302 Generative Programming, K. Czarnedi

Chapter 10 Case Study: Generative Matrix
Computation Library (GMCL) ™

Case Study: Generative Matrix Computation Library (GMCL) 303

10.1 Domain Analysis
10.1.1 Domain Definition

10.1.11 Goals and Stakeholders

Our goal is to develop a matrix computation library. Thus, our domain is the domain of matrix
computation libraries. The most important group of stakeholders are users lving linear algebra
probems. We want the library to be highly reusable, adaptable, and very efficient (in terms of
exeattion spead and memory consumption) and provide a highly intentional interface to
application programmers. For our case study, we will always prefer technologically better
solutions and ignore organizaional isaes. In a real world setting of a software developing
organizdion, the analysis of stakeholders and their goals, strategic projed goals, and other
organizaional issues may involve a significant effort.

10.1.1.2 Domain Scoping and Context Analysis

10.1.1.21 Characterization of the Domain of Matrix Computation Libraries

Our general domain of interest is referred to as matrix computations, which is a synonym for
applied, algorithmic linear algebra. Matrix computations is a mature domain with a history of
more than 30 years (e.g. [Wil61]). The domain includes bath the well-defined mathematical
theory of linear algebra & well as the knowledge abaut efficient implementations of algorithms
and data structures for solving linear algebra problems on existing computer architedures. This
implementation knowledge iswell documented in the literature, e.g. [GL96, JK93].

In particular, we are interested in the domain of matrix computation libraries. A matrix
computation library contains ADTs and algorithm families for matrix computations and is
intended to be used as a part of a larger application. Thus, it is an example of a horizontal
domain. Examples of vertical domains involving matrix computations would be matrix
computation environments (e.g. Matlab [Pra95]) or spedalized scientific workbenches (e.g. for
eledromagnetics or quantum chemistry). They are vertical domains snce they contain entire
applications including GUIs, graphical visualization, persistent storage for matrices, etc.

The main concepts in matrix computations are vedors, matrices, and computational methods, e.g.

methods for solving a system of linear equations or computing the @genvalues. A glossry of
some of the terms used in matrix computationsis given in 10.4.

10.1.1.22 Sources of Domain Knowledge

The foll owing sources of domain knowledge were used in the analysis of the matrix computation
libraries domain:

e literature on matrix computations: [GL96, JK93];

* documentation, source @de, and articles describing the design of existing matrix computation
libraries: [LHKK 79, DDHH88, DDDH90, CHL+96] and those listed in Table 15 and Table
16;

e onlinerepository of matrices: [MM].

304 Generative Programming, K. Czarnedi

10.1.1.2.3 Application Areas of Matrix Computation Libraries

In this sdion, we will i dentify features characterizing matrix computation libraries by analyzing
different appli cation areas of matrix computations.

Table 13 and Table 14 list some typical application areas of matrix computations and the types of
matrices and computations which are required for solving the problems in the listed areas. The
application areas were grouped into two categories. one requiring dense matrices (Table 13) and
the other one requiring sparse matrices (Table 14). In general, large matrix problems usually

involve sparse matrices and large dense matrix prolblems are much lesscommon.

Application area

Dense matrix types

Computational problems

eledromagnetics (Helmholtz
equation), e.g. radar
technology, stealth (i.e.
“radar-invisible”) airplane
technol ogy

complex, Hermitian (rarely
also non-Hermitian), e.g.
55296by 55296

boundary integral solution
(spedfically the method of
moments)

flow analysis (Laplaceor
Poisson equation), e.g.

symmetric, e.g. 12088by
12088

boundary integral solution
(spedfically the pand

airflow past an airplane method)

wing, flow around ships

diffusion of solid bodiesin block Toeplitz i.n a'®*

liquids

diffusion of light through block Toeplitz i.n.a

small particles

noise reduction block Toeplitz i.n.a

quantum mechanical i.n.a dense linear systems

scattering (computing the
scattering of e ementary
particles from other particles
and atoms; involves
Schrodinger wave function)

quantum chemistry
(Schrédinger wave function)

real symmetric, occasionaly
Hermitian, small and dense
(large systems are usually

sparse)

symmetric eégenvalue
probems

material science i.n.a unsymmetric @genvalue
probems
real-time signal processng i.n.a rank-revealing factorizaions

applications

and the updating of
factorizations after low rank
changes

Table 13 Examples of application areas for dense matrix computations (based on examples found in

[Ede91, Ede93, Ede94,Hig96])

Case Study: Generative Matrix Computation Library (GMCL)

305

Application area

Spar se matrix types

Computational problems

static analysesin structural
engineging'®’, e.g. static
analysis of buil dings, rodfs,
bridges, airplanes, etc.

real symmetric positive
definite, pattern symmetric
indefinite, e.g. 3948by 3948
with 60882entries

generali zed symmetric
eigenvalue problem, finite-
element modeling, linear
systems

dynamic analysisin
structural engineeing, e.g.
dynamic analysis of fluids,
suspension bridges,
transmisson towers, robdic
control

real symmetric and positive
definite or positi ve semi-
definite or indefinite

symmetric eégenvalue
probems, linear systems

hydrodynamics

real unsymmetric, e.g. 100by
100with 396 entries

eigenvalues of the Jacobi
matrix

oceanic modding, e.g.
models of the shall ow waves
for the Atlantic and Indian
Oceans

real symmetric indefinite,
real skew symmetric, e.g.
1919by 1919with 4831
entries

finite-difference mode

acoustic scattering

complex symmetric

i.n.a

fluid flow moddling, fluid
dynamics, flow in networks

real unsymmetric, symmetric
structure, e.g. 511by 511,
2796entries and 23560by
23560with 484256entries

iterative and dred methods,
eigenvalue and eigenvedor
problems (in perturbation
analysis), Lanczos method

petroleum engineeing, e.g.
ol reavery, ail reservoir
simulation

real unsymmetric, symmetric
structure, e.g. 2205by 2205
with 14133entries

i.n.a

eledromagnetic field
modeling, e.g. integrated
circuit applications, power
lines

real pattern symmetric
indefinite, real pattern
symmetric positi ve definite,
real unsymmetric, e.qg. 1074
by 1074with 5760entries

finite-element modeling,
symmetric and unsymmetric
eigenvalue problem

power systems smulations,
power system networks

real unsymmetric, real
symmetric indefinite, real
symmetric positi ve definite,
e.g. 4929by 10595with
47369entries

symmetric and unsymmetric
eigenvalue problems

circuit sSmulation

real unsymmetric, 58 by 59
with 340entries

astrophysics, e.g. nonlinear
radiative transfer and
statistical equili brium in
astrophysics

real unsymmetric, e.qg. 765by
765with 24382entries

nuclear physics, plasma
physics

real unsymmetric, e.g. 1700
by 1700with 21313entries

Large unsymmetric
generali zed eilgenvalue
probems

quantum chemistry

complex symmetric
indefinite, e.qg. 2534by 2534
with 463360entries

symmetric eégenvalue
probems

306

Generative Programming, K. Czarnedi

chemical engineeing, e.g.
simple chemical plant model,
hydrocarbon separation
probem

real unsymmetric, e.qg. 225by
225with 1308entries

conjugate gradient
eigenvalue mmputation,
initial Jacobian
approximation for sparse
nonlinear equations

probability theory and its
applications, e.g. smulation
studiesin computer systems
involving Markov modeling
techniques

real unsymmetric, e.qg. 163by
163with 935entries

unsymmetric @genvalues and
eigenvedors

emnomic modeling real unsymmetric, eg. 2529 |i.n.a

e.g. economic madels of by 2529with 90158entries

countries, models of

e@nomic transactions

demography, e.g. model of real unsymmetric, often i.n.a

inter-country migration relatively largefill -in with no
pattern, e.g. 3140by 3140
with 543162entries

surveying real unsymmetric, e.qg. 480by | least squares problem
480with 17088entries

air traffic control sparsereal symmetric conjugate gradient
indefinite, e.g. 2873by 2873 | agorithms

with 15032entries

ordinary and pertial
differential equations

real symmetric positive
definite, real symmetric
indefinite, real unsymmetric,
e.g. 900by 900with 4322
entries

symmetric and unsymmetric
eigenvalue problems

Table 14 Examples of application areas for sparse matrix computations (based on examples found in

[MM])

10.1.1.24 Existing Matrix Computation Libraries

As of writing, the most comprehensive matrix computation libraries available are written in
Fortran. However, several ohjed-oriented matrix computation libraries (for performance reasons,
they are written mostly in C++) are arrently under development. Table 15 and Table 16 list some
of the publicly and commercially avail able matrix computation libraries in Fortran and in C++
(also see[OONP)).

Matrix computations library Features

LINPACK language: Fortran

amatrix computation library for solving
dense linear systems; superseded by
LAPACK

see[DBMS79] and
http://mww.netli b.org/li npack

matrix types: dense, real, complex,
redangular, band, symmetric, triangular, and
tridiagonal

computations: factorizations (Cholesky, QR),
systems of linear equations (Gausdan
elimination, various factorizations), linear

Case Study: Generative Matrix Computation Library (GMCL)

least squares problems, and singular value
probems

EISPACK

amatrix computation library for solving
dense e@genvalue problems; superseded by
LAPACK

see[SBD+76] and
http://mww.netli b.org/ei spack

language: Fortran

matrix types: dense, real, complex,
redangular, symmetric, band, and tridiagonal

computations: eigenvalues and eigenvedors,
linear least squares problems

LAPACK

amatrix computation library for dense linear
problems; supersedes bath LINPACK and
LAPACK

see[ABB+94] and
http://mww.netli b.org/l apack

language: Fortran

matrix types: dense, real, complex,
redangular, band, symmetric, triangular, and
tridiagonal

computations: systems of linear equations,
linear least squares problems, eigenvalue
probems, and singular value problems

ARPACK

acomprehensive library for solving real or
complex and symmetric or unsymmetric
eigenvalue problems; uses LAPACK and
BLAS (seetext below Table 16)

see[LSY 98] and
http://mww.caam.rice edu/'software/ ARPACK

language: Fortran

matrix types: provided by BLAS and
LAPACK

computations: Impli citly Restarted Arnoldi
Method (IRAM), Impli citly Restarted
Lanczos Method (IRLM), and supporting
methods for solving real or complex and
symmetric or unsymmetric dgenvalue
probems

LAPACK++

amatrix computation library for general
dense linear problems; provides a subset of
LAPACK functionality in C++

see[DPW93] and
http://math.nist.gov/lapack++

language: C++

matrix types: dense, real, complex,
redangular, symmetric, symmetric positi ve
definite, band, triangular, and tridiagonal

computations: factorizations (LU, Cholesky,
QR), systems of linear equations and
eigenvalue problems, and singular value
probems

ARPACK++

subset of ARPACK functionality in C++
(using templ ates)

see[F97] and

http://mww.caam.rice edu/'software/ ARPACK
[arpack++.html

language: C++

matrix types: dense, sparse (CSC), real,
complex, redangular, symmetric, band

computations: Impli citly Restarted Arnoldi
Method (IRAM)

Sparselibt++

library with sparse matrices; intended to be
used with IML++

see[DLPRJ94] and
http://math.nist.gov/sparsdlib++

language: C++

matrix types: sparse

308

Generative Programming, K. Czarnedi

IML++ (Iterative Methods Library)

library with iterative methods; requires a
library implementing matrices, e.g.
Sparselibt++

see[DLPR96] and http://math.nist.gov/iml++

language: C++
matrix types: library implementing matrices

computations: iterative methods for solving
bath symmetric and unsymmetric linear
systems of equations (Richardson Iteration,
Chebyshev Iteration, Conjugate Gradient,
Conjugate Gradient Squared, BiConjugate
Gradient, BiConjugate Gradient Stabili zed,
Generalized Minimum Residual, Quasi-
Minimal Residual Without L ookahead)

Newmat, version 9

amatrix computation library for dense linear
problems; does not use C++ templates

see
http://nz.com/webnz/robert/nzc_nmO09.html

language: C++
matrix types: dense, real, redangular,
diagonal, symmetric, triangular, band

computations: factorizations (Cholesky, QR,
singular value decomposition), elgenval ues of
a symmetric matrix, Fast Fourier

TNT (Template Numerical Todkit)

a C++ matrix computation library for linear
problems; it has a template-based design;
eventually to supersede LAPACK ++,
Sparselib++, and IMC++; as of writing, with
rudimentary functionality

see[Poz96] and http://math.nist.gov/tnt

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
redangular, symmetric, triangular

computations: factorizations (LU, Cholesky,
QR), systems of linear equations

contains an interfaceto LAPACK

MTL (Matrix Template Library)

a C++ matrix library; it hasan STL-like
template-based design; its goal isto provide
only one version of any algorithm and adapt
it for various matrices using parameterization
and iterators; it implements register blocking
using template metaprogramming; it exhibits
an excdlent performance @mparable to
tuned Fortran90 code

see[SL98a, SL98h] and
http://mwww.lsc.nd.edu/

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
redangular, symmetric, band

Table15 Some of the publicly available matrix computation libraries and their features

Matrix computations library

Features

Math.h++

C++ vedor, matrix, and an array library in
one

language: C++

matrix types: dense, real, complex,
redangular

Case Study: Generative Matrix Computation Library (GMCL) 309

Rogue Wave Software, Inc., see computations: LU factorization, FFT
http://mww.roguewave.com/products/'math

LAPACK.h++ language: C++

works on top of Math.h++; offers matrix types: dense (some from Math.h++),
functionality of the Fortran LAPACK library | sparse, real, complex, symmetric, hermitian,
in C++ skew-symmetric, band, symmetric band,

hermitian band, lower triangular, and upper

Rogue Wave Software, Inc., see triangular matrices

http://mww.roguewave.com/products/l apack
computations: factoriztions (LU, QR, SVD,
Cholesky, Schur, Hesenberg, complete
orthogonal, tridiagonal), real/complex and
symmetric/unsymmetric eégenvalue probems

Matrix<LIB> language: C++
LINPACK and EISPACK functionality in matrix types: dense, real, complex

C++ Matlab-like syntax computations: factorizations (Cholesky,
MathTodsLtd, see Hessenberg, LU, QR, QZ, Schur and SVD),
http://mww.mathtod s.com solving linear systems, linear least squares
problems, eigenvalue/eigenvedor problems

ObjedSuite™ C++: IMSL Math Modulefor | language: C++

Gt matrix types: dense, real, complex,

amatrix computation library for denselinear | redangular, symmetric/Hermitian and

probems symmetric/Hermitian positi ve definite
Visual Numerics, Inc., see computations: factorizations (LU, Cholesky,
http://mww.vni.com/products/osuite QR, and Singular Value Demmposition),

linear systems, linear least squares problems,
eigenvalue and eigenvedor problems, two-
dimensional FFTs

Table16 Some of the commercially available matrix computation libraries and their features

A set of basic matrix operations and formats for high-performance architedures has been
standardized in the form of the Basic Linear Algebra Subprograms (BLAS). The operations are
organized according to their complexity into three levels: Level-1 BLAS contain operations
requiring O(n) of storage for input data and O(n) time of work, e.g. vedor/vedor operations (see
[LHKK79]), Level-2 BLAS contain operations requiring O(n?) of input and O(n?) of work, e.g.
matrix-vedor multiplication (see[DDHH88]), Level-3 BLAS contain operations requiring O(n?)
of input and O(n®) of work, e.g. matrix-matrix multiplication (see [DDDH90, BLAS97]). There
are also Sparse BLAS [CHL+96], which are spedal BLAS for sparse matrices. The Sparse BLAS
standard also defines various garse storage formats. Different implementations of BLAS are
avail able from http://www.netlib.org/blas/.

10.1.1.25 Features of the Domain of Matrix Computation Libraries

From the analysis of application areas and existing matrix computation libraries (Table 13, Table
14, Table 15, and Table 16), we @n derive a number of major matrix types and computational
method types which are mommon in the matrix computations practice They arelisted in Table 17
and Table 18, respedively. The types of matrices and computations represent the main features of
the domain of matrix computation libraries and can be used to describe the scope of a matrix
computation library. The rationale for including each of these features in a concrete matrix

310 Generative Programming, K. Czarnedi

computation library implementation are also given in Table 17 and Table 18. Some features sich
as dense matrices and factorizaions are basic features required by many other features and they
should be included in any matrix computation library implementation. Some other features sich
as complex matrices and methods for computing eigenvalues are — unlessdiredly required by
some stakeholders — optional and their implementation may be deferred.

Matrix type Rationale for inclusion

dense matrices Dense matrices are ubiquitous in linear algebra
computations and are mandatory for any matrix
computation library.

Sparse matrices In practice large linear systems are usually sparse.

real matrices Real matrices are very common in linear algebra
probems.

complex matrices Complex matrices are lesscommon than real matrices but

till very important for alarge dassof problems.

redangular, symmetric, Redangular, symmetric, diagonal, and triangular matrices

diagonal, and triangular are very common in linear algebra problems and are

matrices mandatory for any matrix computation library.

band matrices Band matrices are @mmon in many practical problems,
e.g. alarge percentage of the matrices found in [MM] are
band matrices.

other matrix shapes (e.g. Thereisalarge number of other matrix shapeswhich are

Toeplitz, tridiagonal, symmetric | spedalized for various problems. In general, providing all

band) possble shapesin ageneral purpose matrix computation

library is not possble since new appli cations may require
new spedali zed shapes.

Table 17 Major matrix types and therationale for their inclusion in the implemented feature set

Case Study: Generative Matrix Computation Library (GMCL) 311

Computational methods Rationale for inclusion

factorizations (decompositi ons) Factorizaions are needed for dired methods
and matrix analysis and are mandatory for
any matrix computation library.

dired methods for solving linear systems Dired methods (e.g. using the LU
factorization) are standard methods for
solving linear systems.

least squares methods The least squares approach is concerned with
the solution of overdetermined systems of
equations. It represents the standard scientific
method to reducethe influence of errors
when fitting model's to given observations.

symmetric and unsymmetric égenvalue and Eigenval ue methods have numerous
eigenvedor methods applications in science and engineaing.

iterative methods for linear systems Iterative methods for linear systems are the
methods of choicefor some large sparse
systems. There are iterative methods for
solving linear systems and for computing
eigenvalues.

Table 18 Major matrix computational methods types and therationale for their inclusion in the
implemented feature set

Figure 137 summarizes the features of a matrix computation library in a feature diagram. The
prioriti es expressthe typicality rate of the variable features. These typicality rates are informal and
are intuitively based on the analysis of application areas and existing matrix computation
libraries.

Anocther important feature of a matrix computation library, which will not be mnsidered here, is
its target computer architedure, e.g. hierarchical memory, multiple processors with distributed
memory or shared memory, etc.

312 Generative Programming, K. Czarnedi
matrix package
matrix types matrix computation
types
0
dense matrices 0.
factorizations
sparse matrices 0.
) 0.3 linear systems
real matrices
least squares
complex matrices 0.2 d

eigenvalues

rectangular matrices

0.3

iterative methods

symmetric matrices

(BO.S

diagonal matrices

0.3

triangular matrices

0.1

band matrices

Figure 137 Feature diagram of a matrix computation library

10.1.1.26 Rdationship to Other Domains

The domain of array libraries is an example of an analogy domain (see Sedion 3.6.3) of the
domain of matrix computation libraries. Array libraries implement arrays (including two-
dimensional arrays) and numerical computations on arrays. Thus, there are significant similarities
between array libraries and matrix computation libraries. But there are also several differences:

Array libraries, in contrast to matrix computation libraries, also cover arrays with more than
two dimensions.

Array operations are primarily elementwise operations. For example, in an array library *
means e ementwise multiply, whereas in a matrix computation library * designates matrix
multi pli cation.

Arrays usually support a wide range of element types, eg. int, float, char, bod, and user
defined types, whereas the type of matrix elementsis either real or complex numbers.

Array libraries usually do not provide a comprehensive set of agorithms for solving
complicated linear problems. They rather focus on other areas, e.g. signal processng.

Case Study: Generative Matrix Computation Library (GMCL) 313

e Array libraries usually do not provide any spedal support for different shapes and densities.

Blitz++ [Vel97] is an example of an array library. Math.h++ (see Table 16) combines aspeds of
bath an array and a matrix computation library in one.

An example of another analogy domain is the domain of image processing libraries. Images are
somewhat similar to matrices. However, there are also several differences:

e The dements of an image are binary, gray scale, or color pixel values. Binary and color pixel
values require a different representation than matrix elements. For example, color pixels may
be represented using three values and a coll edion of binary pixels is usualy represented by
one number.

e The operations and algorithms required in image processng are different than those used for
solving linear problems.

An example of a support domain is the domain of container libraries. A container library, e.g. the

Standard Template Library (STL; [MS96, Bre9g]) could be used to implement storage for matrix
elementsin a matrix computation library.

10.1.2 Domain Modeling

10121 Key Concepts of the Domain of Matrix Computation Libraries
The key concepts of the domain of matrix computation libraries are

o abstract data types: vectors and matrices,

« agorithm families: factorizations, solving systems of linear equations, solving least squares
problems, solving eigenvalue and eigenvector problems, and iterative methods.

10.1.22 FeatureModding of the Key Concepts

10.1.2.2.1 Features of Vectors and Matrices

This fdion describes the features of vedors and matrices. Since the vedor features represent a
subset of the matrix features, we only list the matrix features and indicate if a feature does not
apply to vedors. Please note that vedors can be adequately represented as matrices with number
of rows equal one or number of columns equal one.

We have the foll owing matrix features:

« element type: type of the matrix elements;

e subscripts: subscripts of the matrix elements,

e dructure: the arrangement and the storage of matrix elements:

e entry type: whether an entry isa scalar or a matrix;

e density: whether the matrix is garse or dense;

« shape: the arrangement pattern of the nonzero matrix elements (this feature does not apply to
vedors);

e representation: the data structures used to store the dements;

314

Generative Programming, K. Czarnedi

format: the layout of the dementsin the data structures;

memory management: all ocating and reli nquishing memory;
operations: operations on matrices (including their implementations);
attributes: matrix attributes, e.g. number of rows and columns,

concurrency and synchronization: concurrent exeaution of algorithms and operations and
synchronization of memory access

persistency: persistent storage of a matrix instance

error handling: error detedion and natification, e.g. bounds cheding, compatibility cheding
for vedor-vedor, matrix-vedor, and matrix-matrix operations.

10.1.221.1 Element Type

The only element types occurring in linear algebra (and also in the application aress listed in
Table 13 and Table 14) are real and complex numbers. Existing libraries (Table 15 and Table 16)
typically support single and double predsion real and complex e ement types. Other element types
(e.0. bod, user defined types, etc.) are @mvered by array libraries (seeSedion 10.1.1.2.6).

10.1.22.1.2 Qubscripts (Indices)
Thefoll owing are the subfeatures concerning subscripts:

index type: The type of subscripts is an integral type, eg. char, short, int, long, unsigned
short, unsigned int, or unsigned long.

maximum index value: The coice of index type, e.qg. char or unsigned long, determines the
maximal size of amatrix or vedor.

index base: There are two relevant choices for the start value of indices: C-style indexing (or
0-base indexing), which starts at 0, and the Fortran-style indexing (or 1-base indexing),
which starts at 1. Some libraries, eg. TNT (see Table 15), provide bath styles at the same
time (TNT provides the operator “[]” for O-base indexing and the operator “()” for 1-base
indexing).

subscript ranges: Additionally, we culd also have a subscript type representing subscript
ranges. An example of range indexing is the Matlab indexing style [Pra95], e.g. 1:4 denotes a
range from 1 to 4, 0:9:3 denotes a range from 0 to 9 with stride 3. An example of a library
supporting subscript ranges is Matrix<LIB> (seeTable 16).

Case Study: Generative Matrix Computation Library (GMCL) 315

subscripts

index type index base index range

unsigned n

long

unsigned int

Figure 138 Subscripts

10.1.22.1.3 Sructure

Structure is concerned with the arrangement and the storage of matrix or vedor e ements. We @n
exploit the arrangement of the dements in order to reduce storage requirements and to provide
spedalized and faster variants of basic operations and more mmplex algorithms. The subfeatures
of the structure of matrices are shown in Figure 139

structure

entry type density shape representation format

Figure 139 Sructure

10122131 Entry Type

The entries in a matrix are usually scalars (e.g. real or complex). These types of matrices are
referred to as point-entry matrices [CHL+96]. There are also matrices whose entries are matrices
and they are referred to as block matrices [CHL+96, GL96]. Block matrices are mwmmon in high-
performance omputing since they allow us to express operations on large matrices in terms of
operations on small matrices. This formulation enables us to take advantage of the hierarchical
memory organization on modern computer architedures.

The memory of modern computer architedures is usually organized into a hierarchy: The higher
levelsin the hierarchy feature memory fast in accessbut of limited capacity (e.g. processor cache).
Aswe move down the hierarchy, the memory speed deaeases but its capacity increases (e.g. main
memory, disk).

When performing a matrix operation, it is advantageous to keep all the operands in cache in order
to eiminate excessve data movements between the cache and the main memory during the
operation. If the operands are matrices which entirely fit into the ache, we @n use the point-entry
format. But if a matrix size exceals the cache size, the block format should be preferred.
Operations on block matrices are performed in terms of operations on their blocks, e.g. matrix

316 Generative Programming, K. Czarnedi

multiplication is performed in terms of multiplications of the block submatrices. By properly
adjusting the block size, we are able to fit the arguments of the submatrix operation into the cache.

Furthermore, we distinguish between constant blocks (i.e. blocks have ejual sizes) and variable
blocks (i.e. blocks have variable sizes). The subfeatures of entry type are summarized in Figure
140

entry type

point constant blocks variable blocks

Figure 140 Entry Type
Blocking is used in high performancelinear algebralibraries sich as LAPACK (seeTable 15).

10122132 Densty

One of the major distinctions between matrices is whether a matrix is dense or sparse. A dense
matrix is a matrix with a large percentage of nonzero elements (i.e. elements not equal zero). A
sparse matrix, on the other hand, contains a large percentage of zero elements (usually more than
90%). In [Sch89], Schendd gives an example of a sparse matrix in the @ntext of the frequency
analysis of linear networks which involves lving a system of linear equations of the form A(c)x
= b. In this example, A is a 3304by-3304 Hermitian matrix with 60685nonzero elements. Thus,
the nonzero elements make up only 0.6% of all eements in A (i.e. the fill-in is 0.6%).
Furthermore, the LU-factorization of A yields a new matrix with an even smaller fill-in of 0.4%
(seeTable 14 for more examples of sparse matrices). The representation of A as a dense matrix
would require several megabytes of memory. However, it is necessary to store only the nonzero
dements, which dramatically reduces the storage requirements for sparse matrices. The
knowledge of the density of a matrix allows us not only to gptimize the storage mnsumption, but
also the processng speed since we @n provide spedalized variants of operations which take
advantage of sparseness

Most matrix computation libraries provide dense matrices and some matrix computation libraries
also implement sparse matrices (e.g. LAPACK.h++; seeTable 16). Since most of the large matrix
problems are sparse (see Table 14), a general-purpose matrix computation library is much more
attractive if it implements bath dense and sparse matrices.

10122133 Shape

Matrix computations involve matrices with different arrangement patterns of the nonzero
edements. Such arrangement patterns are referred to as shapes. Some of the more cmmon shapes
include the foll owing (seeFigure 141):

¢ Rectangular and sguare matrices: A redangular matrix has a different number of rows than
the number of columns. The number of rows and the number of columns in a square matrix
are eual.

e Null matrix: A null matrix consists of only zero elements. No elements have to be stored for a
null matrix but only the number of rows and columns.

e Diagonal matrix: A diagonal matrix is a square matrix with all zero elements except the
diagonal eements (i.e. elements whose row index and column index are ejual). Only the

Case Study: Generative Matrix Computation Library (GMCL) 317

(main) diagonal elements haveto be stored. If they are all equal, the matrix isreferred to asa
scalar matrix and only the scalar has to be stored.

e ldentity matrix: An identity matrix is a diagonal matrix whose diagonal entries are all equal
1. No dements have to be stored for an identity matrix but only the number of rows and
columns.

e Symmetric, skew-symmetric or anti-symmetric, Hermitian, and skew-Hermitian matrices: For
al eements of a symmetric matrix the following equation holds &; = &;. For a skew-
symmetric matrix, we have a dightly different equation: &; = - &;. A complex-valued matrix
with symmetric real part and skew-symmetric imaginary part is referred to as a Hermitian. If,
on the other hand, the real part is kew-symmetric and the imaginary part is ymmetric, we
have a skew-Hermitian matrix. For all these four matrix types we only nee to store one half
of the matrix. One possble storage format is to conseautively store all the rows (or columns
or diagonals) of one half of the matrix in a vedor and use an indexing formula to accessthe
matrix elements.

e Upper or lower triangular or unit triangular or Hessenberg matrices: An upper triangular
matrix is a square matrix which has nonzero elements only on and above the main diagonal.
If the diagonal elements are only ones, the matrix is referred to as unit upper triangular. If
the diagonal elements are only zeros, the matrix is referred to as strictly upper triangular. If,
on the other hand, the main diagonal and also the diagonal below contains nonzeros, the
matrix isreferred to as an upper Hessenberg. The lower triangular, lower unit triangular, and
lower Hessenberg matrices are defined analogoudly. Similarly as in the @ase of symmetric
matrices, only one half of the dements of atriangular matrix hasto be stored.

e Upper or lower bidiagonal, and tridiagonal matrices: These matrices are diagonal matrices
with an extra nonzero diagonal abowve, or below, or bath above and below the main diagonal.

* Band matrices: Band matrices have nonzero fill-in in one or more adjacent diagonals (see
Figure 141 Diagonal and triangular matrices can be regarded as a speda case of band
matrices. An example of a general storage schema for band matrices would be storing the
nonzero diagonals in a smaller matrix, with one diagonal per row and accessng the dements
using an indexing formula. Speda types of band matrices are upper and lower band
triangular matrices, band diagonal matrices, and symmetric band matrices.

e Toeplitz matrices: A Toeplitz matrix is a square matrix, where all eements within each of its
diagonals are equal. Thus, a Toeplitz matrix requires the same amount of storage as a
diagonal matrix.

318 Generative Programming, K. Czarnedi

S

band diagonal matrix diagonal matrix tridiagonal matrix
with bandwidth b (b=1) (b=3)
ub
upper band triangular upper bidiagonal upper triangular
matrix with upper matrix (ub = 1) matrix (ub = n)
bandwidth ub

E

lower band triangular lower bidiagonal lower triangular
matrix with lower matrix (Ib = 1) matrix (Ib = n)
bandwidth Ib
ub
Ib
band matrix with upper lower Hessenberg upper Hessenberg
bandwidth ub and lower matrix matrix
bandwidth Ib (ub or Ib (ub=1,Ib=n) (ub=n,lb=1)

can be negative)

Figure 141 Examples of nxn band matrices (only the gray region and the shown
diagonals may contain nonzeros)

Some of the above-li sted shapes also apply to Hock matrices, e.g. a block matrix with null matrix
entries except for the diagonal entries is referred to as a block diagonal matrix. There are also
numerous examples of “more eotic”, usually sparse matrix types in the literature, e.g. in
[Sch89]: strip matrix, band matrix with margin (also referred to as a bordered matrix), block
diagonal matrix with margin, band matrix with step (seeFigure 142).

Case Study: Generative Matrix Computation Library (GMCL) 319

strip matrix band matrix band matrix with
with margin step

Figure 142 Some more exotic matrix shapes

Most matrix computation libraries provide redangular, symmetric, diagonal, and triangular
matrices. Some libraries also provide band matrices (e.g. LAPACK, LAPACK++, ARPACK++,
Newmat, LAPACK.h++; seeTable 15and Table 16). Other shapes are lesscommonly supported.

101.221.34 Representation

The dements of amatrix or avedor can be stored in a variety of data structures, e.g. arrays, lists,
binary trees, dictionaries (i.e. maps). Each data structure exhibits different performance regarding
adding, removing, enumerating, and randomly accessng the dements.

101.2.2.1.35 Memory Management in Data Structures

The data structures for storing matrix elements may use different memory all ocation strategies.
Wediscussd dfferent strategiesin Sedion 9.3.2.2.1. Here, we require at least static and dynamic
memory all ocation. We extend the representation feature with the memory allocation subfeature.
The resulting dagram is own in Figure 143

representation

data structure memory allocation

dynamic static

dictionary

Figure 143 Representation

10122136 Format

Format describes how the dements of a matrix of certain entry type, shape, and density are stored
in concrete data structures. For the sake of simplicity, we will further investigate only dense or
sparse, point-entry matrices with the most common shapes: redangular, symmetric, triangular,

320 Generative Programming, K. Czarnedi

diagonal, and band. We first describe the @mmon formats for redangular dense matrices and
general sparse matrices and then discuss the spedal storage and access requirements of other
shapes.

101.221.36.1 Rectangular Dense Matrices
There are two major formats for storing the dements of a redangular dense matrix:

1. row-major or C-style format: In the row-major format, the matrix elements are stored row-
wisg, i.e. the neighboaring elements of one row are also adjacent in memory. This format
corresponds to the way arrays are stored in C.

2. column-major or Fortran-style format: In the mlumn-major format, the matrix e ements are
stored column-wise, i.e. the neighbaring elements of one @lumn are aso adjacent in
memory. Thisformat corresponds to the array storage @mnvention of Fortran.

Newer matrix computation libraries usually provide bath formats (e.g. LINPACK++, TNT). The
column-major format is espedally useful for interfacing to Fortran libraries.

101.2.2.1.36.2 General Sparse Matrices

There are several common storage formats for general sparse matrices, i.e. formats that do not
asume any spedfic shape. However, they are also used to represent shaped sparse matrices. The
general sparse storage formats include the foll owing:

» coordinate format (COO): Only the nonzero matrix el ements along with their coordinates are
stored. This format is usually implemented using threevedors, one @ntaining the nonzeros
and the other two containing their row and the mlumn indices, respedively. Another
posshility is to use one array or list with objeds, where each of the objeds encapsulates a
matrix element and its coordinates. Yet another posshility is to use a hash dictionary data
structure, where the keys are the mordinates and the values are the nonzeros.

o compressed sparse column format (CSC): The nonzeros are stored column-wise, i.e. the
nonzeros of a column are stored in the order of their ocaurrence within the wlumns. One
posshility isto store the mlumns containing nonzerosin sparse vedors.

o compressed sparse row format (CSR): The nonzeros are stored row-wise, i.e. the nonzeros of
arow are stored in the order of their ocaurrence within the rows. One posshility is to store
the rows containing nonzeros in sparse vedors.

There are also several other sparse formats including sparse diagonal (DIA), ellpack/itpack
(ELL), jagged diagonal (JAD), and skyline formats (SKY) and several block matrix formats (see
[CHL+96]). Table 19 summarizes when to use which sparse format.

Case Study: Generative Matrix Computation Library (GMCL)

321

Sparse Format

When to Use?

coordinate (COO)

Most flexible data structure when constructing or modifying a
Sparse matrix.

compressed sparse column
(CXC)

Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving
sparsetriangular factors.

compressed sparse
CRN

row

Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving
sparsetriangular factors.

sparse diagonal (DIA)

Particularly useful for matrices coming from finite difference
approximations to partial differential equations on uniform
grids.

ellpack/itpack (ELL)

Appropriate for finite dement or finite volume approximations
to partial differential equations where dements are of the same
type, but the gridding isirregular.

jagged diagonal (JAD)

Appropriate for matrices which are highly irregular or for a
general-purpose matrix multiplication where the properties of
the matrix are not known a priori.

skyline (SKY)

Appropriate for band triangular matrices. Particularly well
suited for Cholesky or LU decomposition when no pivoting is
required. In this case, al fill will ocaur within the eisting
nonzero structure.

Table 19 Choice of sparse format (adapted from [CHL+96])

10.1.2.2.1.36.3

Dependency Between Density, Shape, and Format

The storage and access requirements of dense or sparse, point-entry matrices with the shapes
redangular, symmetric, triangular, diagonal, and band are set out in Table 20.

Structure Type

Storage and accessrequir ements

dense redangular

We store the full matrix in the row- or the @lumn-major dense format.

dense symmetric

We store one half of the matrix, e.g. row-, column-, or diagonal-wisein
a dense vedor, and use an indexing formula to access the dements.
Alternatively, we @n store the dements in a full-size two-dimensional
array using only half of it. The latter approach needs double as much
memory asthefirst one, but it isfaster in access sncewe do not have to
transform the indices.

Assgning avalueto the dement &; with i # j, automatically assgns the
same value to &;.

densetriangular

We store the nonzero half of the matrix, e.g. row-, column-, or
diagonal-wise in a dense vedor. Alternativedly, we @n store the
dementsin a two-dimensional array, which requires more space but is
faster in access

Reading an element from the other half returns 0 and setting such an
element to a value other than O resultsin an error.

dense diagonal We store only the diagonal in a dense vedor.
Reading an element off the diagonal returns O and setting such an
element to a value other than O resultsin an error.

dense band We store the band only, eg. diagonal-wise in a dense vedor or a

smaller two-dimensional array. Alternatively, we @n store the dements
in a full-size two-dimensional array, which requires more space but is
faster in access

Reading an element off the band returns 0 and setting such an e ement
to avalue other than O resultsin an error.

sparse redangular

We store only the nonzero elements in one of the sparse formats, e.g.
CSR, CSC, COO, ELL, JAD;

sparse symmetric

We store only one half of the matrix and only the nonzero e ements
using one of the sparse formats (esp. SKY or DIA).

Assgning avalueto the dement &; with i # j, automatically assgns the
same value to &;.

sparse triangular

We use one of the sparse formats (esp. SKY or DIA) to store the
nonzero elements.

Setting an dement in the zero-element half of the matrix to a value
other than O resultsin an error.

sparse diagonal We use one of the sparse matrix formats (esp. DIA) to store the nonzero
elements or we store them in a sparse vedor.
Reading elements off the diagonal returns 0 and assgning a value other
than O to them causes an error.

sparse band We use one of the sparse formats (esp. DIA for band diagonal and DIA

or SKY for band triangular) to store the nonzero elements.

Setting an element off band to a value other than O resultsin an error.

Table20 Storace and access reauirements of matrices of different structures

ki

Case Study: Generative Matrix Computation Library (GMCL) 323

The particular shape of a matrix — espedally of a sparse matrix — is application dependent and
not all of the posshle shapes and formats can be provided by a matrix computation library. Thus,
it isimportant to allow a client program to supdy spedali zed formats.

101.2.2.1.3.7 Error Cheding: Cheding Assgnment Validity

Chedking the validity of an assgnment, e.g. cheding whether the value assgned to an e ement
within the zero-element half of atriangular matrix is actually a zro, should be parameterized.

10.1.2214 Matrix and Vector Operations
Wewill consider the foll owing operations on matrices and vedors as parts of a matrix component:

e accessoperations, i.e. set element and get element and

* basic mathematical operations diredly based on access operations, e.g. matrix addition and
multi pli cation.

More @mplex operations, such as computing the inverse of a matrix or solving triangular
systems, will be analyzed together with the algorithm families (e.g. solving linear systems).

The basic operations can be dustered according to their arity and argument types. The unary
operations are listed in Table 21. The operation type indicates the input argument type and result
type. They are separated by an arrow.

Operation type | Operations

vedor - scalar Vedor norms, e.g. p-norms (1-norm, 2-norm, €tc.)

vedor - vedor transposition

matrix — scalar | matrix norms, e.g. Frobenius norm, p-norms

determinant

matrix — matrix | transposition

Table21 Unary operations

The binary operations are set out in Table 22. An update operation stores the result in one of its
input arguments. The definitions of the operations listed in Table 21 and Table 22 can be found in
[GLY€).

324 Generative Programming, K. Czarnedi

Operation type Operations
(scalar, vedor) — vedor scalar-vedor multi pli cation
(scalar, matrix) — matrix scalar-matrix multi pli cation

(scalar, vedor) — upchate vedor | saxpy, which is defined asfollowsy := ax + y. wherex, y
OR"and alR

(vedor, vedor) — vedor vedor addition, vedor difference, veaor multiply (or the
Hadamard product)

(vedor, vedor) — scalar dot product

(vedor, vedor) - matrix outer product

(vedor, vedor) — upchte matrix | outer product update, which is defined asfollows A := A
+xy’, wherex OR™, y OR"A OR™"

(matrix, vedor) - vedor matrix-vedor multi pli cation

(matrix, vedor) — update vedor | gaxpy (i.e. generalized saxpy), which is defined as
followsy := Ax +y, wherex, y OR"and A OR™*"

(matrix, matrix) — matrix matrix addition, matrix difference, matrix multi pli cation

Table 22 Binary operations

A standard set of vedor and matrix operations is defined in the form of the BLAS (see Sedion
10.1.1.2.4). The BLAS are a superset of the operations listed in Table 21 and Table 22. Matrix
algorithms can be expressd at different levels, e.g. at the level of operations on matrix el ements
or at the Level-2 or Level-3 BLAS. Level-3 BLAS formulation of an algorithm contains matrix-
matrix operations as their smallest operations. This formulation is espedally suited for block
matrices.

10122141 Error Cheding: Bounds Cheding

Invoking the get or the set operation on a matrix or vedor with subscripts which are outside the
matrix dimensions or vedor dimension is an error. Cheding for this condition should be
parameterized.

101.221.4.2 Error Cheding: Cheding Argument Compatihbility

The vedors and matrices sipdied as input arguments to ane of the binary operations must have
compatible dimensions. For addition and subtraction of vedors and matrices and dot and outer
product, the @rresponding dmensions of bath arguments must be equal. For the matrix-matrix
multi pli cation, the number of columns of the first matrix must be equal to the number of rows in
the second matrix. Similarly, the dimension of the vedor in a matrix-vedor product must be ejual
to the number of columns of the matrix. Moreover, a determinant can be aomputed only for square
matrices. Cheding argument compatibility should be parameterized. If the numbers of rows and
columns are avail able at compil e time, the diedking should be performed at compil etime.

10.1.2.215 Interaction Between Operations and Sructure
The operations on matrices and vedors interact with their structuresin various ways:

Case Study: Generative Matrix Computation Library (GMCL) 325

e There are dependencies between the shape of the arguments and the shape the result of
operations.

* There are dependencies between the density of the arguments and the density of the result of
operations.

¢ The implementation algorithms of the matrix operations can be spedalized based on the
shape to save floating point operations.

e The implementation of an operation’s algorithm depends on the underlying representation
and format of the arguments, e.g. dense storage provides fast random access Thisis not the
case with most sparse storage formats.

Thefollowing is true about the shape of the result of an operation:
e theresult of multiplying a matrix by a scalar is a matrix of the same shape;

e adding, subtracting, or multiplying two lower triangular matrices results in alower triangular
matrix;

e adding, subtracting, or multiplying two upper triangular matrices results in an upper
triangular matrix;

e adding or subtracting two symmetric matrices resultsin a symmetric matrix;
e adding, subtracting, or multi plying two diagonal matrices resultsin a diagonal matrix.

When we onsider redangular, triangular, and diagonal matrices, the addition, subtraction, or
multiplication of two such matrices can potentially produce a matrix whose shape is equal to the
shape resulting from superimposing the shapes of the arguments, e.g. redangular and diagonal
matrices yield redangular matrices and lower diagonal and upper diagonal matrices also yield
redangular matrices, but diagonal and lower triangular matrices yield lower triangular matrices.

Adding, subtracting, or multiplying two dense matrices results — in most cases — in a dense
matrix. Adding or subtracting two sparse matrices results in a sparse matrix. Multiplying two
Sparse matrices can result in a sparse or a dense matrix.

The agorithms of the matrix operations can be spedalized based on the shape of the arguments.
For example, the multi pli cation of two lower triangular matrices requires about half the floating
point operations neaded to multiply two redangular matrices. Some of the spedal cases are
adding, subtracting, and multiplying two diagonal matrices, two lower or upper matrices, or a
diagonal and atriangular matrix, or multi plying a matrix by anull or identity matrix.

10.1.2.2.16 Optimizations

In addition to spedalizing algorithms for different shapes of the argument matrices, we @n also
optimize whole expressons. For example, more than one adjacent matrix addition operations in
an expresson should be all performed using one pair of nested logps adding the matrices
elementwise without any intermediate results. Thus, this optimization involves the dimination of
temporaries and loop fusing. We already described it in Sedion 9.4.1.

10.1.22.1.7 Attributes

An important attribute of a vedor is its dimension (or length), which is the number of e ements
the vedor contains. Since matrices are two dimensional, they have two attributes describing their
size: number of rows and number of columns. For a square matrix, the number of rows and the

326 Generative Programming, K. Czarnedi

number of columns are equal. Thus, we neel to spedfy only one number, which is referred to as
the order. For band matrices, we have to spedfy the bandwidth (i.e. the number of nonzero
diagonals, see Figure 141). It should be posshle to spedfy al these attributes gaticaly or
dynamically.

10.1.2.2.1.8 Concurrency and Synchronization

Matrix operations are well suited for parall éization (see[GL96,p. 256]). However, parall dizaion
of matrix algorithms congtitutes a complex area on its own and we will not further investigate this
topic. A smple form of concurrent exeaution, however, can be achieved using threads, i.e.
lightweight processes provided by the operating system. In this case, we have to synchronize the
concurrent accessto shared data structures, e.g. matrix e ement containers, matrix attributes. This
can be achieved through various locking mecdhanisms, e.g. semaphores or monitors. We use the
locking mechanisms to make all operations of a data structure mutuall y exclusive and to make the
writing operations &f exclusive (see Sedion 7.4.3). In the simplest case, we culd provide a
matrix synchronization wrapper, which makes get and set methods mutually exclusive and the set
method self exclusive.

10.1.2.2.19 Persistency

We nedl to provide methods for storing a matrix instance on a disk in some appropriate format
and for restoring it back to main memory.

10.1.2.22 Matrix Computation Algorithm Families

During Domain Definition in Sedion 10.1.1.2.5, we identified the main areas of matrix
computations:

o factorizaions,

e solving linear systems,

e computing least squares lutions,

e egenvalue mmputations, and

e iterative methods.

Each of these areas contain large famili es of matrix computation algorithms.

As an example, we will discussthe family of factorization algorithms. The discusson focuses on
the structure of this family rather than on explaining all the mathematical concepts behind the
algorithms. The interested reader will find detail ed explanations of these mnceptsin [GL96)].

In general, factorizaions deampose matrices into factor matrices with some desired properties by
applying a number of transformations. Factorizations are used in nearly all the major areas of
matrix computations: solving linear systems of equations, computing least squares lutions, and
eigenvalue ommputations. For example, the LU factorization of a matrix A computes the lower
triangular matrix L and the upper triangular matrix U, such that A = L*U. The LU factorization
can be used to solve a linear system of the form A*x=b, where A isthe wefficient matrix, bisthe
right-hand side vedor, and x is the sought-after solution vedor. After factoring A into L and U,
solving the system involves lving two triangular systems: L*y=b and U*x=y, which is very
simpleto do using forward or back substitution.

Case Study: Generative Matrix Computation Library (GMCL) 327

In general, we @n solve alinear system using either factorizations such as the LU, which are also
referred to as direct methods, or we @n use so-caled iterative methods. Iterative methods
generate series of approximate solutions, which hopefully converge on a single solution. Examples
of iterative methods for solving linear systems are Jacohi iterations, GaussSeidd iterations, SOR
iterations, and the Chebyshev semi-iterative method (see[GL96]).

There are two important categories of factorizations: the LU family and orthogonal factorizations.
Examples of the latter are Singular Value Decmposition (SVD) and the QR factorizaions (e.g.
Hausholder QR, Givens QR, Fast Givens QR, Gram-Schmidt QR).

linear system solver

general, dense, well-
conditioned

large, sparse
large, dense;
ill-conditioned

LU family orthogonal iterative methods
factorizations

Figure 144 Approachesto solving linear systems

Figure 144 explains when to use LU factorizations and when orthogonal factorizations or iterative
methods to solve a linear system. Each alternative method is annotated with the properties of the
coefficient matrix A as premnditions. These precnditi ons indicate when a given method is most
appropriate. For example, if A is ill-conditioned, LU factorizations sould not be used. A isill -
conditioned if it is nearly singular. Whether A is ill-conditioned or not is determined using
condition estimators (see[GL96] for detail s).

In the rest of this sdion, we will concentrate on LU factorizations. The LU factorizetion in its
general form, i.e. general LU, corresponds to the Gausdan eimination method. The general LU
can be spedalized in order to handle systems with spedal properties more dficiently. For
example, if A is gquare and positive definite, we use the Cholesky factorization, which is a
spedalizdion of the general LU.

There are spedalized versions of LU factorizations for different matrix shapes, e.qg. band matrices
or Hessenberg matrices, and for different entry types, i.e. point-entry and block-entry variants (see
[GL9g]).

An important issle in factorizaion algorithms is pivoting. Conceptually, pivoting involves data
movements such as the interchange of two matrix rows (and columns, in some approaches).
Gaussan dimination without pivoting fail s for a certain classof well-conditioned systems. In this
case, we have to use pivoting. However, if pivoting is not necessry, it should be avoided since it
degrades performance We have various pivoting strategies, e.g. no pivoting, partial pivoting, or
complete pivoting. Some factorization algorithms have spedal kinds of pivoting, e.g. symmetric
pivoting or diagonal pivoting. In cetain cases, e.g. when using the band version of LU
factorizations, pivoting destroys the shape of the matrix. This is problematic if we want to factor
dense matrices in place, i.e. by storing the resulting matrices in the argument matrix. In-place
computation is an important optimization technique in matrix computations alowing us to avoid
the movement of large amounts of data.

The pivoting code is usually scattered over the base algorithm causing the @de tangling problem
we discussed in Chapter 7. Thus, pivoting is an example of an asped in the AOP sense and we
nea to develop medhanisms for separating the pivoting code from the base algorithm (see eg.
[ILG+97)).

ERROR synt axerror
OFFENDI NG COVMAND: - -nostri ngval - -

STACK:

0
-0. 648

