression, so a semantic check is necessary to preclude them as a type_qualifier cannot // appear in this context. { $$ = DeclarationNode::newArray( $4, $3, true ); } | '[' push declaration_qualifier_list type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $4->addQualifiers( $3 ), true ); } ; // This pattern parses a new-style declaration of an abstract variable or function prototype, i.e., there is no // identifier to which the type applies, e.g.: // // [int] f( int ); // abstract variable parameter; no parameter name specified // [int] f( [int] (int) ); // abstract function-prototype parameter; no parameter name specified // // These rules need LR(3): // // cfa_abstract_tuple identifier_or_type_name // '[' cfa_parameter_list ']' identifier_or_type_name '(' cfa_parameter_list_ellipsis_opt ')' // // since a function return type can be syntactically identical to a tuple type: // // [int, int] t; // [int, int] f( int ); // // Therefore, it is necessary to look at the token after identifier_or_type_name to know when to reduce // cfa_abstract_tuple. To make this LR(1), several rules have to be flattened (lengthened) to allow the necessary // lookahead. To accomplish this, cfa_abstract_declarator has an entry point without tuple, and tuple declarations are // duplicated when appearing with cfa_function_specifier. cfa_abstract_declarator_tuple: // CFA cfa_abstract_tuple | type_qualifier_list cfa_abstract_tuple { $$ = $2->addQualifiers( $1 ); } | cfa_abstract_declarator_no_tuple ; cfa_abstract_declarator_no_tuple: // CFA cfa_abstract_ptr | cfa_abstract_array ; cfa_abstract_ptr: // CFA ptrref_operator type_specifier { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator type_specifier { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } | ptrref_operator cfa_abstract_function { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator cfa_abstract_function { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } | ptrref_operator cfa_abstract_declarator_tuple { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } | type_qualifier_list ptrref_operator cfa_abstract_declarator_tuple { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } ; cfa_abstract_array: // CFA // Only the first dimension can be empty. Empty dimension must be factored out due to shift/reduce conflict with // empty (void) function return type. '[' ']' type_specifier { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | '[' ']' multi_array_dimension type_specifier { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | multi_array_dimension type_specifier { $$ = $2->addNewArray( $1 ); } | '[' ']' cfa_abstract_ptr { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | '[' ']' multi_array_dimension cfa_abstract_ptr { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } | multi_array_dimension cfa_abstract_ptr { $$ = $2->addNewArray( $1 ); } ; cfa_abstract_tuple: // CFA '[' push cfa_abstract_parameter_list pop ']' { $$ = DeclarationNode::newTuple( $3 ); } | '[' push type_specifier_nobody ELLIPSIS pop ']' { SemanticError( yylloc, "Tuple array currently unimplemented." ); $$ = nullptr; } | '[' push type_specifier_nobody ELLIPSIS constant_expression pop ']' { SemanticError( yylloc, "Tuple array currently unimplemented." ); $$ = nullptr; } ; cfa_abstract_function: // CFA '[' ']' '(' cfa_parameter_list_ellipsis_opt ')' { $$ = DeclarationNode::newFunction( nullptr, DeclarationNode::newTuple( nullptr ), $4, nullptr ); } | cfa_abstract_tuple '(' push cfa_parameter_list_ellipsis_opt pop ')' { $$ = DeclarationNode::newFunction( nullptr, $1, $4, nullptr ); } | cfa_function_return '(' push cfa_parameter_list_ellipsis_opt pop ')' { $$ = DeclarationNode::newFunction( nullptr, $1, $4, nullptr ); } ; // 1) ISO/IEC 9899:1999 Section 6.7.2(2) : "At least one type specifier shall be given in the declaration specifiers in // each declaration, and in the specifier-qualifier list in each structure declaration and type name." // // 2) ISO/IEC 9899:1999 Section 6.11.5(1) : "The placement of a storage-class specifier other than at the beginning of // the declaration specifiers in a declaration is an obsolescent feature." // // 3) ISO/IEC 9899:1999 Section 6.11.6(1) : "The use of function declarators with empty parentheses (not // prototype-format parameter type declarators) is an obsolescent feature." // // 4) ISO/IEC 9899:1999 Section 6.11.7(1) : "The use of function definitions with separate parameter identifier and // declaration lists (not prototype-format parameter type and identifier declarators) is an obsolescent feature. // ************************ MISCELLANEOUS ******************************** comma_opt: // redundant comma // empty | ',' ; default_initializer_opt: // empty { $$ = nullptr; } | '=' assignment_expression { $$ = $2; } ; %% // ----end of grammar---- // Local Variables: // // mode: c++ // // tab-width: 4 // // compile-command: "bison -Wcounterexamples parser.yy" // // End: //