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10.1 Domain Analysis

10.1.1 Domain Definition

10.1.1.1 Goals and Stakeholders
Our goal is to develop a matrix computation library. Thus, our domain is the domain of matrix
computation libraries. The most important group of stakeholders are users solving linear algebra
problems. We want the library to be highly reusable, adaptable, and very eff icient (in terms of
execution speed and memory consumption) and provide a highly intentional interface to
application programmers. For our case study, we will always prefer technologicall y better
solutions and ignore organizational issues. In a real world setting of a software developing
organization, the analysis of stakeholders and their goals, strategic project goals, and other
organizational issues may involve a significant effort.

10.1.1.2 Domain Scoping and Context Analysis

10.1.1.2.1 Characterization of the Domain of Matrix Computation Libraries

Our general domain of interest is referred to as matrix computations, which is a synonym for
applied, algorithmic linear algebra. Matrix computations is a mature domain with a history of
more than 30 years (e.g. [Wil61]). The domain includes both the well -defined mathematical
theory of linear algebra as well as the knowledge about eff icient implementations of algorithms
and data structures for solving linear algebra problems on existing computer architectures. This
implementation knowledge is well documented in the literature, e.g. [GL96, JK93].

In particular, we are interested in the domain of matrix computation libraries. A matrix
computation library contains ADTs and algorithm families for matrix computations and is
intended to be used as a part of a larger application. Thus, it is an example of a horizontal
domain. Examples of vertical domains involving matrix computations would be matrix
computation environments (e.g. Matlab [Pra95]) or speciali zed scientific workbenches (e.g. for
electromagnetics or quantum chemistry). They are vertical domains since they contain entire
applications including GUIs, graphical visualization, persistent storage for matrices, etc.

The main concepts in matrix computations are vectors, matrices, and computational methods, e.g.
methods for solving a system of linear equations or computing the eigenvalues. A glossary of
some of the terms used in matrix computations is given in 10.4.

10.1.1.2.2 Sources of Domain Knowledge

The following sources of domain knowledge were used in the analysis of the matrix computation
libraries domain:

• literature on matrix computations: [GL96, JK93];

• documentation, source code, and articles describing the design of existing matrix computation
libraries: [LHKK79, DDHH88, DDDH90, CHL+96] and those li sted in Table 15 and Table
16;

• online repository of matrices: [MM].
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10.1.1.2.3 Application Areas of Matrix Computation Libraries

In this section, we will i dentify features characterizing matrix computation libraries by analyzing
different application areas of matrix computations.

Table 13 and Table 14 li st some typical application areas of matrix computations and the types of
matrices and computations which are required for solving the problems in the li sted areas. The
application areas were grouped into two categories: one requiring dense matrices (Table 13) and
the other one requiring sparse matrices (Table 14). In general, large matrix problems usually
involve sparse matrices and large dense matrix problems are much less common.

Application area Dense matrix types Computational problems

electromagnetics (Helmholtz
equation), e.g. radar
technology, stealth (i.e.
“ radar-invisible” ) airplane
technology

complex, Hermitian (rarely
also non-Hermitian), e.g.
55296 by 55296

boundary integral solution
(specificall y the method of
moments)

flow analysis (Laplace or
Poisson equation), e.g.
airflow past an airplane
wing, flow around ships

symmetric, e.g. 12088 by
12088

boundary integral solution
(specificall y the panel
method)

diffusion of solid bodies in
liquids

block Toeplit z i. n. a.156

diffusion of light through
small particles

block Toeplit z i. n. a.

noise reduction block Toeplit z i. n. a.

quantum mechanical
scattering (computing the
scattering of elementary
particles from other particles
and atoms; involves
Schrödinger wave function)

i. n. a. dense linear systems

quantum chemistry
(Schrödinger wave function)

real symmetric, occasionally
Hermitian, small and dense
(large systems are usually
sparse)

symmetric eigenvalue
problems

material science i. n. a. unsymmetric eigenvalue
problems

real-time signal processing
applications

i. n. a. rank-revealing factorizations
and the updating of
factorizations after low rank
changes

Table 13   Examples of application areas for dense matrix computations (based on examples found in
[Ede91, Ede93, Ede94,Hig96])
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Application area Sparse matrix types Computational problems

static analyses in structural
engineering157, e.g. static
analysis of buildings, roofs,
bridges, airplanes, etc.

real symmetric positi ve
definite, pattern symmetric
indefinite, e.g. 3948 by 3948
with 60882 entries

generali zed symmetric
eigenvalue problem, finite-
element modeling, linear
systems

dynamic analysis in
structural engineering, e.g.
dynamic analysis of fluids,
suspension bridges,
transmission towers, robotic
control

real symmetric and positi ve
definite or positi ve semi-
definite or indefinite

symmetric eigenvalue
problems, linear systems

hydrodynamics real unsymmetric, e.g. 100 by
100 with 396 entries

eigenvalues of the Jacobi
matrix

oceanic modeling, e.g.
models of the shallow waves
for the Atlantic and Indian
Oceans

real symmetric indefinite,
real skew symmetric, e.g.
1919 by 1919 with 4831
entries

finite-difference model

acoustic scattering complex symmetric i. n. a.

fluid flow modeling, fluid
dynamics, flow in networks

real unsymmetric, symmetric
structure, e.g. 511 by 511,
2796 entries and 23560 by
23560 with 484256 entries

iterative and direct methods,
eigenvalue and eigenvector
problems (in perturbation
analysis), Lanczos method

petroleum engineering, e.g.
oil recovery, oil reservoir
simulation

real unsymmetric, symmetric
structure, e.g. 2205 by 2205
with 14133 entries

i. n. a.

electromagnetic field
modeling, e.g. integrated
circuit applications, power
lines

real pattern symmetric
indefinite, real pattern
symmetric positi ve definite,
real unsymmetric, e.g. 1074
by 1074 with 5760 entries

finite-element modeling,
symmetric and unsymmetric
eigenvalue problem

power systems simulations,
power system networks

real unsymmetric, real
symmetric indefinite, real
symmetric positi ve definite,
e.g. 4929 by 10595 with
47369 entries

symmetric and unsymmetric
eigenvalue problems

circuit simulation real unsymmetric, 58 by 59
with 340 entries

i. n. a.

astrophysics, e.g. nonlinear
radiative transfer and
statistical equili brium in
astrophysics

real unsymmetric, e.g. 765 by
765 with 24382 entries

i. n. a.

nuclear physics, plasma
physics

real unsymmetric, e.g. 1700
by 1700 with 21313 entries

Large unsymmetric
generali zed eigenvalue
problems

quantum chemistry complex symmetric
indefinite, e.g. 2534 by 2534
with 463360 entries

symmetric eigenvalue
problems
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chemical engineering, e.g.
simple chemical plant model,
hydrocarbon separation
problem

real unsymmetric, e.g. 225 by
225 with 1308 entries

conjugate gradient
eigenvalue computation,
initial Jacobian
approximation for sparse
nonlinear equations

probabilit y theory and its
applications, e.g. simulation
studies in computer systems
involving Markov modeling
techniques

real unsymmetric, e.g. 163 by
163 with 935 entries

unsymmetric eigenvalues and
eigenvectors

economic modeling

e.g. economic models of
countries, models of
economic transactions

real unsymmetric, e.g. 2529
by 2529 with 90158 entries

i. n. a.

demography, e.g. model of
inter-country migration

real unsymmetric, often
relatively large fill -in with no
pattern, e.g. 3140 by 3140
with 543162 entries

i. n. a.

surveying real unsymmetric, e.g. 480 by
480 with 17088 entries

least squares problem

air traff ic control sparse real symmetric
indefinite, e.g. 2873 by 2873
with 15032 entries

conjugate gradient
algorithms

ordinary and partial
differential equations

real symmetric positi ve
definite, real symmetric
indefinite, real unsymmetric,
e.g. 900 by 900 with 4322
entries

symmetric and unsymmetric
eigenvalue problems

Table 14   Examples of application areas for sparse matrix computations (based on examples found in
[MM])

10.1.1.2.4 Existing Matrix Computation Libraries

As of writing, the most comprehensive matrix computation libraries available are written in
Fortran. However, several object-oriented matrix computation libraries (for performance reasons,
they are written mostly in C++) are currently under development. Table 15 and Table 16 li st some
of the publicly and commerciall y available matrix computation libraries in Fortran and in C++
(also see [OONP]).

Matrix computations library Features

LINPACK

a matrix computation library for solving
dense linear systems; superseded by
LAPACK

see [DBMS79] and
http://www.netlib.org/linpack

language: Fortran

matrix types: dense, real, complex,
rectangular, band, symmetric, triangular, and
tridiagonal

computations: factorizations (Cholesky, QR),
systems of linear equations (Gaussian
elimination, various factorizations), linear
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least squares problems, and singular value
problems

EISPACK

a matrix computation library for solving
dense eigenvalue problems; superseded by
LAPACK

see [SBD+76] and
http://www.netlib.org/eispack

language: Fortran

matrix types: dense, real, complex,
rectangular, symmetric, band, and tridiagonal

computations: eigenvalues and eigenvectors,
linear least squares problems

LAPACK

a matrix computation library for dense linear
problems; supersedes both LINPACK and
LAPACK

see [ABB+94] and
http://www.netlib.org/lapack

language: Fortran

matrix types: dense, real, complex,
rectangular, band, symmetric, triangular, and
tridiagonal

computations: systems of linear equations,
linear least squares problems, eigenvalue
problems, and singular value problems

ARPACK

a comprehensive library for solving real or
complex and symmetric or unsymmetric
eigenvalue problems; uses LAPACK and
BLAS (see text below Table 16)

see [LSY98] and
http://www.caam.rice.edu/software/ARPACK

language: Fortran

matrix types: provided by BLAS and
LAPACK

computations: Implicitl y Restarted Arnoldi
Method (IRAM), Implicitl y Restarted
Lanczos Method (IRLM), and supporting
methods for solving real or complex and
symmetric or unsymmetric eigenvalue
problems

LAPACK++

a matrix computation library for general
dense linear problems; provides a subset of
LAPACK functionalit y in C++

see [DPW93] and
http://math.nist.gov/lapack++

language: C++

matrix types: dense, real, complex,
rectangular, symmetric, symmetric positi ve
definite, band, triangular, and tridiagonal

computations: factorizations (LU, Cholesky,
QR), systems of linear equations and
eigenvalue problems, and singular value
problems

ARPACK++

subset of ARPACK functionalit y in C++
(using templates)

see [FS97] and
http://www.caam.rice.edu/software/ARPACK
/arpack++.html

language: C++

matrix types: dense, sparse (CSC), real,
complex, rectangular, symmetric, band

computations: Implicitl y Restarted Arnoldi
Method (IRAM)

SparseLib++

library with sparse matrices; intended to be
used with IML++

see [DLPRJ94] and
http://math.nist.gov/sparselib++

language: C++

matrix types: sparse
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IML++ (Iterative Methods Library)

library with iterative methods; requires a
library implementing matrices, e.g.
SparseLib++

see [DLPR96] and http://math.nist.gov/iml++

language: C++

matrix types: library implementing matrices

computations: iterative methods for solving
both symmetric and unsymmetric linear
systems of equations (Richardson Iteration,
Chebyshev Iteration, Conjugate Gradient,
Conjugate Gradient Squared, BiConjugate
Gradient, BiConjugate Gradient Stabili zed,
Generali zed Minimum Residual, Quasi-
Minimal Residual Without Lookahead)

Newmat, version 9

a matrix computation library for dense linear
problems; does not use C++ templates

see
http://nz.com/webnz/robert/nzc_nm09.html

language: C++

matrix types: dense, real, rectangular,
diagonal, symmetric, triangular, band

computations: factorizations (Cholesky, QR,
singular value decomposition), eigenvalues of
a symmetric matrix, Fast Fourier

TNT (Template Numerical Toolkit)

a C++ matrix computation library for linear
problems; it has a template-based design;
eventually to supersede LAPACK++,
SparseLib++, and IMC++; as of writing, with
rudimentary functionalit y

see [Poz96] and http://math.nist.gov/tnt

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
rectangular, symmetric, triangular

computations: factorizations (LU, Cholesky,
QR), systems of linear equations

contains an interface to LAPACK

MTL (Matrix Template Library)

a C++ matrix library; it has an STL-li ke
template-based design; its goal is to provide
only one version of any algorithm and adapt
it for various matrices using parameterization
and iterators; it implements register blocking
using template metaprogramming; it exhibits
an excellent performance comparable to
tuned Fortran90 code

see [SL98a, SL98b] and
http://www.lsc.nd.edu/

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
rectangular, symmetric, band

Table 15   Some of the publicly available matrix computation libraries and their features

Matrix computations library Features

Math.h++

C++ vector, matrix, and an array library in
one

language: C++

matrix types: dense, real, complex,
rectangular
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Rogue Wave Software, Inc., see
http://www.roguewave.com/products/math

computations: LU factorization, FFT

LAPACK.h++

works on top of Math.h++; offers
functionalit y of the Fortran LAPACK library
in C++

Rogue Wave Software, Inc., see
http://www.roguewave.com/products/lapack

language: C++

matrix types: dense (some from Math.h++),
sparse, real, complex, symmetric, hermitian,
skew-symmetric, band, symmetric band,
hermitian band, lower triangular, and upper
triangular matrices

computations: factorizations (LU, QR, SVD,
Cholesky, Schur, Hessenberg, complete
orthogonal, tridiagonal), real/complex and
symmetric/unsymmetric eigenvalue problems

Matrix<LIB>

LINPACK and EISPACK functionalit y in
C++ Matlab-li ke syntax

MathTools Ltd, see
http://www.mathtools.com

language: C++

matrix types: dense, real, complex

computations: factorizations (Cholesky,
Hessenberg, LU, QR, QZ, Schur and SVD),
solving linear systems, linear least squares
problems, eigenvalue/eigenvector problems

ObjectSuite™ C++: IMSL Math Module for
C++

a matrix computation library for dense linear
problems

Visual Numerics, Inc., see
http://www.vni.com/products/osuite

language: C++

matrix types: dense, real, complex,
rectangular, symmetric/Hermitian and
symmetric/Hermitian positi ve definite

computations: factorizations (LU, Cholesky,
QR, and Singular Value Decomposition),
linear systems, linear least squares problems,
eigenvalue and eigenvector problems, two-
dimensional FFTs

Table 16   Some of the commercially available matrix computation libraries and their features

A set of basic matrix operations and formats for high-performance architectures has been
standardized in the form of the Basic Linear Algebra Subprograms (BLAS). The operations are
organized according to their complexity into three levels:  Level-1 BLAS contain operations
requiring O(n) of storage for input data and O(n) time of work, e.g. vector/vector operations (see
[LHKK79]), Level-2 BLAS contain operations requiring O(n2) of input and O(n2) of work, e.g.
matrix-vector multipli cation (see [DDHH88]), Level-3 BLAS contain operations requiring O(n2)
of input and O(n3) of work, e.g. matrix-matrix multipli cation (see [DDDH90, BLAS97]). There
are also Sparse BLAS [CHL+96], which are special BLAS for sparse matrices. The Sparse BLAS
standard also defines various sparse storage formats. Different implementations of BLAS are
available from http://www.netlib.org/blas/.

10.1.1.2.5 Features of the Domain of Matrix Computation Libraries

From the analysis of application areas and existing matrix computation libraries (Table 13, Table
14, Table 15, and Table 16), we can derive a number of major matrix types and computational
method types which are common in the matrix computations practice. They are li sted in Table 17
and Table 18, respectively. The types of matrices and computations represent the main features of
the domain of matrix computation libraries and can be used to describe the scope of a matrix
computation library. The rationale for including each of these features in a concrete matrix
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computation library implementation are also given in Table 17 and Table 18. Some features such
as dense matrices and factorizations are basic features required by many other features and they
should be included in any matrix computation library implementation. Some other features such
as complex matrices and methods for computing eigenvalues are — unless directly required by
some stakeholders — optional and their implementation may be deferred.

Matrix type Rationale for inclusion

dense matrices Dense matrices are ubiquitous in linear algebra
computations and are mandatory for any matrix
computation library.

sparse matrices In practice, large linear systems are usually sparse.

real matrices Real matrices are very common in linear algebra
problems.

complex matrices Complex matrices are less common than real matrices but
still very important for a large class of problems.

rectangular, symmetric,
diagonal, and triangular
matrices

Rectangular, symmetric, diagonal, and triangular matrices
are very common in linear algebra problems and are
mandatory for any matrix computation library.

band matrices Band matrices are common in many practical problems,
e.g. a large percentage of the matrices found in [MM] are
band matrices.

other matrix shapes (e.g.
Toeplit z, tridiagonal, symmetric
band)

There is a large number of other matrix shapes which are
speciali zed for various problems. In general, providing all
possible shapes in a general purpose matrix computation
library is not possible since new applications may require
new speciali zed shapes.

Table 17   Major matrix types and the rationale for their inclusion in the implemented feature set
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Figure 137 summarizes the features of a matrix computation library in a feature diagram. The
priorities express the typicalit y rate of the variable features. These typicalit y rates are informal and
are intuiti vely based on the analysis of application areas and existing matrix computation
libraries.

Another important feature of a matrix computation library, which will not be considered here, is
its target computer architecture, e.g. hierarchical memory, multiple processors with distributed
memory or shared memory, etc.

Computational methods Rationale for inclusion

factorizations (decompositions) Factorizations are needed for direct methods
and matrix analysis and are mandatory for
any matrix computation library.

direct methods for solving linear systems Direct methods (e.g. using the LU
factorization) are standard methods for
solving linear systems.

least squares methods The least squares approach is concerned with
the solution of overdetermined systems of
equations. It represents the standard scientific
method to reduce the influence of errors
when fitting models to given observations.

symmetric and unsymmetric eigenvalue and
eigenvector methods

Eigenvalue methods have numerous
applications in science and engineering.

iterative methods for linear systems Iterative methods for linear systems are the
methods of choice for some large sparse
systems. There are iterative methods for
solving linear systems and for computing
eigenvalues.

Table 18   Major matrix computational methods types and the rationale for their inclusion in the
implemented feature set
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10.1.1.2.6 Relationship to Other Domains

The domain of array libraries is an example of an analogy domain (see Section 3.6.3) of the
domain of matrix computation libraries. Array libraries implement arrays (including two-
dimensional arrays) and numerical computations on arrays. Thus, there are significant similarities
between array libraries and matrix computation libraries. But there are also several differences:

• Array libraries, in contrast to matrix computation libraries, also cover arrays with more than
two dimensions.

• Array operations are primaril y elementwise operations. For example, in an array library *
means elementwise multiply, whereas in a matrix computation library * designates matrix
multipli cation.

• Arrays usually support a wide range of element types, e.g. int, float, char, bool, and user
defined types, whereas the type of matrix elements is either real or complex numbers.

• Array libraries usually do not provide a comprehensive set of algorithms for solving
complicated linear problems. They rather focus on other areas, e.g. signal processing.
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Figure 137   Feature diagram of a matrix computation library



Case Study: Generative Matrix Computation Library (GMCL) 313

• Array libraries usually do not provide any special support for different shapes and densities.

Blit z++ [Vel97] is an example of an array library. Math.h++ (see Table 16) combines aspects of
both an array and a matrix computation library in one.

An example of another analogy domain is the domain of image processing libraries. Images are
somewhat similar to matrices. However, there are also several differences:

• The elements of an image are binary, gray scale, or color pixel values. Binary and color pixel
values require a different representation than matrix elements. For example, color pixels may
be represented using three values and a collection of binary pixels is usually represented by
one number.

• The operations and algorithms required in image processing are different than those used for
solving linear problems.

An example of a support domain is the domain of container libraries. A container library, e.g. the
Standard Template Library (STL; [MS96, Bre98]) could be used to implement storage for matrix
elements in a matrix computation library.

10.1.2 Domain Modeling

10.1.2.1 Key Concepts of the Domain of Matrix Computation Libraries
The key concepts of the domain of matrix computation libraries are

• abstract data types: vectors and matrices;

• algorithm families: factorizations, solving systems of linear equations, solving least squares
problems, solving eigenvalue and eigenvector problems, and iterative methods.

10.1.2.2 Feature Modeling of the Key Concepts

10.1.2.2.1 Features of Vectors and Matrices

This section describes the features of vectors and matrices. Since the vector features represent a
subset of the matrix features, we only li st the matrix features and indicate if a feature does not
apply to vectors. Please note that vectors can be adequately represented as matrices with number
of rows equal one or number of columns equal one.

We have the following matrix features:

• element type: type of the matrix elements;

• subscripts: subscripts of the matrix elements;

• structure: the arrangement and the storage of matrix elements:

• entry type: whether an entry is a scalar or a matrix;

• density: whether the matrix is sparse or dense;

• shape: the arrangement pattern of the nonzero matrix elements (this feature does not apply to
vectors);

• representation: the data structures used to store the elements;
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• format: the layout of the elements in the data structures;

• memory management: allocating and relinquishing memory;

• operations: operations on matrices (including their implementations);

• attributes: matrix attributes, e.g. number of rows and columns;

• concurrency and synchronization: concurrent execution of algorithms and operations and
synchronization of memory access;

• persistency: persistent storage of a matrix instance;

• error handling: error detection and notification, e.g. bounds checking, compatibilit y checking
for vector-vector, matrix-vector, and matrix-matrix operations.

10.1.2.2.1.1 Element Type

The only element types occurring in linear algebra (and also in the application areas li sted in
Table 13 and Table 14) are real and complex numbers. Existing libraries (Table 15 and Table 16)
typicall y support single and double precision real and complex element types. Other element types
(e.g. bool, user defined types, etc.) are covered by array libraries (see Section 10.1.1.2.6).

10.1.2.2.1.2 Subscripts (Indices)

The following are the subfeatures concerning subscripts:

• index type: The type of subscripts is an integral type, e.g. char, short, int, long, unsigned
short, unsigned int, or unsigned long.

• maximum index value: The choice of index type, e.g. char or unsigned long, determines the
maximal size of a matrix or vector.

• index base: There are two relevant choices for the start value of indices: C-style indexing (or
0-base indexing), which starts at 0, and the Fortran-style indexing (or 1-base indexing),
which starts at 1. Some libraries, e.g. TNT (see Table 15), provide both styles at the same
time (TNT provides the operator “ [] ” for 0-base indexing and the operator “ ()” for 1-base
indexing).

• subscript ranges: Additionally, we could also have a subscript type representing subscript
ranges. An example of range indexing is the Matlab indexing style [Pra95], e.g. 1:4 denotes a
range from 1 to 4, 0:9:3 denotes a range from 0 to 9 with stride 3. An example of a library
supporting subscript ranges is Matrix<LIB> (see Table 16).
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10.1.2.2.1.3 Structure

Structure is concerned with the arrangement and the storage of matrix or vector elements. We can
exploit the arrangement of the elements in order to reduce storage requirements and to provide
speciali zed and faster variants of basic operations and more complex algorithms. The subfeatures
of the structure of matrices are shown in Figure 139.

10.1.2.2.1.3.1 Entry Type

The entries in a matrix are usually scalars (e.g. real or complex). These types of matrices are
referred to as point-entry matrices [CHL+96]. There are also matrices whose entries are matrices
and they are referred to as block matrices [CHL+96, GL96]. Block matrices are common in high-
performance computing since they allow us to express operations on large matrices in terms of
operations on small matrices. This formulation enables us to take advantage of the hierarchical
memory organization on modern computer architectures.

The memory of modern computer architectures is usually organized into a hierarchy: The higher
levels in the hierarchy feature memory fast in access but of limited capacity (e.g. processor cache).
As we move down the hierarchy, the memory speed decreases but its capacity increases (e.g. main
memory, disk).

When performing a matrix operation, it is advantageous to keep all the operands in cache in order
to eliminate excessive data movements between the cache and the main memory during the
operation. If the operands are matrices which entirely fit into the cache, we can use the point-entry
format. But if a matrix size exceeds the cache size, the block format should be preferred.
Operations on block matrices are performed in terms of operations on their blocks, e.g. matrix
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Figure 138   Subscripts
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multipli cation is performed in terms of multipli cations of the block submatrices. By properly
adjusting the block size, we are able to fit the arguments of the submatrix operation into the cache.

Furthermore, we distinguish between constant blocks (i.e. blocks have equal sizes) and variable
blocks (i.e. blocks have variable sizes). The subfeatures of entry type are summarized in Figure
140.

Blocking is used in high performance linear algebra libraries such as LAPACK (see Table 15).

10.1.2.2.1.3.2 Density

One of the major distinctions between matrices is whether a matrix is dense or sparse. A dense
matrix is a matrix with a large percentage of nonzero elements (i.e. elements not equal zero). A
sparse matrix, on the other hand, contains a large percentage of zero elements (usually more than
90%). In [Sch89], Schendel gives an example of a sparse matrix in the context of the frequency
analysis of linear networks which involves solving a system of linear equations of the form A(ωi)x
= b. In this example, A is a 3304-by-3304 Hermitian matrix with 60685 nonzero elements. Thus,
the nonzero elements make up only 0.6% of all elements in A (i.e. the fill -in is 0.6%).
Furthermore, the LU-factorization of A yields a new matrix with an even smaller fill -in of 0.4%
(see Table 14 for more examples of sparse matrices). The representation of A as a dense matrix
would require several megabytes of memory. However, it is necessary to store only the nonzero
elements, which dramaticall y reduces the storage requirements for sparse matrices. The
knowledge of the density of a matrix allows us not only to optimize the storage consumption, but
also the processing speed since we can provide speciali zed variants of operations which take
advantage of sparseness.

Most matrix computation libraries provide dense matrices and some matrix computation libraries
also implement sparse matrices (e.g. LAPACK.h++; see Table 16). Since most of the large matrix
problems are sparse (see Table 14), a general-purpose matrix computation library is much more
attractive if it implements both dense and sparse matrices.

10.1.2.2.1.3.3 Shape

Matrix computations involve matrices with different arrangement patterns of the nonzero
elements. Such arrangement patterns are referred to as shapes. Some of the more common shapes
include the following (see Figure 141):

• Rectangular and square matrices: A rectangular matrix has a different number of rows than
the number of columns. The number of rows and the number of columns in a square matrix
are equal.

• Null matrix: A null matrix consists of only zero elements. No elements have to be stored for a
null matrix but only the number of rows and columns.

• Diagonal matrix: A diagonal matrix is a square matrix with all zero elements except the
diagonal elements (i.e. elements whose row index and column index are equal). Only the

SRLQW FRQVWDQW�EORFNV YDULDEOH�EORFNV

HQWU\�W\SH

Figure 140   Entry Type
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(main) diagonal elements have to be stored. If they are all equal, the matrix is referred to as a
scalar matrix and only the scalar has to be stored.

• Identity matrix: An identity matrix is a diagonal matrix whose diagonal entries are all equal
1. No elements have to be stored for an identity matrix but only the number of rows and
columns.

• Symmetric, skew-symmetric or anti-symmetric, Hermitian, and skew-Hermitian matrices: For
all elements of a symmetric matrix the following equation holds aij = aji. For a skew-
symmetric matrix, we have a slightly different equation: aij = - aji. A complex-valued matrix
with symmetric real part and skew-symmetric imaginary part is referred to as a Hermitian. If,
on the other hand, the real part is skew-symmetric and the imaginary part is symmetric, we
have a skew-Hermitian matrix. For all these four matrix types we only need to store one half
of the matrix. One possible storage format is to consecutively store all the rows (or columns
or diagonals) of one half of the matrix in a vector and use an indexing formula to access the
matrix elements.

• Upper or lower triangular or unit triangular or Hessenberg matrices: An upper triangular
matrix is a square matrix which has nonzero elements only on and above the main diagonal.
If the diagonal elements are only ones, the matrix is referred to as unit upper triangular. If
the diagonal elements are only zeros, the matrix is referred to as strictly upper triangular. If,
on the other hand, the main diagonal and also the diagonal below contains nonzeros, the
matrix is referred to as an upper Hessenberg. The lower triangular, lower unit triangular, and
lower Hessenberg matrices are defined analogously. Similarly as in the case of symmetric
matrices, only one half of the elements of a triangular matrix has to be stored.

• Upper or lower bidiagonal, and tridiagonal matrices: These matrices are diagonal matrices
with an extra nonzero diagonal above, or below, or both above and below the main diagonal.

• Band matrices: Band matrices have nonzero fill -in in one or more adjacent diagonals (see
Figure 141. Diagonal and triangular matrices can be regarded as a special case of band
matrices. An example of a general storage schema for band matrices would be storing the
nonzero diagonals in a smaller matrix, with one diagonal per row and accessing the elements
using an indexing formula. Special types of band matrices are upper and lower band
triangular matrices, band diagonal matrices, and symmetric band matrices.

• Toeplitz matrices: A Toeplit z matrix is a square matrix, where all elements within each of its
diagonals are equal. Thus, a Toeplit z matrix requires the same amount of storage as a
diagonal matrix.
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Some of the above-li sted shapes also apply to block matrices, e.g. a block matrix with null matrix
entries except for the diagonal entries is referred to as a block diagonal matrix. There are also
numerous examples of “ more exotic” , usually sparse matrix types in the literature, e.g. in
[Sch89]: strip matrix, band matrix with margin (also referred to as a bordered matrix), block
diagonal matrix with margin, band matrix with step (see Figure 142).
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Figure 141   Examples of n×n band matrices (only the gray region and the shown
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Most matrix computation libraries provide rectangular, symmetric, diagonal, and triangular
matrices. Some libraries also provide band matrices (e.g. LAPACK, LAPACK++, ARPACK++,
Newmat, LAPACK.h++; see Table 15 and Table 16). Other shapes are less commonly supported.

10.1.2.2.1.3.4 Representation

The elements of a matrix or a vector can be stored in a variety of data structures, e.g. arrays, li sts,
binary trees, dictionaries (i.e. maps). Each data structure exhibits different performance regarding
adding, removing, enumerating, and randomly accessing the elements.

10.1.2.2.1.3.5 Memory Management in Data Structures

The data structures for storing matrix elements may use different memory allocation strategies.
We discussed different strategies in Section 9.3.2.2.1. Here, we require at least static and dynamic
memory allocation. We extend the representation feature with the memory allocation subfeature.
The resulting diagram is shown in Figure 143.

10.1.2.2.1.3.6 Format

Format describes how the elements of a matrix of certain entry type, shape, and density are stored
in concrete data structures. For the sake of simplicity, we will further investigate only dense or
sparse, point-entry matrices with the most common shapes: rectangular, symmetric, triangular,

VWULS�PDWUL[ EDQG�PDWUL[
ZLWK�PDUJLQ

EDQG�PDWUL[�ZLWK
VWHS

Figure 142   Some more exotic matrix shapes
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diagonal, and band. We first describe the common formats for rectangular dense matrices and
general sparse matrices and then discuss the special storage and access requirements of other
shapes.

10.1.2.2.1.3.6.1 Rectangular Dense Matrices

There are two major formats for storing the elements of a rectangular dense matrix:

1. row-major or C-style format: In the row-major format, the matrix elements are stored row-
wise, i.e. the neighboring elements of one row are also adjacent in memory. This format
corresponds to the way arrays are stored in C.

2. column-major or Fortran-style format: In the column-major format, the matrix elements are
stored column-wise, i.e. the neighboring elements of one column are also adjacent in
memory. This format corresponds to the array storage convention of Fortran.

Newer matrix computation libraries usually provide both formats (e.g. LINPACK++, TNT). The
column-major format is especiall y useful for interfacing to Fortran libraries.

10.1.2.2.1.3.6.2 General Sparse Matrices

There are several common storage formats for general sparse matrices, i.e. formats that do not
assume any specific shape. However, they are also used to represent shaped sparse matrices. The
general sparse storage formats include the following:

• coordinate format (COO): Only the nonzero matrix elements along with their coordinates are
stored. This format is usually implemented using three vectors, one containing the nonzeros
and the other two containing their row and the column indices, respectively. Another
possibilit y is to use one array or li st with objects, where each of the objects encapsulates a
matrix element and its coordinates. Yet another possibilit y is to use a hash dictionary data
structure, where the keys are the coordinates and the values are the nonzeros.

• compressed sparse column format (CSC): The nonzeros are stored column-wise, i.e. the
nonzeros of a column are stored in the order of their occurrence within the columns. One
possibilit y is to store the columns containing nonzeros in sparse vectors.

• compressed sparse row format (CSR): The nonzeros are stored row-wise, i.e. the nonzeros of
a row are stored in the order of their occurrence within the rows. One possibilit y is to store
the rows containing nonzeros in sparse vectors.

There are also several other sparse formats including sparse diagonal (DIA), ellpack/itpack
(ELL), jagged diagonal (JAD), and skyline formats (SKY) and several block matrix formats (see
[CHL+96]). Table 19 summarizes when to use which sparse format.
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10.1.2.2.1.3.6.3 Dependency Between Density, Shape, and Format

The storage and access requirements of dense or sparse, point-entry matrices with the shapes
rectangular, symmetric, triangular, diagonal, and band are set out in Table 20.

Sparse Format When to Use?

coordinate (COO) Most flexible data structure when constructing or modifying a
sparse matrix.

compressed sparse column
(CSC)

Natural data structure for many common matrix operations
including matrix multipli cation and constructing or solving
sparse triangular factors.

compressed sparse row
(CSR)

Natural data structure for many common matrix operations
including matrix multipli cation and constructing or solving
sparse triangular factors.

sparse diagonal (DIA) Particularly useful for matrices coming from finite difference
approximations to partial differential equations on uniform
grids.

ellpack/itpack (ELL) Appropriate for finite element or finite volume approximations
to partial differential equations where elements are of the same
type, but the gridding is irregular.

jagged diagonal (JAD) Appropriate for matrices which are highly irregular or for a
general-purpose matrix multipli cation where the properties of
the matrix are not known a priori.

skyline (SKY) Appropriate for band triangular matrices. Particularly well
suited for Cholesky or LU decomposition when no pivoting is
required. In this case, all fill will occur within the existing
nonzero structure.

Table 19   Choice of sparse format (adapted from [CHL+96])
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Structure Type Storage and access requirements

dense rectangular We store the full matrix in the row- or the column-major dense format.

dense symmetric We store one half of the matrix, e.g. row-, column-, or diagonal-wise in
a dense vector, and use an indexing formula to access the elements.
Alternatively, we can store the elements in a full -size two-dimensional
array using only half of it. The latter approach needs double as much
memory as the first one, but it is faster in access since we do not have to
transform the indices.

Assigning a value to the element aij with i ≠ j, automaticall y assigns the
same value to aji.

dense triangular We store the nonzero half of the matrix, e.g. row-, column-, or
diagonal-wise in a dense vector. Alternatively, we can store the
elements in a two-dimensional array, which requires more space but is
faster in access.

Reading an element from the other half returns 0 and setting such an
element to a value other than 0 results in an error.

dense diagonal We store only the diagonal in a dense vector.

Reading an element off the diagonal returns 0 and setting such an
element to a value other than 0 results in an error.

dense band We store the band only, e.g. diagonal-wise in a dense vector or a
smaller two-dimensional array. Alternatively, we can store the elements
in a full -size two-dimensional array, which requires more space but is
faster in access.

Reading an element off the band returns 0 and setting such an element
to a value other than 0 results in an error.

sparse rectangular We store only the nonzero elements in one of the sparse formats, e.g.
CSR, CSC, COO, ELL, JAD;

sparse symmetric We store only one half of the matrix and only the nonzero elements
using one of the sparse formats (esp. SKY or DIA).

Assigning a value to the element aij with i ≠ j, automaticall y assigns the
same value to aji.

sparse triangular We use one of the sparse formats (esp. SKY or DIA) to store the
nonzero elements.

Setting an element in the zero-element half of the matrix to a value
other than 0 results in an error.

sparse diagonal We use one of the sparse matrix formats (esp. DIA) to store the nonzero
elements or we store them in a sparse vector.

Reading elements off the diagonal returns 0 and assigning a value other
than 0 to them causes an error.

sparse band We use one of the sparse formats (esp. DIA for band diagonal and DIA
or SKY for band triangular) to store the nonzero elements.

Setting an element off band to a value other than 0 results in an error.

Table 20   Storage and access requirements of matrices of different structures
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The particular shape of a matrix — especiall y of a sparse matrix — is application dependent and
not all of the possible shapes and formats can be provided by a matrix computation library. Thus,
it is important to allow a client program to supply speciali zed formats.

10.1.2.2.1.3.7 Error Checking: Checking Assignment Validity

Checking the validity of an assignment, e.g. checking whether the value assigned to an element
within the zero-element half of a triangular matrix is actuall y a zero, should be parameterized.

10.1.2.2.1.4 Matrix and Vector Operations

We will consider the following operations on matrices and vectors as parts of a matrix component:

• access operations, i.e. set element and get element and

• basic mathematical operations directly based on access operations, e.g. matrix addition and
multipli cation.

More complex operations, such as computing the inverse of a matrix or solving triangular
systems, will be analyzed together with the algorithm families (e.g. solving linear systems).

The basic operations can be clustered according to their arity and argument types. The unary
operations are li sted in Table 21. The operation type indicates the input argument type and result
type. They are separated by an arrow.

The binary operations are set out in Table 22. An update operation stores the result in one of its
input arguments. The definitions of the operations li sted in Table 21 and Table 22 can be found in
[GL96].

Operation type Operations

vector → scalar Vector norms, e.g. p-norms (1-norm, 2-norm, etc.)

vector → vector transposition

matrix → scalar matrix norms, e.g. Frobenius norm, p-norms

determinant

matrix → matrix transposition

Table 21   Unary operations
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A standard set of vector and matrix operations is defined in the form of the BLAS (see Section
10.1.1.2.4). The BLAS are a superset of the operations li sted in Table 21 and Table 22. Matrix
algorithms can be expressed at different levels, e.g. at the level of operations on matrix elements
or at the Level-2 or Level-3 BLAS. Level-3 BLAS formulation of an algorithm contains matrix-
matrix operations as their smallest operations. This formulation is especiall y suited for block
matrices.

10.1.2.2.1.4.1 Error Checking: Bounds Checking

Invoking the get or the set operation on a matrix or vector with subscripts which are outside the
matrix dimensions or vector dimension is an error. Checking for this condition should be
parameterized.

10.1.2.2.1.4.2 Error Checking: Checking Argument Compatibilit y

The vectors and matrices supplied as input arguments to one of the binary operations must have
compatible dimensions. For addition and subtraction of vectors and matrices and dot and outer
product, the corresponding dimensions of both arguments must be equal. For the matrix-matrix
multipli cation, the number of columns of the first matrix must be equal to the number of rows in
the second matrix. Similarly, the dimension of the vector in a matrix-vector product must be equal
to the number of columns of the matrix. Moreover, a determinant can be computed only for square
matrices. Checking argument compatibilit y should be parameterized. If the numbers of rows and
columns are available at compile time, the checking should be performed at compile time.

10.1.2.2.1.5 Interaction Between Operations and Structure

The operations on matrices and vectors interact with their structures in various ways:

Operation type Operations

(scalar, vector) → vector scalar-vector multipli cation

(scalar, matrix) → matrix scalar-matrix multipli cation

(scalar, vector) → update vector saxpy, which is defined as follows y := ax + y. where x, y
∈ Rn and a ∈R

(vector, vector) → vector vector addition, vector difference, vector multiply (or the
Hadamard product)

(vector, vector) → scalar dot product

(vector, vector) → matrix outer product

(vector, vector) → update matrix outer product update, which is defined as follows A := A
+ xyT, where x ∈ Rm, y ∈ Rn A ∈ Rm × n

(matrix, vector) → vector matrix-vector multipli cation

(matrix, vector) → update vector gaxpy (i.e. generali zed saxpy), which is defined as
follows y := Ax + y, where x, y ∈ Rn and A ∈ Rm × n

(matrix, matrix) → matrix matrix addition, matrix difference, matrix multipli cation

Table 22   Binary operations
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• There are dependencies between the shape of the arguments and the shape the result of
operations.

• There are dependencies between the density of the arguments and the density of the result of
operations.

• The implementation algorithms of the matrix operations can be speciali zed based on the
shape to save floating point operations.

• The implementation of an operation’s algorithm depends on the underlying representation
and format of the arguments, e.g. dense storage provides fast random access. This is not the
case with most sparse storage formats.

The following is true about the shape of the result of an operation:

• the result of multiplying a matrix by a scalar is a matrix of the same shape;

• adding, subtracting, or multiplying two lower triangular matrices results in a lower triangular
matrix;

• adding, subtracting, or multiplying two upper triangular matrices results in an upper
triangular matrix;

• adding or subtracting two symmetric matrices results in a symmetric matrix;

• adding, subtracting, or multiplying two diagonal matrices results in a diagonal matrix.

When we consider rectangular, triangular, and diagonal matrices, the addition, subtraction, or
multipli cation of two such matrices can potentiall y produce a matrix whose shape is equal to the
shape resulting from superimposing the shapes of the arguments, e.g. rectangular and diagonal
matrices yield rectangular matrices and lower diagonal and upper diagonal matrices also yield
rectangular matrices, but diagonal and lower triangular matrices yield lower triangular matrices.

Adding, subtracting, or multiplying two dense matrices results — in most cases — in a dense
matrix. Adding or subtracting two sparse matrices results in a sparse matrix. Multiplying two
sparse matrices can result in a sparse or a dense matrix.

The algorithms of the matrix operations can be speciali zed based on the shape of the arguments.
For example, the multipli cation of two lower triangular matrices requires about half the floating
point operations needed to multiply two rectangular matrices. Some of the special cases are
adding, subtracting, and multiplying two diagonal matrices, two lower or upper matrices, or a
diagonal and a triangular matrix, or multiplying a matrix by a null or identity matrix.

10.1.2.2.1.6 Optimizations

In addition to speciali zing algorithms for different shapes of the argument matrices, we can also
optimize whole expressions. For example, more than one adjacent matrix addition operations in
an expression should be all performed using one pair of nested loops adding the matrices
elementwise without any intermediate results. Thus, this optimization involves the elimination of
temporaries and loop fusing. We already described it in Section 9.4.1.

10.1.2.2.1.7 Attributes

An important attribute of a vector is its dimension (or length), which is the number of elements
the vector contains. Since matrices are two dimensional, they have two attributes describing their
size: number of rows and number of columns. For a square matrix, the number of rows and the
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number of columns are equal. Thus, we need to specify only one number, which is referred to as
the order. For band matrices, we have to specify the bandwidth (i.e. the number of nonzero
diagonals; see Figure 141). It should be possible to specify all these attributes staticall y or
dynamicall y.

10.1.2.2.1.8 Concurrency and Synchronization

Matrix operations are well suited for paralleli zation (see [GL96,p. 256]). However, paralleli zation
of matrix algorithms constitutes a complex area on its own and we will not further investigate this
topic. A simple form of concurrent execution, however, can be achieved using threads, i.e.
lightweight processes provided by the operating system. In this case, we have to synchronize the
concurrent access to shared data structures, e.g. matrix element containers, matrix attributes. This
can be achieved through various locking mechanisms, e.g. semaphores or monitors. We use the
locking mechanisms to make all operations of a data structure mutually exclusive and to make the
writing operations self exclusive (see Section 7.4.3). In the simplest case, we could provide a
matrix synchronization wrapper, which makes get and set methods mutually exclusive and the set
method self exclusive.

10.1.2.2.1.9 Persistency

We need to provide methods for storing a matrix instance on a disk in some appropriate format
and for restoring it back to main memory.

10.1.2.2.2 Matrix Computation Algorithm Families

During Domain Definition in Section 10.1.1.2.5, we identified the main areas of matrix
computations:

• factorizations,

• solving linear systems,

• computing least squares solutions,

• eigenvalue computations, and

• iterative methods.

Each of these areas contain large families of matrix computation algorithms.

As an example, we will discuss the family of factorization algorithms. The discussion focuses on
the structure of this family rather than on explaining all the mathematical concepts behind the
algorithms. The interested reader will find detailed explanations of these concepts in [GL96].

In general, factorizations decompose matrices into factor matrices with some desired properties by
applying a number of transformations. Factorizations are used in nearly all the major areas of
matrix computations: solving linear systems of equations, computing least squares solutions, and
eigenvalue computations. For example, the LU factorization of a matrix A computes the lower
triangular matrix L and the upper triangular matrix U, such that A = L*U. The LU factorization
can be used to solve a linear system of the form A*x=b, where A is the coeff icient matrix, b is the
right-hand side vector, and x is the sought-after solution vector. After factoring A into L and U,
solving the system involves solving two triangular systems: L*y=b and U*x=y, which is very
simple to do using forward or back substitution.
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In general, we can solve a linear system using either factorizations such as the LU, which are also
referred to as direct methods, or we can use so-called iterative methods. Iterative methods
generate series of approximate solutions, which hopefull y converge on a single solution. Examples
of iterative methods for solving linear systems are Jacobi iterations, Gauss-Seidel iterations, SOR
iterations, and the Chebyshev semi-iterative method (see [GL96]).

There are two important categories of factorizations: the LU family and orthogonal factorizations.
Examples of the latter are Singular Value Decomposition (SVD) and the QR factorizations (e.g.
Hausholder QR, Givens QR, Fast Givens QR, Gram-Schmidt QR).

Figure 144 explains when to use LU factorizations and when orthogonal factorizations or iterative
methods to solve a linear system. Each alternative method is annotated with the properties of the
coeff icient matrix A as preconditions. These preconditions indicate when a given method is most
appropriate. For example, if A is ill -conditioned, LU factorizations should not be used. A is ill -
conditioned if it is nearly singular. Whether A is ill -conditioned or not is determined using
condition estimators (see [GL96] for detail s).

In the rest of this section, we will concentrate on LU factorizations. The LU factorization in its
general form, i.e. general LU, corresponds to the Gaussian elimination method. The general LU
can be speciali zed in order to handle systems with special properties more eff iciently. For
example, if A is square and positi ve definite, we use the Cholesky factorization, which is a
speciali zation of the general LU.

There are speciali zed versions of LU factorizations for different matrix shapes, e.g. band matrices
or Hessenberg matrices, and for different entry types, i.e. point-entry and block-entry variants (see
[GL96]).

An important issue in factorization algorithms is pivoting. Conceptually, pivoting involves data
movements such as the interchange of two matrix rows (and columns, in some approaches).
Gaussian elimination without pivoting fail s for a certain class of well -conditioned systems. In this
case, we have to use pivoting. However, if pivoting is not necessary, it should be avoided since it
degrades performance. We have various pivoting strategies, e.g. no pivoting, partial pivoting, or
complete pivoting. Some factorization algorithms have special kinds of pivoting, e.g. symmetric
pivoting or diagonal pivoting. In certain cases, e.g. when using the band version of LU
factorizations, pivoting destroys the shape of the matrix. This is problematic if we want to factor
dense matrices in place, i.e. by storing the resulting matrices in the argument matrix. In-place
computation is an important optimization technique in matrix computations allowing us to avoid
the movement of large amounts of data.

The pivoting code is usually scattered over the base algorithm causing the code tangling problem
we discussed in Chapter 7. Thus, pivoting is an example of an aspect in the AOP sense and we
need to develop mechanisms for separating the pivoting code from the base algorithm (see e.g.
[ILG+97]).
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Figure 144   Approaches to solving linear systems
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A selection of important LU factorizations is shown in Figure 145. The algorithm variants are
annotated with matrix properties. An algorithm variant is well -suited for solving a given linear
system if the properties of the coeff icient matrix of this system match the variant’s annotation.

There are also special variants of the LU factorizations for different matrix shapes (not shown in
Figure 145). For example, Golub and van Loan describe speciali zations of general LU, LDLT, and
Cholesky for different band matrices in [GL96]. These speciali zations work fine without pivoting.
Unfortunately, pivoting, when used, destroys the band shape of the factored matrix. As stated, this
is problematic if we want to factor dense matrices in place.

In addition to shape, the algorithm selection conditions also include other mathematical properties
which are not as easy to determine as shape, e.g.:

• Positive definite: Given A∈Rn×n, A is positi ve definite if xT*A*x > 0, for all nonzero x∈Rn.

• Positive semidefinite: Given A∈Rn×n, A is positi ve definite if xT*A*x ≥ 0, for all x∈Rn.

• Indefinite: Given A∈Rn×n, A is indefinite if A=AT and xT*A*x takes on both positi ve and
negative values for different x∈Rn.

Since all the important properties of a matrix should be encoded in its type, we need to extend th
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