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ABSTRACT 

An algorithm is presented to infer the type and 
operation parameters of polymorphic functions. 
Operation parameters are named and typed at 
the function definition, but are selected from the 
set of overloaded definitions available wherever 
the function is used. These parameters are 
always implicit, implying that the complexity of 
using a function does not increase with the gen- 
erality of its type. 

1. Introduction 
Function and data abstractions can be made more general 
by parameterizing them by type, rendering them 
polymorphic (cf. Cardelli and Wegner 1985). All but the 
most general abstractions must also be parameterized over 
certain specific operations whose semantics depend on the 
values of the type parameters. Although the type and 
operation parameters are necessary to the implementor of 
an abstraction, to the user they are largely redundant or 
irrelevant, and obscure the meaning of the abstraction. 
They provide a significant disincentive to the use of 
polymorphism: the more general a function is, the more 
burden the user incurs in using the function. It is desirable 
to supply these types and operations implicitly on the 
user’s behalf. We argue that parameter inference is a 
good mechanism to achieve this end: type parameters are 
inferred in order to match the type required by context, 
and operation parameters are bound from an overloaded 
name space according to the type system. 

Two well known languages that address different 
aspects of this problem are ML (Milner 1978, 1985) and 
Ada (1983). In ML, neither the definer nor the user of a 
function specifies type parameters; these are inferred 
automatically. No operation selection is done in conjunc- 
tion with type parameter inference. In Ada, type parame- 
ters must be specified by the user of the function in a 
separate instanfiation statement. Operation parameter 
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selection and overload resolution are done automatically. 
In summary, ML infers type parameters but not opera- 
tions; Ada infers operations but not type parameters. 

Other languages, based on the polymorphic X-calculus 
(Girard 1972, Reynolds 1974), have a more powerful type 
system than ML or Ada, and do some form of type infer- 
ence. But the type inference rules are heuristic and do 
not apply uniformly in all contexts. Examples of such 
languages are Russell (Donahue and Demers 1985; Boehm 
1986), Poly (Matthews 1985), IFX (O’toole and Gifford 
1989) and ForceOne (Wright 1987; Cormack and Wright 
1987). 

Many language designs approach the problem of 
operation parameters by introducing another kind of 
object into the system, which packages operations together 
with the types on which they depend. Examples include 
classes in object-oriented lan ages (Meyer 1988), types 
in Russell, classes in Haskell & adler and Blott 1989), and 
higher order modules (functors in SML EMacQueen 19841, 
generic packages in Ada). These facilities are more com- 
plex and less flexible than type-dependent parameter 
inference. 

2. Design Criteria 
Although the language and examples presented here are 
smail, we are interested in the programming-in-the-large 
aspects of polymorphism. In particular, we are interested 
in modularization, abstraction, and reusability. In the 
programming-in-the-large environment, abstractions and 
modules must be viewed from two perspectives: that of 
the implementor of the abstraction, and that of the user of 
the abstraction. In general, the user of an abstraction 
does not have the ability to modify the abstraction. Creat- 
ing a copy of the abstraction to be modified is not a satis- 
factory method of reuse because it would create two vari- 
ants to be maintained by separate authorities; for exam- 
ple, bug fixes to the original abstraction will not be pro- 
pagated to the copy. Once an abstraction is in use, it may 
not be changed by the implementor in such a way as to 
invalidate potential existing uses. The implementor would 
have no authority to modify these applications to conform; 
neither is the implementor at liberty to inspect all users’s 
programs to determine what use has been made of an 
abstraction. 

We advance the following criteria as benefiting the 
cause of programming-in-the large: 
Separate authority. We assume that each module is con- 
trolled by a separate authority, and the authority for one 
module is not able to modify another. When an abstrac- 
tion is reused! we assume it is defined in a module 
separate from its use and must therefore be used without 
alteration. 
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Generality. It should be possible to define an abstraction 
to have as large a domain of applicability as possible, in 
order to maximize the incidence of reuse of the abstrac- 
tion. It should be possible to combine abstractions in an 
orthogonal manner to form new abstractions. This cri- 
terion is a primary motivation for polymorphism. 
Generalizability. It should be possible for the implemen- 
tor of an abstraction to increase its generality. So long as 
the modified abstraction is a generalization of the original, 
existing uses of the abstraction will not require change. It 
might be possible to modify an abstraction in a manner 
which is not a generalization without affecting existing 
uses, but, without inspecting the modules in which the uses 
occur, this possibility cannot be determined. This cri- 
terion precludes the addition of parameters, unless these 
parameters have default or inferred values that are valid 
for all possible existing applications. 
Incrementality. The user of an abstraction should be able 
to augment its domain of applicability without modifying 
it. The use of subclasses in object-oriented languages is 
an example of incrementality. 

3. Informal introduction and examples 
Throughout this exposition, we shall use two central exam- 
ples: the simple functional abstraction square that multi- 
plies a value by itself, which introduces our type system 
and design criteria; and the more complex pair of related 
abstract type constructors matrix and vector, which illus- 
trate a structural advantage of this system over parameter- 
ized modules. 

Notation 
We use a programming language notation that has con- 
stants, declarations, expressions, functions, user-defined 
types, and an information hiding facility. We assume a 
conventional set of constants, builtin functions, and types 
are available. 
Function applications are of the form f(x), with syntactic 
sugar for operators: X op Y means op(X,Y). All parame- 
ter lists are curried; that is, f(x,y,z) means f(x)(y)(z). 
Declarations are of the form 

identifier: prototype 5 expression 

where prototype defines the name and type of any parame- 
ters, and the overall type of identifier. Declarations may 
be anonymous by omitting identifier:, and : prototype may 
be omitted if identifier is to be the same type as expression. 

A prototype consists of zero or more formal parameter 
declarations and a result type. Types may be constants, 
or type expressions of the form type+type (a function 
type), Vid type (a polymorphic type), or id(type) (an 
instance of a type constructor). Formal parameters have 
three forms: [id: type] (an explicit parameter), [ ?id: type] 
(an implicit parameter), or [all id] (a type parameter). 
Type constructors are types that are parameterized by 
other types, and are declared thus: 

id: [id: type] type = type . 

Information hiding is provided by bracketing a set of 
declarations within module identifier and end identifier. 
Within this module all declarations are visible, but outside 
it only the declarations prefixed by export are visible. 
Exported types and type constructors are opaque: they can 
be referenced outside the module as if they were built in; 
their definition cannot be referenced. 

A functional abstraction 
The specification for the functional abstraction square is: 
square is a function with one parameter, x, of any type 
such that x * x is defined, whose result is equal to x * x. 

In our notation, a definition of square that meets the 
specification only for real values is: 

square: [x: real] real = x * x 

square has type 

reahreal 

A valid application of square might be 

square( 1.23) 

A polymorphic square that meets the specification is: 

square: [all t, ?*: t+t-tt, x: t] t = x * x 

Here, t is a type parameter - whenever square is applied, 
it is bound to the type of the actual parameter for x. 
Throughout square, t may be used to refer to this type. 
?* is an implicit parameter - it is bound automatically to 
an actual parameter of the same name. This binding is 
statically determined, however it use-site biding, rather 
than the usual definition-site binding of Algol-like 
1anguages.t The lexical scope of the application site is 
searched to find a definition of an identifier of the same 
name. AU identifiers, including implicit parameters, are 
bound from an overloaded name space so as to match the 
type required by context. Possible valid applications of 
square are 

square(pt) -- yields real 
square(2) -- yields Int 

In the first example, t is bound to real, and then the 
implicit parameter ?* : real-+real+real is resolved to the 
built-in real multiplication operator. In the second appli- 
cation, t is bound to Int and integer multiplication is used. 
We use the following annotations to illustrate the inferred 
information: inferred parameters are enclosed in braces {} , 
and overloaded identifiers are identified by a unique sub- 
script. 

square{real,*,,,}(pl) 

square{lnt,*i~,}(2) 

The above applications illustrate the criterion of general- 
izability: the generalized square is valid (without modifi- 
cation) in all contexts where the more specific square was 
valid. 

The following application illustrates the criterion of 
incrementality: 

( 
*: [a: string, b: string] string = concat(a,b); 
square(“abc”) -- yields “abcabc” 

1 
square(“abc”) -- Illegal: appropriate * not visible 

The function square may be applied to string values (as in 
formal language theory) without modifying either the 
module defining square, or the module defining the type 
string, even though the definition of string does not 
include an operator * . Within a local scope, it is possible 
to define such a suitable multiplication operation, and to 
have the more globally defined square apply within that 

t Further discussion of this binding mechanism is presented eke- 
where (Cormack 1983, Cixmack and Wright 1987). 
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scope. Outside the scope, square cannot be applied to 
strings. In effect, the local definition of * augments all 
abstractions that depend on * . 

In other application domains, the multiplication opera- 
tor is used to specify composition of functions. That is, 
(f*g)(x) means g(f(x)). It is possible to specify such a 
definition: 

*MC: [all a, all b, all c, f:a-+b, g:b+c] a< - 

b-1 c - g(W) 
In the scope of this definition, square can be applied to 
functions, and the composition operator will be applied: 
square(log) is annotated as 

square{reaLreal ,*~{real,real,real}}(log), 

and the resulting type is reaLreal (a function that applies 
log twice to its argument). First, x (the parameter to 
square) is bound to log, and t is bound to the type of log, 
i.e. reaLreal. Second, the implicit parameter * with 
type (reaJ+real)~(reaI-+reaI)+real~real is selected 
from the environment. The above definition *BM does 
not match exactly - it must be specialized by binding a, b, 
and c aff to real, thus yielding the desired type. In gen- 
eral, actual parameters may be specialized by applying 
type parameters or implicit parameters in order to match 
the desired formal type.. It is possible to apply square to 
a function with implicit parameters; for example to square 
itself: 

square(square) 

Here, each instance of square requires an implicit param- 
eter *, but the two implicit parameters have different 
types. From the set of available definitions (that is, 
l*flmc, *red, *in,)), only *fun= has an appropriate type for 
the first square, but any of the three is possibie for the 
second. If the result type is constrained by context, the 
appropriate version will be selected: 

quad: Int-rlnt = 
square{lnt+lnt,*f,{lnt,lnt,int}} 

(square{M*ia,)) 

quad: reaLreal = 
square{reaLreal ,*h,{real,reaf,reaf}} 

quad [,l;;;;y;“~~ 
+ 3+ = 

square{(a-+a)-+a+a ,*M{a--+a,a+a,a+a}} 

(square(a--+a,*~,{a,a,a}}) 
quad: [all t, ?*,: k&t] t-4 = 

square{t+t,*,,,{t,t,t}} (square&*,}) 

The last definition is the most general; it has the same 
domain of applicability as square itself. Finally, we 
observe that square, as defined above, is not as general 
as possible. Instead, square could have been defined thus: 

square: [all a, all b, ?*: a-ta+b, x: a]b = x * x 

As dictated by the criterion of generalizability , all of the 
above examples apply without modification if this change 
is made, as well as a number of new applications. For 
example, 

*fill: [all a, X: a, y: a] list(a) = . . . 
a: Ilst(lnt) = square(3) -- USSS *I& 

b: lnt = square(3) -- USSS *in, 

x: list(list(int)) = square(square)(3) -- uses *list 

y: int = square(square)(3) -- uses *in, 

A data abstraction 
We illustrate the applicability of our type system for data 
abstraction by defining two polymorphic abstract data 
types, vector and matrix, specified as follows: 
1. 

2. 

3. 

4. 

5. 

vector is a type constructor with one parameter, the 
element type in the vector; similarly, matrix is a type 
constructor with one parameter specifying its element 
type* 
For simplicity, the size of all vectors and matrices is the 
same, and denoted by the global constant size. 
The dot-product of any two vectors A and B can be 
taken using the operator * , provided that 

a * b + a’ * b’ + . . . 

is valid for a an element of A, and b an element of 6; 
similarly, any pair of matrices or any pair consisting of 
one matrix and one vector are multiplied by * provid- 
ing the same constraint applies to their elements. 
The sum of any two vectors or any two matrices is 
taken by the operator +, provided the elements are 
also summable using + . 
These are the only operations applicable to matrices 
and vectors; in particular, neither access to the imple- 
mentation nor element-by-element access is to be 
allowed outside their defining module. 

Figure 1 presents a realization of these abstractions, 
encapsulated in a module with exported definitions for the 
type constructors vector and matrix, the four kinds of 
multiplication among vectors and matrices, and the two 
kinds of addition. Our implementation uses functions to 
represent vectors and matrices, but the user is unaware of 
this implementation, because exported types are opaque. 
The functions row and col are internal functions not visi- 
ble outside the module. Using type parameters, the func- 
tions row, col, *, and f are defined to apply among the 
various combinations of vectors and matrices. Figure 2a 
shows a number of applications of linear-algebra, and 
figure 2b shows the annotation for selected examples. 
The first six applications illustrate in a straightforward 
way how the functions * and + apply, and extract the ele- 
ment types using type parameters. 

The remaining applications illustrate capabilities that 
are absent from other languages. mvl * mv2, involves a 
recursive vector multiplication: the outer application multi- 
plies values of type vector(vector(real)), while the recur- 
sive application involves vector(real). Also, the result of 
mvl * mv2 is a matrix with a different element type from 
either mvl or mv2. We call * a transcendental function 
because its parameters and result can be of more than one 
instance of a type constructor. The application mm * mv2 
illustrates again the ability of a function to transcend 
instances of a type constructor. In this case, the two 
parameters have different instances of the matrix type 
constructor; namely, matrlx(matrlx(real)) and 
matrlx(vector(real)). The application, x * i provides a 
simpler example of a transcendental invocation of *. In 
this case, a vector(real) is multiplied by a vector(lnt) pro- 
vided the system (or user) has defined multiplication of a 
real by an int. The final two applications are of the previ- 
ously defined square to a matrix: the first is type con- 
sistent; the second isn’t. 
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L 

Figure 1. Polymorphic linear algebra package. 

module linear-algebra 
eXpOrt V&Or: [t: type] type - (1 ..Sk+t; 
export matrlx: [ 1: type] type = (1 ..slze)-t( 1 ..slze)4; 

row: [all 1, m: matrix(t), I: l..size] vector(t) = 
[I: 1..8iZ0] t = m(iJ) 

cot: [all 1, m: matrix(t), j: l..slze] vector(t) - 
[I: l.,slze] t = m&j) 

export *1: [ all at, all bt, all rt, 
?* : at-+bt-trt, 7+ : rt-trhrt, 
a: vector(at), b: vector(bt) 

] rt = ( 8: var rt := a(1) * b(1); 
for I:lnt from 2 to size do 

8 := 8 + a(i) * b(l): 
endfor; 
8 

1 
export *$ [ all at, all bt, all rt, 

* : aLat-&, ?+: rt-+rt-*rt, 
a: matrlx(at), b: matrix(bt) 

] matrlx(rt) = 
[i: i..sire, ]: l..ake] rt = row(a,l) * col(b,j) 

export +,: [ all mt, all vt, all rt, 
?*: mt+vt+rt, ?+: rt-*rt+rt, 
m: matrlx(mt), v: vector(vt) 

] vector(rt) = 
[I: I..slre] rt = row(m,l) * v 

export *,: [ all vt, all mt, all rt, 
?*: vt-+mt-A, 7+: rt+rt4t, 
v: vector(vt), m: matrix(mt) 

] vector(rt) = 
[j: 1..SiZe] II = v + col(m,j) 

export +1: [ all at, all bt, all rt, 
7-e : at-+bt+rt, 
a: vector(at), b: vector(bt) 

] vector(rt) = 
[I: l..slze] rt = a(i) + b(l) 

export +2: [ all at, all bt, all rt, 
7+ : at-cbt-trt, 
a: matrix(at), b: matrlx(bt), 

] matrlx(rt) = 
[i: i..SlZe, 1: f..Sh] II = 8&j) + b&j) 

end Ilnear-algebra 

Discussion of language features 
An obvious alternative to the mechanism proposed here is 
to abandon overloading and use full explicit parameteriza- 
tion. For example, an alternate version of square may be 
written and invoked as 

square: [t: type, *: t4-4 x: t] t = x * x 
square(real, realmultlply, 2.0) 
square(lnt, intmultiply, 2) 

These extra parameters are perhaps a minor inconveni- 
ence here, but if parameterization is explicit, layered or 
higher order abstractions can be used only with great diffi- 
culty. Consider the analogue to the application 
square(8quare): 

Figure 2a. Applications of linear algebra. 

a,b,c: var matrix(real); 
x,y,z: var vector(real); 
r: var real; 

r := x * y; -- vector(real) * vector(real) * real 
c := a * b; -- matrix(real) * matrix(real) * matrlx(real) 
2 :- a* y; -- matrlx(real) * vector(real) * vector(real) 
z:= x* b; -- vector(real) * matrlx(real) =+ vector(real) 
2 := x + y; -- vector(real) f vector(real) * vector(real) 
c := a + b; -- matrlx(real) + matrlx(real) =+ matrix(real) 

mvl, mv2: var matrix(vector(real)); 
mm: var matrlx(matrlx(real)); 
I: vector(int); 

a :- mvl * mv2; 
-- matrix(vector(real)) * matrlx(vector(real)) 
-- 3 matrix(real) 

mvl := mm * mv2; 
-- matrlx(matrlx(real)) + matrlx(vector(real)) 
-- 3 matrix(vector(real)) 

r:=x*l; -- works If we can multiply real * int 

mm := square(mm); -- square from example 1 

mvl := square(mv1); 
-- Invalld; can’t bind 
-- 7* : vector(real)-+vector(real)-+vector(reat) 

Figure 2b. Annotated applications. 

r := *l{real,real,real,*,,+,~~,}(x,y): 
c := *,{real,real,real,*,,+,)(e,b); 
2 := *,{real,real,real,*,~,.+,~~,}(a,y); 
z := *,{real,real,real,*,,,+,~~}(x,b); 
2 := +,{real,real,real,+,}(x,y); 
c := +,{real,real,real,+,~~}(a,b); 

a := *,{vector(real),vector(real),real, 

*1{r8aJ,reallr8aJ,*,rcr,,+,,,), 
+l{real,real,real,+,ao,) 

}(mvl ,mW 

mvl := *,{matrlx(real),vector(real),vector(real), 

*j{r8aJ,reaI,real,*,,,+,,,}, 
+I{real,real,real,+,~~} 

}(mmm2); 

mm := square{matrix(matrlx(real)), 
*,{matrlx(real),matrix(real),matrix(real), 

*2(r8al,real,rea1,*,,,+,,}, 
+,{real,real,real,+,) 

1 
NW; 
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quad: [t: type, *: t44, x: t] t - 
( 

squaret: [y:t]t - square(t,* ,y); 
mulsquare: [t: t-4 g: t-+t] - compose(t,t,t,t,g); 
equare(t-4, mulsquare, squaret)(x) 

1 
The existence of these extra parameters means that the 
greater the generality of an abstraction, the greater the 
burden of use on the programmer, and directly conflicts 
with our design criteria of generalizability and incremen- 
tidity - square cannot be applied to new types unless a 
special interface function is written for each new type. 
ML, Ada, and Russell, because they infer only a subset of 
types and operations, do not meet our criteria. 

Two recent articles have identified weaknesses in ML 
and proposed solutions that are similar to each other, and 
similar to the solution presented here. Kaes (1988) pro- 
poses that overloaded symbols be defined in advance, and 
that all symbols of the same name have a common 
polymorphic type. Instances of the symbol name are 
assigned values that are specializations of the common 
type. Only functions may be overloaded; the type of any 
instance of a name must be inferable from the type of its 
first parameter. In our notation, this means that implicit 
parameters can be inferred onl between a function and its 
argument in an application i.e. f(t)(x)!, and the type r 
required by context is not considered. Tins approach sup 
ports a measure of incremental@ and generalizability, 
but the restrictions preclude the specification of most of 
the examples in this paper. 

Wadler and Blott (1989) propose a similar mechanism, 
which has been incorporated in the language Haskell. 
Instead of identifying individual symbols to be overloaded, 
classes of symbols are specified. Nevertheless, a particu- 
lar symbol may belong to only one class, and therefore the 
class mechanism provides a grouping facility but no addi- 
tional expressive power. Wadler and Blott’s inference 
rules appear to be more powerful than those of Kaes, but 
no algorithm is given to handle overloaded constants, or to 
perform overload selection that depends on more than one 
parameter type. Overloaded names must be pervasive: 
they cannot be hidden using normal scope rules. The 
authors further propose that all overload declarations be 
required to have global scope. We are unable to reconcile 
this requirement for pervasive declarations with our cri- 
teria for separate authority and incrementality. 

A large number of languages rely on selecting opera- 
tions from the module defining an abstract data type. To 
illustrate this approach, we give an alternate definition of 
square in an imaginary dialect of our language:t 

square: [all t conzuining(*: t+t+t), x: t] - x * x 
In this example, we use the type parameter t as before, 
with the additional clause specifying that the module 
defining t must contain a suitable definition for *. 
Presumably, the built-in types real and int can be con- 
sidered to contain *, so the following applications are 
correct: 

square(l) 
square(2.0) 

On the other hand, the module defining string does not 
supply an operator named * , so it is impossible to apply 

t We shall denote deviations from our language using italics. 

square(“abc”) 

no matter what local definitions are provided - the only 
way to apply square to Wings is to modify the module 
defining string. Therefore the criteria of incremental@ 
and separate authority cannot both be met. 

Higher order abstractions illustrate further problems 
with using abstract data types to supply operations. 
Defining * to be composition for functions presents no 
particular problem. However, applying square to a func 
tion does: 

square(log) 

Here, t is bound to the type reaLreal, which must con- 
tain a definition of * . In this case, there is no identifiable 
module defining reaLreal; it is just an instance of a 
built-in type constructor. There is no mechanism to aug- 
ment such a type. 
r 

Figure 3. A parameterized module. 

nodule hear-algebra [t:typc conraining(* :r+t+, + :t+-+r)~ 
export vector: type - (1 ..slze)-+t; 
export matrix: type = (l..slze)~(l..slre)~t; 

row: [matrix, I: l..slze] vector = 
([j: l..slre] t - m(l,j)) 

col: [all 8, m: matrix, j: l..size] vector = 
([I: l..size] t I m(l,j)) 

export *1: [a: vector, b: vector] t = ( 
8: var rt :* a( 1) * b( 1); 
for Lint from 2 to size do 

s := s + a(i) * b(i): 
endfor; 

)B 
export *$ [a: matrix, b: matrix] matrix = 

([I: l..slre, j: l..slre] t - row(a,l) * col(b,j)) 
export *3: [ m: matrix, v: vector ] vector = 

([I: l..slze] t = row(m,i) * v) 
export *,: [v: vector, m: matrlx] vector - 

([j: l..slze] t - v * col(m,j)) 
export +t: [a: vector, b: vector] vector = 

((I: l..slze] t - a(i) + b(l)) 
export +2: [a: matrix, b: matrlx] matrix - 

([I: l..size, j: l..slre] t I a&j) + b(l,j)) 
snd Ii near-algebra 

Parameterized modules or classes have been used as 
the basis for polymorphism in many languages; for exam- 
ple, Ada (1983), OBJ2 (Futatsugi et al. 1985), SML 
(MacQueen 1984), Eiffel (Meyer 1988), and Quest (Car- 
delli 1989). Grouping types and operations into modules 
provides a shorthand for passing them to other abstrac- 
tions; nevertheless, they must be instantiated and the 
instances passed explicitly to other abstractions. 
Parameterized modules cannot be used to define private 
transcendental functions such as those defined in 
linear-algebra in figure 1. A straightforward attempt to 
define linear-algebra as a parameterized module appears 
in figure 3. Instead of parameterizing the type construc- 
tors vector and matrix, we parameterize the module. vec- 
tor and matrix become types rather than type constructors, 
and we replace all occurrences of the form vector(a) or 
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matrix(a) by vector and matrix respectively. This module 
is simpler than that of figure 1, but it is also much more 
restrictive. The types of all of the operations have been 
restricted so that they apply to and return only matrices 
and vectors with a common element type. These defini- 
tions are not general enough to satisfy the examples in fig- 
ure 2b, and they cannot be generalized to do so. In gen- 
eral, it is impossible to define within a parameterized 
module a function that applies to other instances of the 
same module. The only possibility is to define such func- 
tions outside (which would involve exporting row, coi, and 
further private operations). This defeats information hid- 
ing, and also defeats the module-oriented method of 
operation selection (i.e. containingf . . . J). 

In languages based on the polymorphic X-calculus, it is 
possible to associate run-time information with data types. 
It is a simple matter to package a number of operations 
with the representation of a type; this approach is used in 
Russell. It imposes the structural constraint that data 
types must contain their operations. The benefit of this 
approach is that it is possible to have dynamic typing 
which our system cannot accomplish. The disadvantages 
are essentially the same as noted above for module-based 
polymorphism: the type cannot be augmented with local 
operations, and private polymorphic operations can refer 
only to individual instances of parameterized types. 

4. A more formal description 
We define here two tiny languages, c and x, which 
represent the essential capabilities of the type system. c 
has overloading and implicit parameter and type applica- 
tion. x has explicit overload resolution, and explicit type 
and parameter application. Type rules are given for x, 
and E is defined in terms of replacement rules that 
transform 6 expressions into x expressions. 

E consists of expressions containing identifiers, function 
abstractions, and function applications. An abstract syn- 
tax for expressions in E is given in figure 4. 

Figure 4. Abstract syntax for L 

e::= t)id= e; e 1 id: def; e 

!&f 
::= idlttldef 

::= type = e 
id: type] def 

it 
all type-id] def 
?id: type def 

type::= type-id type~type(Vtype~dtype 1 

In x, every identifier is subscripted by a unique qualifier. 
Type applications are made explicit, as are implicit 
parameter applications. Type applications are restricted 
to exclude first-level quantified types (thus avoiding ambi- 
guity in the inference process).t An abstract syntax for x 
is given in figure 5. An expression in E is transformed 
into an equivalent expression in x by repeated application 
of the rules in figure 6, subject to the signature and type 
rules stated in the remainder of this section. 

Modules, and user-defined types and type constructors, 
have been excluded; modules provide visibility control 
only, and user-defined type constructors are handled in the 

t Without this restriction, in the cxpwssion 
ident: [all a][xa] a -x; ident Ident, 
ldent ident could be transfmal either to 
ident {V a-+a} ident, OT to 
[all a] a-a = ldeni {a-+a} (Idenl {a}) 

Figure 5. Abstract syntax for x. 

e ::= t 
I i&al = e;e 
1 id,,, : def ; e 

t ::= id+ 

def 
def ::= type = e 

1 [id,&: type] def 
all type-id] def 
?id+: type] def 

type::= type_idlped-g$Wgidtype 
simple-type :: = + 

Figure 6. Transformation rules from E to x. 

Overload resolution: 
Type application: 
Implicit application: 
Type qualification: 
Type abstraction: 

Implicit abstraction: 

id + idowl 
t * t { simple-type } 

tl ==+ t1 { f 1 

de: 2 #?$id] def 
(type-id notfiee in def) 

def * [?id,l :type] def 
W,,t not free in def) 

same manner as the builtin constructor -t. Function 
abstractions and applications are represented using their 
curried form. 

Signature checking in x 
Each term t in x has a signature and a name. The signa- 
ture of a term represents both its type and its implicit 
parameterization. A signature has the following abstract 
syntax: 

sig ::= type 
type 4 sig 
?id:type + sig 
V +-id sig 

The name of a term is an identifier that is used to con- 
strain the binding of implicit parameters. Type and impli- 
cit parameter applications and abstractions preserve the 
name of a term. Function applications and abstractions 
yield the name anon, which is not equal to any identifier. 
The function numeof computes the name of any term: 

nameof(id,,J = id 
nameof(t { simple-type }) = nameof 
nameof(t1 { t2 }) = nameof(t1) 
nameof(t1 t2) = anon 
nameof(type = e) = 

ife = t then nameof else anon 
nameof([id,,,: type] def) = anon 

nameof([?idqd: type] def) = nameof(def) 
nameof([all type-id] def) = nameof(def) 

In x, a signature environment maps identifiers to their 
signatures: 

env ::= empty 1 env <idqral, sig> 
The function lookup returns the signature of an identifier 
or invalid: 

132 



lookup(env Cidlwll, sig> , id2quo12) = 
if id&t = id2,12 then sig else lookup(env, id2+2) 

lookup(empty, idq,,,J = invalld 

Predefined constant values in x are defined in the signa- 
ture environment standard: for every constant c with 
type t, lookup(atandard, c) = t. 

The signature of a term with respect to a signature 
environment is yielded by the function s&of. Identifiers 
are looked up in the environment. The parameter and 
argument types for function applications must match 
(using the comparison -a.) which permits systematic 
renaming of non-free type identifiers) and the function’s 
result signature is yielded. Type application involves sub- 
stitution of a specific type in place of the type parameter 
to the function (the notation [x:-y] indicates a uniform 
replacement of x by y, with renaming to avoid capture of 
type identifiers). The application of implicit parameters 
involves matching both the type and name of the formal 
and actual parameters, and yielding the result signature. 
The signatures of function, type, and implicit abstractions 
are built from their prototype definitions by the function 
sigdef. 

sigof(env, idqwl) = lookup(env, idqti) 
sigof(env, tl t2) = 

if sigof(env, tl) = type + sig and 
sigof(env, t2) -=a type 
then sig else invalld 

sigof(env, tl {simple,type)) = 
if sigof(env, tl) = Vtypeid sig 
then sig [type-id:= SimpleJypej 
else invalld 

sigof(env, tl {IQ) = 
if sigof(env, tl) = ?id:type -+ sig 
and nameof(t2) = id 
and sigof(env, t2) =p type 
then sig else Invalid 

sigof(env, def’) = sigdef(env, def) 

sigdef(env, type = e) = type 
sigdef(env, [id,l: type] def) = 

type + sigdef(env <id.+, type> ) def) 
sigdef(env, [all typeidl] def) = 

V type-id2 sigdef(env, def [type-idl:= type32J) 
(type32 notfree in env) 

sigdef(env, [?&Y&: type] def) = 
?id:type - sigdef(env <id,,, , type> , def) 

Expressions have types rather than signatures; that is, they 
may not have implicit parameters. Expressions can 
appear in either completely constrained or completely 
unconstrained contexts. In a completely constrained con- 
text (type = e), the type of an expression must equal the 
constraint type. In an unconstrained context, the expres- 
sion can yield any type. The function typeof computes the 
type of an expression, using the auxiliary function check- 
type to verify that expressions in constrained contexts 
yield the appropriate type. 

typeof(env, t) = 
if sigof(env, t) = type then type 
else Invalid 

typeof(env, idqua( = el; e2) = 
typeof(env c idq,,,,, , typeof(env, el)>, e2) 

typeof(env, idquI : def; e) = 
if checktype(env <idqwl, sigdef(env, def)>, def) 
then typeof(env <idgwl, sigdef(env, def)>, e) 
else lnvalld 

checktype(env, type = e) = 
typeof(env, 4 =a type 

checktype(env, [id,,:type] def) = 
checktype(env <id+, type>, def) 

checktype(env, [all typeidl] def) = 
checktype(env, def [type-idl:= typeLd21) 

(typeici2 not free in env) 
checktype(env, [?id,,,: type] def) = 

checktype(env <idqvol, type>, def) 

Overall, a x expression e is type correct if 
typeof(standard, e) z Invalid. 

Signature checking in E 
An expression in the language E is well typed if and only 
if it can be transformed into a well typed x program by 
repeated application of the rules in figure 6. These 
transformation rules may not yield a unique x expression 
from a given c expression: several different overload 
resolutions may be possible, or, for a given overload reso- 
lution, several typings may be possible. Often, the vari- 
ants are only trivially different, or there is a well defined 
best solution. If the variants differ nontrivially and there 
is no best solution, the E expression is considered ambigu- 
ous. The rules for selecting the best solution (to be for- 
malized in the next section) are: 
Smallest solution. Witbin an expression, overload resolu- 
tion is done so as to minimize the overall number of impli- 
cit parameter applications. 
Most specific overload resolution. In a given context, if a 
polymorphic function and a more specific function (see 
next section) with the same name are both type consistent, 
the more specific function is selected. 
Most general intermediate type. Given a unique overload 
resolution, the most general intermediate type is chosen 
for each term. 

Generality of types and signatures 
A type tl is more general than t2 if a term having type tl 
can replace a term having type t2 in any context. That is, 
tl is a subtype of t2. In x, a polymorphic type is never 
more general than a monomorphic type, because addi- 
tional type parameters must be specified. In E, the use of 
implicit parameters establishes a generality relationship 
among polymorphic and monomorphic types. For exam- 
ple, the type V a a-ta is more general than the type 
intdint, because any term t of type Va a--+8 can be 
transformed automatically to the type Int-+lnt by the type 
application t{int}. Similarly, the type V bV c b-+c is more 
general than Va a-a because a term t of the first type 
can be transformed using type abstraction and two type 
applications: 

[all cl c-be - t(c)(c). 

In general, type application specializes the type of a value. 
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Type abstraction as specified in figure 6 neither gen- 
eralizes nor specializes, but is an equivalence. That is, for 
any term t of type q (in which q does not contain r), the 
term [all r]q = t is applicable in exactly the same contexts 
as t. 

Within a particular signature environment, implicit 
parameter application and abstraction are both 
equivalences, provided the environment contains an 
appropriate definition for the implicit parameter. A term 
t with signature ?x:a+b can be converted to the signature 
b by the implicit parameter application t{xqml} if and only 
if Cx+, c> is in the environment, and c is more general 
than a. Similarly, a term t with signature b can be con- 
verted to a term with signature ?x:a-tb by the abstraction 
1 ?+d :a]b = t. 

To the programmer, these observations have the fol- 
lowing effect on generalizability. First, functions and 
values can be generalized with respect to type, and remain 
generally applicable. Second, functions and values can be 
given implicit parameters, provided a default value with 
the appropriate name is entered into the same environ- 
ment. For example, the function 

square: [l:lnt]int - . . . 

can be replaced by the two definitions: 

square: [all t, ?times: t-d-d, i:t]t = . . . 
times: [x:int, y:int]int = . . . 

Any environment that contains square will also contain 
this definition of times, and therefore the new definition 
is applicable everywhere the previous definition is applica- 
ble. 

Parameter inference rules 
We first consider parameter inference independent of 
overload resolution; that is, we assume an oracle supplies 
the correct overload selection for any identifier. We then 
convert this nondeterministic algorithm to a deterministic 
one using an overload resolution algorithm adapted from 
Ada (cf. Aho, Sethi and Ullman 1986). 
Parameter inference for terms. The first step in parameter 
inference is to compute the most general signature for 
each term in the expression. A term is either an identif- 
ier, a definition, or an application. The signature of an 
identifier is simply determined from the environment; the 
signature of a definition is given by the function sigdef 
defined previously. The signature of an application must 
be inferred. 

Consider the application f x where f has signature fs 
and x has signature x s . f s must have the general form 

vftl I#. Vfii ?fq1:frl-+ I** ?fqj:fri+ (Vat1 *a. VUfk Ck) * p 

That is, f is a function with i>O type parameters, j>O 
implicit parameters,t whose parameter type is (Y with k>O 
type parameters, and whose result signature is ,9. As a 
shorthand we use Xi”,, to denote X repeated for i from 1 
to II ; using this shorthand, fs’ is: 

(VfLX-1 Vf4.:fr,+L WQL ~)-+B 

x has the type 7 with l>O type parameters and m?O impli- 
cit parameters: 

t The type paramcle~ need not precede the implicit paramekrs, but 
the transformation rules can be used to effect this ordering. 

(vxt”)l-l (?xq.trr,+)L 7 

Let free be the set of free type variables in fs and xs. 
Signature inference for f x is based on the first-order 

unification (Robinson 1965; cf. Aho, Sethi and Ullman 
1986) of a and 7, where the set of variables is cfc,) u 
{xr.}. We find the most general unifier mgu such that 
wu(a) -cI mgu(r). If no mgu exists, there is no valid 
typing for f x, but the existence of mgu does not guarantee 
a valid typing. In particular, mgu&) must be a 
simple-type expression whose free references are in free, 
and mgu(xt,) must be a simple-type expression whose free 
references are in free u {at,,}. If the bindings of mgu obey 
these rules, we transform f x to the following term: 

[all frnlL 
[all xi,lL 
1 ?f4. wuCfr,)lh=d 

The type abstractions of the form [ail t] def, where t is not 
free in def, are useless (but not incorrect), and can be 
eliminated. 

It is straightforward to show that the above term has a 
valid signature. Some intuition can be gained by exatnin- 
ing representative cases. Suppose fs is of the form 
V t (Y+ and xs is 7. If mgu(t) = t after unifying (Y and 7, 
the most general typing results from abstracting the entire 
term with respect to t: 

[ali tl w4B) - f PI bwb) - 4 
or, more simply: 

[ail t] mgu(B) - f {t} x 

If t is bound to some type q, the resulting term is: 

[all t] mgu(P) = f {q} x 

which may be simplified to 

f w x 
Type parameters in xs are handled in an analogous 
manner, except for the following situation. Consider fs of 
the form (Vt cu)-+3. In this case, xs must be of the form 
V q 7. Unifying o and y might yield mgu(Q) = t, which 
would result in the term 

f (Iail tl wuM - x {W 
If f and x had the signatures fs = V a(V b a+b-+ b)+a, 
and xs - V CV dV e c-+d-+e, the following term would 
result: 

[ail a][aii c][aii d][aif e] a = 
f {a} ([ail b] a+b+b - x {a}(b)(b)) 
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which could be simplified to 

[all a] a - f {a} ([all b] a+b+b - x {a}(b)(b)) 

On the other hand, if XI - Vc c--+c--*c, a would be 
bound to b (via c), violating our restriction. Without the 
restriction, the resulting term would be 

[all a] b - f {b} (all b] x {b} 

which has no valid signature because the first two 
occurrences of b are free references, while the last two are 
not. They could not possibly be equal, as required by the 
signature rules. 

The treatment of implicit parameters is similar: 
because the environment of f x is identical to the environ- 
ment of f, any implicit parameters to f can be moved out- 
side f x by abstracting f x with respect to a parameter of 
identical name and type, and applying that parameter to f . 
Consider the signatures fs - ?q:t+a-+b and xs - a; the 
resulting term is: 

[?q:t]b = f{q}x 

Implicit parameters to x are handled in a similar manner, 
except that the type environment of x, while initially 
identical to that of f x, can be augmented by the transfor- 
mation process. Consider the case of fs - (Va a-+ a)+b 
and xs - Vc ?q:(c+c) c+c. a--*8 and cd unify with 
mgu(c) = a. Because the type a is known only in the 
environment of x, there cannot possibly exist a function q 
whose type is a-e. The most specific type that can 
match a-+a is V a a+a. We therefore abstract f x with 
respect to an implicit parameter q of type V a a+a: 

[?q:V a a+aJ b = [all a] x {a){q{a>} 

This transformed f x is applicable in exactly the same con- 
texts as the original. 
Parameter inference for expressions. When a term t is 
used as an expression, type parameters and implicit 
parameters may be applied. If the expression e appears 
in a context constraining it to be of type (Y (i.e. the expres- 
sion or = e) we specialize t as necessary by (in effect) 
applying the identity function to t: 

([x:o]cY - x) t 
Once the type is so specialized, it will have a signature of 
the form 

(VU,)f,l (?q.:r,-& o!. 

An expression cannot have implicit parameters, so they all 
must be applied (no implicit parameters were removed by 
the rules for terms - they were merely promoted to form 
part of the result signature). The implicit parameters are 
applied one at a time until the resulting signature has no 
more implicit parameters. That is, so long as the term t 
has a signature of the form 

we convert q1 to an explicit parameter; that is, we (in 
effect) replace t by 

and apply the transformation algorithm recursively. Once 
the implicit parameters have been applied, the resulting 
term can be simplified by j3 substitution to remove many 
inferred type and implicit parameter abstractions. 

The recursive application of implicit parameters may 
not terminate: when q1 is bound in the signature environ- 
ment of the expression, its signature may have implicit 
parameters; these parameters, when bound, may have 
more implicit parameters, and so on. Our implementation 
restricts the number of recursive applications to some con- 
stant k. Thus, the algorithm constructively determines 
whether, for a given E expression of size S, there is an 
equivalent x expression of size s+k or smaller, where size 
is defined as the number of terms in the expression. 
Overload resolution. The algorithm above assumes that 
the bindings for overloaded identifiers are known. In 
fact, we must label each definition of an identifier with a 
unique qualifier, and then add an appropriate qualifier to 
each identifier reference. To handle overload resolution, 
a two pass algorithm is used. The first pass computes the 
set of possible signatures for each term, and determines 
whether a valid type exists for each expression. Each 
recursive step to resolve implicit parameters takes a set of 
possible signatures, and applies one implicit parameter to 
each at any given recursive step. One of three termina- 
tion conditions may occur: the set of possible signatures 
may become empty, in which case no valid x program can 
be generated. After n (0 < n < k) steps of implicit 
parameter application, exactly one?ignature may have no 
implicit parameters. This is the result type of the smallest 
solution. If more than one signature has no implicit 
parameters, the expression is ambiguous (but we may 
choose to select, for example, the most general result 
type, if there is one). If after k steps, all possible signa- 
tures have at least one implicit parameter, there is no 
solution of size smaller than s+k. 

Once a result type is chosen, the first pass is reversed, 
and the appropriate qualifiers are added to identifier 
references. Type and implicit parameter application and 
abstraction are inserted, transforming the expression to x. 
(Alternatively, all typing can be erased to yield an 
equivalent expression in an untyped language; once over- 
load selection is done, types are redundant.) It is possible 
to discover ambiguity during this second pass: several 
possible bindings may yield the desired type. In this 
event, we select the best fit, if it exists and is unique. We 
consider a term of the form fi x1 to be a better fit than a 
term of the form f2 x2 if the signature of fi xl is more 
specific or equivalent to the signature of of f2 x2, and fl is 
a better fit than f2 and xi is a better fit than x2. 

Discussion of the algorithm 
The algorithm for type-dependent parameter inference 
incorporates three sub-algorithms that have not previously 
been combined: type inference, implicit parameter bind- 
ing, and overload resolution. 

Two major variants of type inference have been dis- 
cussed in the literature: type inference for ML-like 
languages, and type inference for languages based on the 
polymorphic X-calculus. ML-style inference expressed as 
a first-order unification problem. Our inference is more 
general than ML in that higher-order polymorphic func- 
tions may be written, but more restrictive in that function 
abstractions must be explicitly typed. Mitchell (1988) 
describes a number of variants of the polymorphic type 
inference problem. Our algorithm addresses a new subset 
of pure type inference without retyping functions; our res- 
trictions are: function abstractions must be typed expli- 
citly, and we restrict type application to apply only to sim- 
ple types. The second restriction can be removed at the 
expense of creating ambiguous typings, but we have not 
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investigated removing the first. From a software 
engineering point of view, we have little incentive to do 
so, as we believe function interfaces should be specified 
independent of their implementations. 

Others have proposed restricted polymorphic inference 
algorithms. Boehm (1986) describes such an algorithm for 
the language Russell, but states that it is difficult to define 
precisely the set of programs for which the algorithm will 
succeed. Boehm (1989) describes a more well defined set 
of rules that require the following restrictions: (1) type 
parameters are inferred only when functions are applied 
(and not when functions are passed unapplied to higher 
order functions); (2) functions must be uncurried so that 
type parameters are applied in conjunction with other 
parameters that depend on them. O’toole (1989) proposes 
a different approach, allowing an explicit conversion 
between ML-style polytypes and type abstractions. In 
contexts where a type abstraction is explicitly converted to 
an ML-style polytype, type inference is done. Elsewhere, 
type applications must be explicit. 

Boehm (1985) describes partial polymorphic type infer- 
ence, and shows it to be undecidable. In his characteriza- 
tion of inference, some but not all typings may be speci- 
fied, and the remainder are inferred. Boehm’s characteri- 
zation disallows the inference of type abstractions, and 
requires that the positions of omitted type parameters be 
explicitly marked. The proof of undecidability relies on 
these restrictions. 

Ada has implicit operation parameters to generic func- 
tions and packages. However, the type parameters to 
generics must be specified first, and then implicit parame- 
ter inference takes place within a monomorphic type sys- 
tem. Other polymorphic languages either have no implicit 
operations, a predefined set of implicit operations (like 
equality comparison in ML), or require that the operations 
be packaged inside second-order mechanisms, like classes 
or generic abstract types. 

Full overload resolution, taking the context type into 
account, is essential for the selection of implicit parame- 
ters. Ada is the only well known language that has such 
overload resolution, and this component of our algorithm 
is essentially the same as Ada’s. ML has a limited form 
of overload resolution for builtin operators. Other 
languages, for example PI.& Algol 68 (van Wijngaarden 
1975) and C+ + (Stroustrup 1986), do overload resolution 
based on parameter types alone. 

Conclusions 
The static type system presented here achieves greater 
flexibility than existing polymorphic type systems, pri- 
marily by avoiding the packaging of operations into secon- 
dary entities like classes. This flexibility is achieved 
without compromising modularity, through a novel combi- 
nation of simple information hiding, inferred type param- 
eters, inferred operation parameters, and overloading. 
While these components have been included individually 
in previous languages, in combination they yield a type 
system whose expressiveness exceeds the sum of the com- 
ponents. 
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