// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // list -- lets a user-defined stuct form intrusive linked lists // // Author : Michael Brooks // Created On : Wed Apr 22 18:00:00 2020 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Apr 24 18:12:59 2025 // Update Count : 72 // #pragma once #include forall( Decorator &, T & ) struct tytagref { inline T &; }; forall( tOuter &, tMid &, tInner & ) trait embedded { tytagref( tMid, tInner ) ?`inner( tOuter & ); }; // embedded is reflexive, with no info (void) as the type tag forall( T & ) static inline tytagref(void, T) ?`inner ( T & this ) { tytagref( void, T ) ret = {this}; return ret; } // // P9_EMBEDDED: Use on every case of plan-9 inheritance, to make "implements embedded" be a closure of plan-9 inheritance. // // struct foo { // int a, b, c; // inline (bar); // }; // P9_EMBEDDED( foo, bar ) // // usual version, for structs that are top-level declarations #define P9_EMBEDDED( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) P9_EMBEDDED_BDY_( immedBase ) // special version, for structs that are declared in functions #define P9_EMBEDDED_INFUNC( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, ) P9_EMBEDDED_BDY_( immedBase ) // forward declarations of both the above; generally not needed // may help you control where the P9_EMBEEDED cruft goes, in case "right after the stuct" isn't where you want it #define P9_EMBEDDED_FWD( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) ; #define P9_EMBEDDED_FWD_INFUNC( derived, immedBase ) auto P9_EMBEDDED_DECL_( derived, immedBase, ) ; // private helpers #define P9_EMBEDDED_DECL_( derived, immedBase, STORAGE ) \ forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \ STORAGE inline tytagref( immedBase, Tbase ) ?`inner( derived & this ) #define P9_EMBEDDED_BDY_( immedBase ) { \ immedBase & ib = this; \ Tbase & b = ib`inner; \ tytagref( immedBase, Tbase ) result = { b }; \ return result; \ } #define EMBEDDED_VIA( OUTER, MID, INNER ) (struct { tytagref( MID, INNER ) ( * ?`inner ) ( OUTER & ); }){ ?`inner } #define DLINK_VIA( TE, TLINK ) EMBEDDED_VIA( TE, TLINK, dlink( TE ) ) // The origin is the position encountered at the start of iteration, signifying, "need to advance to the first element," // and at the end of iteration, signifying, "no more elements." Normal comsumption of an iterator runs "advance" as // the first step, and uses the return of "advance" as a guard, before dereferencing the iterator. So normal // consumption of an iterator does not dereference an iterator in origin position. The value of a pointer (underlying a // refence) that is exposed publicly as an iteraor, and also a pointer stored internally in a link field, is tagged, to // indicate "is the origin" (internally, is the list-head sentinel node), or untagged, to indicate "is a regular node." // Intent is to help a user who dereferences an iterator in origin position (which would be an API-use error on their // part), by failing fast. #if defined( __x86_64 ) // Preferred case: tag in the most-significant bit. Dereference has been shown to segfault consistently. // Maintenance should list more architectures as "ok" here, to let them use the preferred case, when valid. #define ORIGIN_TAG_BITNO ( 8 * sizeof( size_t ) - 1 ) #else // Fallback case: tag in the least-significant bit. Dereference will often give an alignment error, but may not, // e.g. if accessing a char-typed member. 32-bit x86 uses the most- significant bit for real room on the heap. #define ORIGIN_TAG_BITNO 0 #endif #define ORIGIN_TAG_MASK (((size_t)1) << ORIGIN_TAG_BITNO) #define ORIGIN_TAG_SET( p ) ((p) | ORIGIN_TAG_MASK) #define ORIGIN_TAG_CLEAR( p ) ((p) & ~ORIGIN_TAG_MASK) #define ORIGIN_TAG_QUERY( p ) ((p) & ORIGIN_TAG_MASK) forall( tE & ) { struct dlink{ tE * next; tE * prev; }; static inline void ?{}( dlink( tE ) & this ) { this.next = this.prev = 0p; } forall( tLinks & = dlink( tE ) ) struct dlist { inline dlink( tE ); }; forall( tLinks & | embedded( tE, tLinks, dlink( tE ) ) ) { static inline tE * $get_list_origin_addr( dlist( tE, tLinks ) & list ) { dlink( tE ) & link_from_null = (*(tE *)0p)`inner; ptrdiff_t link_offset = (ptrdiff_t)&link_from_null; size_t origin_addr = ((size_t)&list) - link_offset; size_t preResult = ORIGIN_TAG_SET( origin_addr ); return (tE *)preResult; } static inline void ?{}( dlist( tE, tLinks ) & this ) { tE * listOrigin = $get_list_origin_addr( this ); ((dlink( tE ) &)this){ listOrigin, listOrigin }; } } } static inline forall( tE &, tLinks & | embedded( tE, tLinks, dlink( tE ) ) ) { bool isListed( tE & node ) { verify( &node != 0p ); dlink( tE ) & node_links = node`inner; return (node_links.prev != 0p) || (node_links.next != 0p); } bool isEmpty( dlist( tE, tLinks ) & list ) { tE * firstPtr = list.next; if ( ORIGIN_TAG_QUERY(( size_t)firstPtr) ) firstPtr = 0p; return firstPtr == 0p; } tE & first( dlist( tE, tLinks ) & list ) { tE * firstPtr = list.next; if ( ORIGIN_TAG_QUERY( (size_t)firstPtr ) ) firstPtr = 0p; return *firstPtr; } tE & last( dlist( tE, tLinks ) & list ) { tE * lastPtr = list.prev; if ( ORIGIN_TAG_QUERY( (size_t)lastPtr) ) lastPtr = 0p; return *lastPtr; } tE & insert_before( tE & before, tE & node ) { verify( &before != 0p ); verify( &node != 0p ); dlink( tE ) & linkToInsert = node`inner; verify( linkToInsert.next == 0p ); verify( linkToInsert.prev == 0p ); tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&before ); dlink( tE ) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & before_raw = *list_pos_links.prev; tE & before_elem = *(tE *) ORIGIN_TAG_CLEAR( (size_t)&before_raw ); linkToInsert.next = &before; linkToInsert.prev = &before_raw; dlink( tE ) & beforeLinks = before_elem`inner; beforeLinks.next = &node; list_pos_links.prev = &node; asm( "" : : : "memory" ); return node; } tE & insert_after( tE & after, tE & node ) { verify( &after != 0p ); verify( &node != 0p ); dlink( tE ) & linkToInsert = node`inner; verify( linkToInsert.prev == 0p ); verify( linkToInsert.next == 0p ); tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after ); dlink( tE ) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & after_raw = *list_pos_links.next; tE & after_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after_raw ); linkToInsert.prev = &after; linkToInsert.next = &after_raw; dlink( tE ) & afterLinks = after_elem`inner; afterLinks.prev = &node; list_pos_links.next = &node; asm( "" : : : "memory" ); return node; } tE & remove( tE & node ) { verify( &node != 0p ); verify( ! ORIGIN_TAG_QUERY( (size_t)&node) ); dlink( tE ) & list_pos_links = node`inner; tE & before_raw = *list_pos_links.prev; tE & before_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&before_raw ); dlink( tE ) & before_links = before_elem`inner; tE & after_raw = *list_pos_links.next; tE & after_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after_raw ); dlink( tE ) & after_links = after_elem`inner; before_links.next = &after_raw; after_links.prev = &before_raw; asm( "" : : : "memory" ); list_pos_links.prev = 0p; list_pos_links.next = 0p; asm( "" : : : "memory" ); return node; } tE & iter( dlist( tE, tLinks ) & list ) { tE * origin = $get_list_origin_addr( list ); return *origin; } bool recede( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = *(tE*)ORIGIN_TAG_CLEAR( (size_t)&ref_inner ); &ref_inner = oldReferent`inner.prev; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t)&ref_inner ); } bool advance( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = *(tE*)ORIGIN_TAG_CLEAR( (size_t)&ref_inner ); &ref_inner = oldReferent`inner.next; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t)&ref_inner ); } bool isFirst( tE & node ) { return recede( node ); } bool isLast( tE & node ) { return advance( node ); } tE & prev( tE & node ) { if ( recede( node ) ) return node; return *0p; } tE & next( tE & node ) { if ( advance( node ) ) return node; return *0p; } tE & insert_first( dlist( tE, tLinks ) & list, tE & node ) { insert_after( iter( list ), node ); return node; } tE & insert_last( dlist( tE, tLinks ) & list, tE & node ) { insert_before( iter( list ), node ); return node; } tE & insert( dlist( tE, tLinks ) & list, tE & node ) { // synonym for insert_last insert_last( list, node ); return node; } tE & remove_first( dlist( tE, tLinks ) & list ) { tE & first_node = first( list ); if ( &first_node ) return remove( first_node ); return first_node; } tE & remove_last( dlist( tE, tLinks ) & list ) { tE & last_node = last( list ); if ( &last_node ) return remove( last_node ); return last_node; } // Transfer the "from" list to the end of this sequence; the "from" list is empty after the transfer. // void transfer( dlist( tE, tLinks ) & to, dlist( tE, tLinks ) & from ) { // if ( isEmpty( from ) ) return; // "from" list empty ? // if ( isEmpty( to ) ) { // "to" list empty ? // root = from.root; // } else { // "to" list not empty // T * toEnd = (T *)uBack( root ); // T * fromEnd = (T *)from.uBack( from.root ); // uBack( root ) = fromEnd; // from.uNext( fromEnd ) = root; // from.uBack( from.root ) = toEnd; // uNext( toEnd ) = from.root; // } // if // from.root = nullptr; // mark "from" list empty // } // Transfer the "from" list up to node "n" to the end of this list; the "from" list becomes the sequence after node "n". // Node "n" must be in the "from" list. // void split( dlist( tE, tLinks ) & to, dlist( tE, tLinks ) & from, tE & node ) { // #ifdef __U_DEBUG__ // if ( ! n->listed() ) abort( "(uSequence &)%p.split( %p ) : Node is not on a list.", this, n ); // #endif // __U_DEBUG__ // uSequence to; // to.root = from.root; // start of "to" list // from.root = (T *)uNext( n ); // start of "from" list // if ( to.root == from.root ) { // last node in list ? // from.root = nullptr; // mark "from" list empty // } else { // uBack( from.root ) = (T *)uBack( to.root ); // fix "from" list // uNext( uBack( to.root ) ) = from.root; // uNext( n ) = to.root; // fix "to" list // uBack( to.root ) = n; // } // if // transfer( to ); // } #if ! defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__)) bool $validate_fwd( dlist( tE, tLinks ) & this ) { if ( ! & first( this ) ) return &last( this ) == 0p; tE & lagElem = *0p; while ( tE & it = iter( this ); advance( it ) ) { if ( & lagElem == 0p && &it != & first( this ) ) return false; &lagElem = ⁢ } if ( &lagElem != &last( this ) ) return false; // TODO: verify that it is back at iter( this ); return true; } bool $validate_rev( dlist( tE, tLinks ) & this ) { if ( ! & last( this ) ) return &first( this ) == 0p; tE & lagElem = *0p; while ( tE & it = iter( this ); recede( it ) ) { if ( &lagElem == 0p && &it != & last( this ) ) return false; &lagElem = ⁢ } if ( &lagElem != &first( this ) ) return false; // TODO: verify that it is back at iter( this ); return true; } bool validate( dlist( tE, tLinks ) & this ) { return $validate_fwd( this ) && $validate_rev( this ); } #endif } // TEMPORARY, until foreach statement created. #define FOREACH( list, index ) for ( typeof(iter( list )) & (index) = iter( list ); advance( index ); ) #define FOREACH_REV( list, index ) for ( typeof(iter( list )) & (index) = iter( list ); recede( index ); ) #define FOREACH_COND( list, index, expr ) for ( typeof(iter( list )) & (index) = iter( list ); advance( index ) && !(expr); ) #define FOREACH_REV_COND( list, index, expr ) for ( typeof(iter( list )) & (index) = iter( list ); recede( index ) && !(expr); )