
Type-dependent Parameter Inference

G. V. Cormack* % A. K. Wrightf
University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

ABSTRACT

An algorithm is presented to infer the type and
operation parameters of polymorphic functions.
Operation parameters are named and typed at
the function definition, but are selected from the
set of overloaded definitions available wherever
the function is used. These parameters are
always implicit, implying that the complexity of
using a function does not increase with the gen-
erality of its type.

1. Introduction
Function and data abstractions can be made more general
by parameterizing them by type, rendering them
polymorphic (cf. Cardelli and Wegner 1985). All but the
most general abstractions must also be parameterized over
certain specific operations whose semantics depend on the
values of the type parameters. Although the type and
operation parameters are necessary to the implementor of
an abstraction, to the user they are largely redundant or
irrelevant, and obscure the meaning of the abstraction.
They provide a significant disincentive to the use of
polymorphism: the more general a function is, the more
burden the user incurs in using the function. It is desirable
to supply these types and operations implicitly on the
user’s behalf. We argue that parameter inference is a
good mechanism to achieve this end: type parameters are
inferred in order to match the type required by context,
and operation parameters are bound from an overloaded
name space according to the type system.

Two well known languages that address different
aspects of this problem are ML (Milner 1978, 1985) and
Ada (1983). In ML, neither the definer nor the user of a
function specifies type parameters; these are inferred
automatically. No operation selection is done in conjunc-
tion with type parameter inference. In Ada, type parame-
ters must be specified by the user of the function in a
separate instanfiation statement. Operation parameter

l ISztronic mail address: gvconnack@waterloo.edu
t Present address: computer !Gcience Department, Rice ~nhwsity,

Houston, Texas ?7251-1892. J3cctronlc mail address:
wriglIt@ce.edu

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM 0-89791-364-7/90/0006/0127 $1.50 -

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

selection and overload resolution are done automatically.
In summary, ML infers type parameters but not opera-
tions; Ada infers operations but not type parameters.

Other languages, based on the polymorphic X-calculus
(Girard 1972, Reynolds 1974), have a more powerful type
system than ML or Ada, and do some form of type infer-
ence. But the type inference rules are heuristic and do
not apply uniformly in all contexts. Examples of such
languages are Russell (Donahue and Demers 1985; Boehm
1986), Poly (Matthews 1985), IFX (O’toole and Gifford
1989) and ForceOne (Wright 1987; Cormack and Wright
1987).

Many language designs approach the problem of
operation parameters by introducing another kind of
object into the system, which packages operations together
with the types on which they depend. Examples include
classes in object-oriented lan ages (Meyer 1988), types
in Russell, classes in Haskell & adler and Blott 1989), and
higher order modules (functors in SML EMacQueen 19841,
generic packages in Ada). These facilities are more com-
plex and less flexible than type-dependent parameter
inference.

2. Design Criteria
Although the language and examples presented here are
smail, we are interested in the programming-in-the-large
aspects of polymorphism. In particular, we are interested
in modularization, abstraction, and reusability. In the
programming-in-the-large environment, abstractions and
modules must be viewed from two perspectives: that of
the implementor of the abstraction, and that of the user of
the abstraction. In general, the user of an abstraction
does not have the ability to modify the abstraction. Creat-
ing a copy of the abstraction to be modified is not a satis-
factory method of reuse because it would create two vari-
ants to be maintained by separate authorities; for exam-
ple, bug fixes to the original abstraction will not be pro-
pagated to the copy. Once an abstraction is in use, it may
not be changed by the implementor in such a way as to
invalidate potential existing uses. The implementor would
have no authority to modify these applications to conform;
neither is the implementor at liberty to inspect all users’s
programs to determine what use has been made of an
abstraction.

We advance the following criteria as benefiting the
cause of programming-in-the large:
Separate authority. We assume that each module is con-
trolled by a separate authority, and the authority for one
module is not able to modify another. When an abstrac-
tion is reused! we assume it is defined in a module
separate from its use and must therefore be used without
alteration.

127

Generality. It should be possible to define an abstraction
to have as large a domain of applicability as possible, in
order to maximize the incidence of reuse of the abstrac-
tion. It should be possible to combine abstractions in an
orthogonal manner to form new abstractions. This cri-
terion is a primary motivation for polymorphism.
Generalizability. It should be possible for the implemen-
tor of an abstraction to increase its generality. So long as
the modified abstraction is a generalization of the original,
existing uses of the abstraction will not require change. It
might be possible to modify an abstraction in a manner
which is not a generalization without affecting existing
uses, but, without inspecting the modules in which the uses
occur, this possibility cannot be determined. This cri-
terion precludes the addition of parameters, unless these
parameters have default or inferred values that are valid
for all possible existing applications.
Incrementality. The user of an abstraction should be able
to augment its domain of applicability without modifying
it. The use of subclasses in object-oriented languages is
an example of incrementality.

3. Informal introduction and examples
Throughout this exposition, we shall use two central exam-
ples: the simple functional abstraction square that multi-
plies a value by itself, which introduces our type system
and design criteria; and the more complex pair of related
abstract type constructors matrix and vector, which illus-
trate a structural advantage of this system over parameter-
ized modules.

Notation
We use a programming language notation that has con-
stants, declarations, expressions, functions, user-defined
types, and an information hiding facility. We assume a
conventional set of constants, builtin functions, and types
are available.
Function applications are of the form f(x), with syntactic
sugar for operators: X op Y means op(X,Y). All parame-
ter lists are curried; that is, f(x,y,z) means f(x)(y)(z).
Declarations are of the form

identifier: prototype 5 expression

where prototype defines the name and type of any parame-
ters, and the overall type of identifier. Declarations may
be anonymous by omitting identifier:, and : prototype may
be omitted if identifier is to be the same type as expression.

A prototype consists of zero or more formal parameter
declarations and a result type. Types may be constants,
or type expressions of the form type+type (a function
type), Vid type (a polymorphic type), or id(type) (an
instance of a type constructor). Formal parameters have
three forms: [id: type] (an explicit parameter), [?id: type]
(an implicit parameter), or [all id] (a type parameter).
Type constructors are types that are parameterized by
other types, and are declared thus:

id: [id: type] type = type .

Information hiding is provided by bracketing a set of
declarations within module identifier and end identifier.
Within this module all declarations are visible, but outside
it only the declarations prefixed by export are visible.
Exported types and type constructors are opaque: they can
be referenced outside the module as if they were built in;
their definition cannot be referenced.

A functional abstraction
The specification for the functional abstraction square is:
square is a function with one parameter, x, of any type
such that x * x is defined, whose result is equal to x * x.

In our notation, a definition of square that meets the
specification only for real values is:

square: [x: real] real = x * x

square has type

reahreal

A valid application of square might be

square(1.23)

A polymorphic square that meets the specification is:

square: [all t, ?*: t+t-tt, x: t] t = x * x

Here, t is a type parameter - whenever square is applied,
it is bound to the type of the actual parameter for x.
Throughout square, t may be used to refer to this type.
?* is an implicit parameter - it is bound automatically to
an actual parameter of the same name. This binding is
statically determined, however it use-site biding, rather
than the usual definition-site binding of Algol-like
1anguages.t The lexical scope of the application site is
searched to find a definition of an identifier of the same
name. AU identifiers, including implicit parameters, are
bound from an overloaded name space so as to match the
type required by context. Possible valid applications of
square are

square(pt) -- yields real
square(2) -- yields Int

In the first example, t is bound to real, and then the
implicit parameter ?* : real-+real+real is resolved to the
built-in real multiplication operator. In the second appli-
cation, t is bound to Int and integer multiplication is used.
We use the following annotations to illustrate the inferred
information: inferred parameters are enclosed in braces {} ,
and overloaded identifiers are identified by a unique sub-
script.

square{real,*,,,}(pl)

square{lnt,*i~,}(2)

The above applications illustrate the criterion of general-
izability: the generalized square is valid (without modifi-
cation) in all contexts where the more specific square was
valid.

The following application illustrates the criterion of
incrementality:

(
*: [a: string, b: string] string = concat(a,b);
square(“abc”) -- yields “abcabc”

1
square(“abc”) -- Illegal: appropriate * not visible

The function square may be applied to string values (as in
formal language theory) without modifying either the
module defining square, or the module defining the type
string, even though the definition of string does not
include an operator * . Within a local scope, it is possible
to define such a suitable multiplication operation, and to
have the more globally defined square apply within that

t Further discussion of this binding mechanism is presented eke-
where (Cormack 1983, Cixmack and Wright 1987).

128

scope. Outside the scope, square cannot be applied to
strings. In effect, the local definition of * augments all
abstractions that depend on * .

In other application domains, the multiplication opera-
tor is used to specify composition of functions. That is,
(f*g)(x) means g(f(x)). It is possible to specify such a
definition:

*MC: [all a, all b, all c, f:a-+b, g:b+c] a< -

b-1 c - g(W)
In the scope of this definition, square can be applied to
functions, and the composition operator will be applied:
square(log) is annotated as

square{reaLreal ,*~{real,real,real}}(log),

and the resulting type is reaLreal (a function that applies
log twice to its argument). First, x (the parameter to
square) is bound to log, and t is bound to the type of log,
i.e. reaLreal. Second, the implicit parameter * with
type (reaJ+real)~(reaI-+reaI)+real~real is selected
from the environment. The above definition *BM does
not match exactly - it must be specialized by binding a, b,
and c aff to real, thus yielding the desired type. In gen-
eral, actual parameters may be specialized by applying
type parameters or implicit parameters in order to match
the desired formal type.. It is possible to apply square to
a function with implicit parameters; for example to square
itself:

square(square)

Here, each instance of square requires an implicit param-
eter *, but the two implicit parameters have different
types. From the set of available definitions (that is,
l*flmc, *red, *in,)), only *fun= has an appropriate type for
the first square, but any of the three is possibie for the
second. If the result type is constrained by context, the
appropriate version will be selected:

quad: Int-rlnt =
square{lnt+lnt,*f,{lnt,lnt,int}}

(square{M*ia,))

quad: reaLreal =
square{reaLreal ,*h,{real,reaf,reaf}}

quad [,l;;;;y;“~~
+ 3+ =

square{(a-+a)-+a+a ,*M{a--+a,a+a,a+a}}

(square(a--+a,*~,{a,a,a}})
quad: [all t, ?*,: k&t] t-4 =

square{t+t,*,,,{t,t,t}} (square&*,})

The last definition is the most general; it has the same
domain of applicability as square itself. Finally, we
observe that square, as defined above, is not as general
as possible. Instead, square could have been defined thus:

square: [all a, all b, ?*: a-ta+b, x: a]b = x * x

As dictated by the criterion of generalizability , all of the
above examples apply without modification if this change
is made, as well as a number of new applications. For
example,

*fill: [all a, X: a, y: a] list(a) = . . .
a: Ilst(lnt) = square(3) -- USSS *I&

b: lnt = square(3) -- USSS *in,

x: list(list(int)) = square(square)(3) -- uses *list

y: int = square(square)(3) -- uses *in,

A data abstraction
We illustrate the applicability of our type system for data
abstraction by defining two polymorphic abstract data
types, vector and matrix, specified as follows:
1.

2.

3.

4.

5.

vector is a type constructor with one parameter, the
element type in the vector; similarly, matrix is a type
constructor with one parameter specifying its element
type*
For simplicity, the size of all vectors and matrices is the
same, and denoted by the global constant size.
The dot-product of any two vectors A and B can be
taken using the operator * , provided that

a * b + a’ * b’ + . . .

is valid for a an element of A, and b an element of 6;
similarly, any pair of matrices or any pair consisting of
one matrix and one vector are multiplied by * provid-
ing the same constraint applies to their elements.
The sum of any two vectors or any two matrices is
taken by the operator +, provided the elements are
also summable using + .
These are the only operations applicable to matrices
and vectors; in particular, neither access to the imple-
mentation nor element-by-element access is to be
allowed outside their defining module.

Figure 1 presents a realization of these abstractions,
encapsulated in a module with exported definitions for the
type constructors vector and matrix, the four kinds of
multiplication among vectors and matrices, and the two
kinds of addition. Our implementation uses functions to
represent vectors and matrices, but the user is unaware of
this implementation, because exported types are opaque.
The functions row and col are internal functions not visi-
ble outside the module. Using type parameters, the func-
tions row, col, *, and f are defined to apply among the
various combinations of vectors and matrices. Figure 2a
shows a number of applications of linear-algebra, and
figure 2b shows the annotation for selected examples.
The first six applications illustrate in a straightforward
way how the functions * and + apply, and extract the ele-
ment types using type parameters.

The remaining applications illustrate capabilities that
are absent from other languages. mvl * mv2, involves a
recursive vector multiplication: the outer application multi-
plies values of type vector(vector(real)), while the recur-
sive application involves vector(real). Also, the result of
mvl * mv2 is a matrix with a different element type from
either mvl or mv2. We call * a transcendental function
because its parameters and result can be of more than one
instance of a type constructor. The application mm * mv2
illustrates again the ability of a function to transcend
instances of a type constructor. In this case, the two
parameters have different instances of the matrix type
constructor; namely, matrlx(matrlx(real)) and
matrlx(vector(real)). The application, x * i provides a
simpler example of a transcendental invocation of *. In
this case, a vector(real) is multiplied by a vector(lnt) pro-
vided the system (or user) has defined multiplication of a
real by an int. The final two applications are of the previ-
ously defined square to a matrix: the first is type con-
sistent; the second isn’t.

129

L

Figure 1. Polymorphic linear algebra package.

module linear-algebra
eXpOrt V&Or: [t: type] type - (1 ..Sk+t;
export matrlx: [1: type] type = (1 ..slze)-t(1 ..slze)4;

row: [all 1, m: matrix(t), I: l..size] vector(t) =
[I: 1..8iZ0] t = m(iJ)

cot: [all 1, m: matrix(t), j: l..slze] vector(t) -
[I: l.,slze] t = m&j)

export *1: [all at, all bt, all rt,
?* : at-+bt-trt, 7+ : rt-trhrt,
a: vector(at), b: vector(bt)

] rt = (8: var rt := a(1) * b(1);
for I:lnt from 2 to size do

8 := 8 + a(i) * b(l):
endfor;
8

1
export *$ [all at, all bt, all rt,

* : aLat-&, ?+: rt-+rt-*rt,
a: matrlx(at), b: matrix(bt)

] matrlx(rt) =
[i: i..sire,]: l..ake] rt = row(a,l) * col(b,j)

export +,: [all mt, all vt, all rt,
?*: mt+vt+rt, ?+: rt-*rt+rt,
m: matrlx(mt), v: vector(vt)

] vector(rt) =
[I: I..slre] rt = row(m,l) * v

export *,: [all vt, all mt, all rt,
?*: vt-+mt-A, 7+: rt+rt4t,
v: vector(vt), m: matrix(mt)

] vector(rt) =
[j: 1..SiZe] II = v + col(m,j)

export +1: [all at, all bt, all rt,
7-e : at-+bt+rt,
a: vector(at), b: vector(bt)

] vector(rt) =
[I: l..slze] rt = a(i) + b(l)

export +2: [all at, all bt, all rt,
7+ : at-cbt-trt,
a: matrix(at), b: matrlx(bt),

] matrlx(rt) =
[i: i..SlZe, 1: f..Sh] II = 8&j) + b&j)

end Ilnear-algebra

Discussion of language features
An obvious alternative to the mechanism proposed here is
to abandon overloading and use full explicit parameteriza-
tion. For example, an alternate version of square may be
written and invoked as

square: [t: type, *: t4-4 x: t] t = x * x
square(real, realmultlply, 2.0)
square(lnt, intmultiply, 2)

These extra parameters are perhaps a minor inconveni-
ence here, but if parameterization is explicit, layered or
higher order abstractions can be used only with great diffi-
culty. Consider the analogue to the application
square(8quare):

Figure 2a. Applications of linear algebra.

a,b,c: var matrix(real);
x,y,z: var vector(real);
r: var real;

r := x * y; -- vector(real) * vector(real) * real
c := a * b; -- matrix(real) * matrix(real) * matrlx(real)
2 :- a* y; -- matrlx(real) * vector(real) * vector(real)
z:= x* b; -- vector(real) * matrlx(real) =+ vector(real)
2 := x + y; -- vector(real) f vector(real) * vector(real)
c := a + b; -- matrlx(real) + matrlx(real) =+ matrix(real)

mvl, mv2: var matrix(vector(real));
mm: var matrlx(matrlx(real));
I: vector(int);

a :- mvl * mv2;
-- matrix(vector(real)) * matrlx(vector(real))
-- 3 matrix(real)

mvl := mm * mv2;
-- matrlx(matrlx(real)) + matrlx(vector(real))
-- 3 matrix(vector(real))

r:=x*l; -- works If we can multiply real * int

mm := square(mm); -- square from example 1

mvl := square(mv1);
-- Invalld; can’t bind
-- 7* : vector(real)-+vector(real)-+vector(reat)

Figure 2b. Annotated applications.

r := *l{real,real,real,*,,+,~~,}(x,y):
c := *,{real,real,real,*,,+,)(e,b);
2 := *,{real,real,real,*,~,.+,~~,}(a,y);
z := *,{real,real,real,*,,,+,~~}(x,b);
2 := +,{real,real,real,+,}(x,y);
c := +,{real,real,real,+,~~}(a,b);

a := *,{vector(real),vector(real),real,

1{r8aJ,reallr8aJ,,rcr,,+,,,),
+l{real,real,real,+,ao,)

}(mvl ,mW

mvl := *,{matrlx(real),vector(real),vector(real),

j{r8aJ,reaI,real,,,,+,,,},
+I{real,real,real,+,~~}

}(mmm2);

mm := square{matrix(matrlx(real)),
*,{matrlx(real),matrix(real),matrix(real),

2(r8al,real,rea1,,,,+,,},
+,{real,real,real,+,)

1
NW;

130

quad: [t: type, *: t44, x: t] t -
(

squaret: [y:t]t - square(t,* ,y);
mulsquare: [t: t-4 g: t-+t] - compose(t,t,t,t,g);
equare(t-4, mulsquare, squaret)(x)

1
The existence of these extra parameters means that the
greater the generality of an abstraction, the greater the
burden of use on the programmer, and directly conflicts
with our design criteria of generalizability and incremen-
tidity - square cannot be applied to new types unless a
special interface function is written for each new type.
ML, Ada, and Russell, because they infer only a subset of
types and operations, do not meet our criteria.

Two recent articles have identified weaknesses in ML
and proposed solutions that are similar to each other, and
similar to the solution presented here. Kaes (1988) pro-
poses that overloaded symbols be defined in advance, and
that all symbols of the same name have a common
polymorphic type. Instances of the symbol name are
assigned values that are specializations of the common
type. Only functions may be overloaded; the type of any
instance of a name must be inferable from the type of its
first parameter. In our notation, this means that implicit
parameters can be inferred onl between a function and its
argument in an application i.e. f(t)(x)!, and the type r
required by context is not considered. Tins approach sup
ports a measure of incremental@ and generalizability,
but the restrictions preclude the specification of most of
the examples in this paper.

Wadler and Blott (1989) propose a similar mechanism,
which has been incorporated in the language Haskell.
Instead of identifying individual symbols to be overloaded,
classes of symbols are specified. Nevertheless, a particu-
lar symbol may belong to only one class, and therefore the
class mechanism provides a grouping facility but no addi-
tional expressive power. Wadler and Blott’s inference
rules appear to be more powerful than those of Kaes, but
no algorithm is given to handle overloaded constants, or to
perform overload selection that depends on more than one
parameter type. Overloaded names must be pervasive:
they cannot be hidden using normal scope rules. The
authors further propose that all overload declarations be
required to have global scope. We are unable to reconcile
this requirement for pervasive declarations with our cri-
teria for separate authority and incrementality.

A large number of languages rely on selecting opera-
tions from the module defining an abstract data type. To
illustrate this approach, we give an alternate definition of
square in an imaginary dialect of our language:t

square: [all t conzuining(*: t+t+t), x: t] - x * x
In this example, we use the type parameter t as before,
with the additional clause specifying that the module
defining t must contain a suitable definition for *.
Presumably, the built-in types real and int can be con-
sidered to contain *, so the following applications are
correct:

square(l)
square(2.0)

On the other hand, the module defining string does not
supply an operator named * , so it is impossible to apply

t We shall denote deviations from our language using italics.

square(“abc”)

no matter what local definitions are provided - the only
way to apply square to Wings is to modify the module
defining string. Therefore the criteria of incremental@
and separate authority cannot both be met.

Higher order abstractions illustrate further problems
with using abstract data types to supply operations.
Defining * to be composition for functions presents no
particular problem. However, applying square to a func
tion does:

square(log)

Here, t is bound to the type reaLreal, which must con-
tain a definition of * . In this case, there is no identifiable
module defining reaLreal; it is just an instance of a
built-in type constructor. There is no mechanism to aug-
ment such a type.
r

Figure 3. A parameterized module.

nodule hear-algebra [t:typc conraining(* :r+t+, + :t+-+r)~
export vector: type - (1 ..slze)-+t;
export matrix: type = (l..slze)~(l..slre)~t;

row: [matrix, I: l..slze] vector =
([j: l..slre] t - m(l,j))

col: [all 8, m: matrix, j: l..size] vector =
([I: l..size] t I m(l,j))

export *1: [a: vector, b: vector] t = (
8: var rt :* a(1) * b(1);
for Lint from 2 to size do

s := s + a(i) * b(i):
endfor;

)B
export *$ [a: matrix, b: matrix] matrix =

([I: l..slre, j: l..slre] t - row(a,l) * col(b,j))
export *3: [m: matrix, v: vector] vector =

([I: l..slze] t = row(m,i) * v)
export *,: [v: vector, m: matrlx] vector -

([j: l..slze] t - v * col(m,j))
export +t: [a: vector, b: vector] vector =

((I: l..slze] t - a(i) + b(l))
export +2: [a: matrix, b: matrlx] matrix -

([I: l..size, j: l..slre] t I a&j) + b(l,j))
snd Ii near-algebra

Parameterized modules or classes have been used as
the basis for polymorphism in many languages; for exam-
ple, Ada (1983), OBJ2 (Futatsugi et al. 1985), SML
(MacQueen 1984), Eiffel (Meyer 1988), and Quest (Car-
delli 1989). Grouping types and operations into modules
provides a shorthand for passing them to other abstrac-
tions; nevertheless, they must be instantiated and the
instances passed explicitly to other abstractions.
Parameterized modules cannot be used to define private
transcendental functions such as those defined in
linear-algebra in figure 1. A straightforward attempt to
define linear-algebra as a parameterized module appears
in figure 3. Instead of parameterizing the type construc-
tors vector and matrix, we parameterize the module. vec-
tor and matrix become types rather than type constructors,
and we replace all occurrences of the form vector(a) or

131

matrix(a) by vector and matrix respectively. This module
is simpler than that of figure 1, but it is also much more
restrictive. The types of all of the operations have been
restricted so that they apply to and return only matrices
and vectors with a common element type. These defini-
tions are not general enough to satisfy the examples in fig-
ure 2b, and they cannot be generalized to do so. In gen-
eral, it is impossible to define within a parameterized
module a function that applies to other instances of the
same module. The only possibility is to define such func-
tions outside (which would involve exporting row, coi, and
further private operations). This defeats information hid-
ing, and also defeats the module-oriented method of
operation selection (i.e. containingf . . . J).

In languages based on the polymorphic X-calculus, it is
possible to associate run-time information with data types.
It is a simple matter to package a number of operations
with the representation of a type; this approach is used in
Russell. It imposes the structural constraint that data
types must contain their operations. The benefit of this
approach is that it is possible to have dynamic typing
which our system cannot accomplish. The disadvantages
are essentially the same as noted above for module-based
polymorphism: the type cannot be augmented with local
operations, and private polymorphic operations can refer
only to individual instances of parameterized types.

4. A more formal description
We define here two tiny languages, c and x, which
represent the essential capabilities of the type system. c
has overloading and implicit parameter and type applica-
tion. x has explicit overload resolution, and explicit type
and parameter application. Type rules are given for x,
and E is defined in terms of replacement rules that
transform 6 expressions into x expressions.

E consists of expressions containing identifiers, function
abstractions, and function applications. An abstract syn-
tax for expressions in E is given in figure 4.

Figure 4. Abstract syntax for L

e::= t)id= e; e 1 id: def; e

!&f
::= idlttldef

::= type = e
id: type] def

it
all type-id] def
?id: type def

type::= type-id type~type(Vtype~dtype 1

In x, every identifier is subscripted by a unique qualifier.
Type applications are made explicit, as are implicit
parameter applications. Type applications are restricted
to exclude first-level quantified types (thus avoiding ambi-
guity in the inference process).t An abstract syntax for x
is given in figure 5. An expression in E is transformed
into an equivalent expression in x by repeated application
of the rules in figure 6, subject to the signature and type
rules stated in the remainder of this section.

Modules, and user-defined types and type constructors,
have been excluded; modules provide visibility control
only, and user-defined type constructors are handled in the

t Without this restriction, in the cxpwssion
ident: [all a][xa] a -x; ident Ident,
ldent ident could be transfmal either to
ident {V a-+a} ident, OT to
[all a] a-a = ldeni {a-+a} (Idenl {a})

Figure 5. Abstract syntax for x.

e ::= t
I i&al = e;e
1 id,,, : def ; e

t ::= id+

def
def ::= type = e

1 [id,&: type] def
all type-id] def
?id+: type] def

type::= type_idlped-g$Wgidtype
simple-type :: = +

Figure 6. Transformation rules from E to x.

Overload resolution:
Type application:
Implicit application:
Type qualification:
Type abstraction:

Implicit abstraction:

id + idowl
t * t { simple-type }

tl ==+ t1 { f 1

de: 2 #?$id] def
(type-id notfiee in def)

def * [?id,l :type] def
W,,t not free in def)

same manner as the builtin constructor -t. Function
abstractions and applications are represented using their
curried form.

Signature checking in x
Each term t in x has a signature and a name. The signa-
ture of a term represents both its type and its implicit
parameterization. A signature has the following abstract
syntax:

sig ::= type
type 4 sig
?id:type + sig
V +-id sig

The name of a term is an identifier that is used to con-
strain the binding of implicit parameters. Type and impli-
cit parameter applications and abstractions preserve the
name of a term. Function applications and abstractions
yield the name anon, which is not equal to any identifier.
The function numeof computes the name of any term:

nameof(id,,J = id
nameof(t { simple-type }) = nameof
nameof(t1 { t2 }) = nameof(t1)
nameof(t1 t2) = anon
nameof(type = e) =

ife = t then nameof else anon
nameof([id,,,: type] def) = anon

nameof([?idqd: type] def) = nameof(def)
nameof([all type-id] def) = nameof(def)

In x, a signature environment maps identifiers to their
signatures:

env ::= empty 1 env <idqral, sig>
The function lookup returns the signature of an identifier
or invalid:

132

lookup(env Cidlwll, sig> , id2quo12) =
if id&t = id2,12 then sig else lookup(env, id2+2)

lookup(empty, idq,,,J = invalld

Predefined constant values in x are defined in the signa-
ture environment standard: for every constant c with
type t, lookup(atandard, c) = t.

The signature of a term with respect to a signature
environment is yielded by the function s&of. Identifiers
are looked up in the environment. The parameter and
argument types for function applications must match
(using the comparison -a.) which permits systematic
renaming of non-free type identifiers) and the function’s
result signature is yielded. Type application involves sub-
stitution of a specific type in place of the type parameter
to the function (the notation [x:-y] indicates a uniform
replacement of x by y, with renaming to avoid capture of
type identifiers). The application of implicit parameters
involves matching both the type and name of the formal
and actual parameters, and yielding the result signature.
The signatures of function, type, and implicit abstractions
are built from their prototype definitions by the function
sigdef.

sigof(env, idqwl) = lookup(env, idqti)
sigof(env, tl t2) =

if sigof(env, tl) = type + sig and
sigof(env, t2) -=a type
then sig else invalld

sigof(env, tl {simple,type)) =
if sigof(env, tl) = Vtypeid sig
then sig [type-id:= SimpleJypej
else invalld

sigof(env, tl {IQ) =
if sigof(env, tl) = ?id:type -+ sig
and nameof(t2) = id
and sigof(env, t2) =p type
then sig else Invalid

sigof(env, def’) = sigdef(env, def)

sigdef(env, type = e) = type
sigdef(env, [id,l: type] def) =

type + sigdef(env <id.+, type>) def)
sigdef(env, [all typeidl] def) =

V type-id2 sigdef(env, def [type-idl:= type32J)
(type32 notfree in env)

sigdef(env, [?&Y&: type] def) =
?id:type - sigdef(env <id,,, , type> , def)

Expressions have types rather than signatures; that is, they
may not have implicit parameters. Expressions can
appear in either completely constrained or completely
unconstrained contexts. In a completely constrained con-
text (type = e), the type of an expression must equal the
constraint type. In an unconstrained context, the expres-
sion can yield any type. The function typeof computes the
type of an expression, using the auxiliary function check-
type to verify that expressions in constrained contexts
yield the appropriate type.

typeof(env, t) =
if sigof(env, t) = type then type
else Invalid

typeof(env, idqua(= el; e2) =
typeof(env c idq,,,,, , typeof(env, el)>, e2)

typeof(env, idquI : def; e) =
if checktype(env <idqwl, sigdef(env, def)>, def)
then typeof(env <idgwl, sigdef(env, def)>, e)
else lnvalld

checktype(env, type = e) =
typeof(env, 4 =a type

checktype(env, [id,,:type] def) =
checktype(env <id+, type>, def)

checktype(env, [all typeidl] def) =
checktype(env, def [type-idl:= typeLd21)

(typeici2 not free in env)
checktype(env, [?id,,,: type] def) =

checktype(env <idqvol, type>, def)

Overall, a x expression e is type correct if
typeof(standard, e) z Invalid.

Signature checking in E
An expression in the language E is well typed if and only
if it can be transformed into a well typed x program by
repeated application of the rules in figure 6. These
transformation rules may not yield a unique x expression
from a given c expression: several different overload
resolutions may be possible, or, for a given overload reso-
lution, several typings may be possible. Often, the vari-
ants are only trivially different, or there is a well defined
best solution. If the variants differ nontrivially and there
is no best solution, the E expression is considered ambigu-
ous. The rules for selecting the best solution (to be for-
malized in the next section) are:
Smallest solution. Witbin an expression, overload resolu-
tion is done so as to minimize the overall number of impli-
cit parameter applications.
Most specific overload resolution. In a given context, if a
polymorphic function and a more specific function (see
next section) with the same name are both type consistent,
the more specific function is selected.
Most general intermediate type. Given a unique overload
resolution, the most general intermediate type is chosen
for each term.

Generality of types and signatures
A type tl is more general than t2 if a term having type tl
can replace a term having type t2 in any context. That is,
tl is a subtype of t2. In x, a polymorphic type is never
more general than a monomorphic type, because addi-
tional type parameters must be specified. In E, the use of
implicit parameters establishes a generality relationship
among polymorphic and monomorphic types. For exam-
ple, the type V a a-ta is more general than the type
intdint, because any term t of type Va a--+8 can be
transformed automatically to the type Int-+lnt by the type
application t{int}. Similarly, the type V bV c b-+c is more
general than Va a-a because a term t of the first type
can be transformed using type abstraction and two type
applications:

[all cl c-be - t(c)(c).

In general, type application specializes the type of a value.

133

Type abstraction as specified in figure 6 neither gen-
eralizes nor specializes, but is an equivalence. That is, for
any term t of type q (in which q does not contain r), the
term [all r]q = t is applicable in exactly the same contexts
as t.

Within a particular signature environment, implicit
parameter application and abstraction are both
equivalences, provided the environment contains an
appropriate definition for the implicit parameter. A term
t with signature ?x:a+b can be converted to the signature
b by the implicit parameter application t{xqml} if and only
if Cx+, c> is in the environment, and c is more general
than a. Similarly, a term t with signature b can be con-
verted to a term with signature ?x:a-tb by the abstraction
1 ?+d :a]b = t.

To the programmer, these observations have the fol-
lowing effect on generalizability. First, functions and
values can be generalized with respect to type, and remain
generally applicable. Second, functions and values can be
given implicit parameters, provided a default value with
the appropriate name is entered into the same environ-
ment. For example, the function

square: [l:lnt]int - . . .

can be replaced by the two definitions:

square: [all t, ?times: t-d-d, i:t]t = . . .
times: [x:int, y:int]int = . . .

Any environment that contains square will also contain
this definition of times, and therefore the new definition
is applicable everywhere the previous definition is applica-
ble.

Parameter inference rules
We first consider parameter inference independent of
overload resolution; that is, we assume an oracle supplies
the correct overload selection for any identifier. We then
convert this nondeterministic algorithm to a deterministic
one using an overload resolution algorithm adapted from
Ada (cf. Aho, Sethi and Ullman 1986).
Parameter inference for terms. The first step in parameter
inference is to compute the most general signature for
each term in the expression. A term is either an identif-
ier, a definition, or an application. The signature of an
identifier is simply determined from the environment; the
signature of a definition is given by the function sigdef
defined previously. The signature of an application must
be inferred.

Consider the application f x where f has signature fs
and x has signature x s . f s must have the general form

vftl I#. Vfii ?fq1:frl-+ I** ?fqj:fri+ (Vat1 *a. VUfk Ck) * p

That is, f is a function with i>O type parameters, j>O
implicit parameters,t whose parameter type is (Y with k>O
type parameters, and whose result signature is ,9. As a
shorthand we use Xi”,, to denote X repeated for i from 1
to II ; using this shorthand, fs’ is:

(VfLX-1 Vf4.:fr,+L WQL ~)-+B

x has the type 7 with l>O type parameters and m?O impli-
cit parameters:

t The type paramcle~ need not precede the implicit paramekrs, but
the transformation rules can be used to effect this ordering.

(vxt”)l-l (?xq.trr,+)L 7

Let free be the set of free type variables in fs and xs.
Signature inference for f x is based on the first-order

unification (Robinson 1965; cf. Aho, Sethi and Ullman
1986) of a and 7, where the set of variables is cfc,) u
{xr.}. We find the most general unifier mgu such that
wu(a) -cI mgu(r). If no mgu exists, there is no valid
typing for f x, but the existence of mgu does not guarantee
a valid typing. In particular, mgu&) must be a
simple-type expression whose free references are in free,
and mgu(xt,) must be a simple-type expression whose free
references are in free u {at,,}. If the bindings of mgu obey
these rules, we transform f x to the following term:

[all frnlL
[all xi,lL
1 ?f4. wuCfr,)lh=d

The type abstractions of the form [ail t] def, where t is not
free in def, are useless (but not incorrect), and can be
eliminated.

It is straightforward to show that the above term has a
valid signature. Some intuition can be gained by exatnin-
ing representative cases. Suppose fs is of the form
V t (Y+ and xs is 7. If mgu(t) = t after unifying (Y and 7,
the most general typing results from abstracting the entire
term with respect to t:

[ali tl w4B) - f PI bwb) - 4
or, more simply:

[ail t] mgu(B) - f {t} x

If t is bound to some type q, the resulting term is:

[all t] mgu(P) = f {q} x

which may be simplified to

f w x
Type parameters in xs are handled in an analogous
manner, except for the following situation. Consider fs of
the form (Vt cu)-+3. In this case, xs must be of the form
V q 7. Unifying o and y might yield mgu(Q) = t, which
would result in the term

f (Iail tl wuM - x {W
If f and x had the signatures fs = V a(V b a+b-+ b)+a,
and xs - V CV dV e c-+d-+e, the following term would
result:

[ail a][aii c][aii d][aif e] a =
f {a} ([ail b] a+b+b - x {a}(b)(b))

134

which could be simplified to

[all a] a - f {a} ([all b] a+b+b - x {a}(b)(b))

On the other hand, if XI - Vc c--+c--*c, a would be
bound to b (via c), violating our restriction. Without the
restriction, the resulting term would be

[all a] b - f {b} (all b] x {b}

which has no valid signature because the first two
occurrences of b are free references, while the last two are
not. They could not possibly be equal, as required by the
signature rules.

The treatment of implicit parameters is similar:
because the environment of f x is identical to the environ-
ment of f, any implicit parameters to f can be moved out-
side f x by abstracting f x with respect to a parameter of
identical name and type, and applying that parameter to f .
Consider the signatures fs - ?q:t+a-+b and xs - a; the
resulting term is:

[?q:t]b = f{q}x

Implicit parameters to x are handled in a similar manner,
except that the type environment of x, while initially
identical to that of f x, can be augmented by the transfor-
mation process. Consider the case of fs - (Va a-+ a)+b
and xs - Vc ?q:(c+c) c+c. a--*8 and cd unify with
mgu(c) = a. Because the type a is known only in the
environment of x, there cannot possibly exist a function q
whose type is a-e. The most specific type that can
match a-+a is V a a+a. We therefore abstract f x with
respect to an implicit parameter q of type V a a+a:

[?q:V a a+aJ b = [all a] x {a){q{a>}

This transformed f x is applicable in exactly the same con-
texts as the original.
Parameter inference for expressions. When a term t is
used as an expression, type parameters and implicit
parameters may be applied. If the expression e appears
in a context constraining it to be of type (Y (i.e. the expres-
sion or = e) we specialize t as necessary by (in effect)
applying the identity function to t:

([x:o]cY - x) t
Once the type is so specialized, it will have a signature of
the form

(VU,)f,l (?q.:r,-& o!.

An expression cannot have implicit parameters, so they all
must be applied (no implicit parameters were removed by
the rules for terms - they were merely promoted to form
part of the result signature). The implicit parameters are
applied one at a time until the resulting signature has no
more implicit parameters. That is, so long as the term t
has a signature of the form

we convert q1 to an explicit parameter; that is, we (in
effect) replace t by

and apply the transformation algorithm recursively. Once
the implicit parameters have been applied, the resulting
term can be simplified by j3 substitution to remove many
inferred type and implicit parameter abstractions.

The recursive application of implicit parameters may
not terminate: when q1 is bound in the signature environ-
ment of the expression, its signature may have implicit
parameters; these parameters, when bound, may have
more implicit parameters, and so on. Our implementation
restricts the number of recursive applications to some con-
stant k. Thus, the algorithm constructively determines
whether, for a given E expression of size S, there is an
equivalent x expression of size s+k or smaller, where size
is defined as the number of terms in the expression.
Overload resolution. The algorithm above assumes that
the bindings for overloaded identifiers are known. In
fact, we must label each definition of an identifier with a
unique qualifier, and then add an appropriate qualifier to
each identifier reference. To handle overload resolution,
a two pass algorithm is used. The first pass computes the
set of possible signatures for each term, and determines
whether a valid type exists for each expression. Each
recursive step to resolve implicit parameters takes a set of
possible signatures, and applies one implicit parameter to
each at any given recursive step. One of three termina-
tion conditions may occur: the set of possible signatures
may become empty, in which case no valid x program can
be generated. After n (0 < n < k) steps of implicit
parameter application, exactly one?ignature may have no
implicit parameters. This is the result type of the smallest
solution. If more than one signature has no implicit
parameters, the expression is ambiguous (but we may
choose to select, for example, the most general result
type, if there is one). If after k steps, all possible signa-
tures have at least one implicit parameter, there is no
solution of size smaller than s+k.

Once a result type is chosen, the first pass is reversed,
and the appropriate qualifiers are added to identifier
references. Type and implicit parameter application and
abstraction are inserted, transforming the expression to x.
(Alternatively, all typing can be erased to yield an
equivalent expression in an untyped language; once over-
load selection is done, types are redundant.) It is possible
to discover ambiguity during this second pass: several
possible bindings may yield the desired type. In this
event, we select the best fit, if it exists and is unique. We
consider a term of the form fi x1 to be a better fit than a
term of the form f2 x2 if the signature of fi xl is more
specific or equivalent to the signature of of f2 x2, and fl is
a better fit than f2 and xi is a better fit than x2.

Discussion of the algorithm
The algorithm for type-dependent parameter inference
incorporates three sub-algorithms that have not previously
been combined: type inference, implicit parameter bind-
ing, and overload resolution.

Two major variants of type inference have been dis-
cussed in the literature: type inference for ML-like
languages, and type inference for languages based on the
polymorphic X-calculus. ML-style inference expressed as
a first-order unification problem. Our inference is more
general than ML in that higher-order polymorphic func-
tions may be written, but more restrictive in that function
abstractions must be explicitly typed. Mitchell (1988)
describes a number of variants of the polymorphic type
inference problem. Our algorithm addresses a new subset
of pure type inference without retyping functions; our res-
trictions are: function abstractions must be typed expli-
citly, and we restrict type application to apply only to sim-
ple types. The second restriction can be removed at the
expense of creating ambiguous typings, but we have not

135

investigated removing the first. From a software
engineering point of view, we have little incentive to do
so, as we believe function interfaces should be specified
independent of their implementations.

Others have proposed restricted polymorphic inference
algorithms. Boehm (1986) describes such an algorithm for
the language Russell, but states that it is difficult to define
precisely the set of programs for which the algorithm will
succeed. Boehm (1989) describes a more well defined set
of rules that require the following restrictions: (1) type
parameters are inferred only when functions are applied
(and not when functions are passed unapplied to higher
order functions); (2) functions must be uncurried so that
type parameters are applied in conjunction with other
parameters that depend on them. O’toole (1989) proposes
a different approach, allowing an explicit conversion
between ML-style polytypes and type abstractions. In
contexts where a type abstraction is explicitly converted to
an ML-style polytype, type inference is done. Elsewhere,
type applications must be explicit.

Boehm (1985) describes partial polymorphic type infer-
ence, and shows it to be undecidable. In his characteriza-
tion of inference, some but not all typings may be speci-
fied, and the remainder are inferred. Boehm’s characteri-
zation disallows the inference of type abstractions, and
requires that the positions of omitted type parameters be
explicitly marked. The proof of undecidability relies on
these restrictions.

Ada has implicit operation parameters to generic func-
tions and packages. However, the type parameters to
generics must be specified first, and then implicit parame-
ter inference takes place within a monomorphic type sys-
tem. Other polymorphic languages either have no implicit
operations, a predefined set of implicit operations (like
equality comparison in ML), or require that the operations
be packaged inside second-order mechanisms, like classes
or generic abstract types.

Full overload resolution, taking the context type into
account, is essential for the selection of implicit parame-
ters. Ada is the only well known language that has such
overload resolution, and this component of our algorithm
is essentially the same as Ada’s. ML has a limited form
of overload resolution for builtin operators. Other
languages, for example PI.& Algol 68 (van Wijngaarden
1975) and C+ + (Stroustrup 1986), do overload resolution
based on parameter types alone.

Conclusions
The static type system presented here achieves greater
flexibility than existing polymorphic type systems, pri-
marily by avoiding the packaging of operations into secon-
dary entities like classes. This flexibility is achieved
without compromising modularity, through a novel combi-
nation of simple information hiding, inferred type param-
eters, inferred operation parameters, and overloading.
While these components have been included individually
in previous languages, in combination they yield a type
system whose expressiveness exceeds the sum of the com-
ponents.

Acknowledgements
The authors thank Dennis Vadura and Peter Bumbulis for
their careful reading of this manuscript. This work is sup
ported by the Natural Sciences and Engineering Research
Council of Canada, the Information Technology Research
Centre of Ontario, and Rice University.

References
Reference Manual for the Programming Language Ada,

U.S. Department of Defense, ANSUMIL-STD-1815-A
(1983) -

Aho, A.V., Sethi, R., and Ullman, J-D., Compilers -
Principles, Techniques, and Tools , Addison Wesley
(1986).

Boehm, H., Partial polymorphic type inference is undecid-
able, Proc. 26th Symposium on Foundations of Com-
puter Science (Oct. 1985), 339-345.

Boehm, H. and Demers, A., Implementing Russell, Proc.
Si8ylaa5 86 Symposium, in Sigplan Not. 21:7 (1986),

Boehm, H.; Type Inference in the Presence of Type Abstrac-
tion, Proc. SIGPLAN 89, in SIGPLAN Not. 24:7
(1989), 192-206.

Cardelli, L. and Wegner, P., On Understanding Types,
Data Abstraction, and Polymorphism, Computing Sur-
veys 17:4 (Dec. 1985), 471-522.

Cardelli, L., Typeful programming, Digital Systems
Research Center, Palo Alto (1989)

Cormack, G.V. Extensions to static scoping, Proc. S&plan
83 Symposium, in Sigplan Notices 18:6 (1983), 187-
191. -_ -.

Cormack, G-V., and Wright A.K., Polymorphism in the
compiled language ForceOne, Proc. 20th Hawaii Conf.
on System Sciences (1987), 284-292.

Donahue, J. and Demers, A., Data Types are Values,
A.C.M. Trans. Prog. Lang. Syst. 7:3 (1985), 426-445.

Futatsugi, K., Goguen, J., Jouannaud, J. and Meseguer
J., Principles of OBJZ, Proc. 12th Symposium on Prin-
ciples of Programming Languages (1985), 52-66.

Girard, J., Interpretation fonctionelle et elimination des
coupures de 1’ arithmetique d’ ordre superieur, These
d’Btat, Universite Paris VII, 1972.

Kaes, S., Parametric overloading in polymorphic program-
ming languages, Lecture Notes in Computer Science
300, Springer (1988), 131-144.

MacQueen D., Modules for Standard ML, Conf. Record of
ACM Symposium on Lisp and Functional Program-
ming (1984), 198-207.

Meyer, B., Object Oriented Software Construction, Prentice
Hall (1988).

Milner, R., A Theory of Type Polymorphism in Program-
ming, J. Computer Syst. Sci. 17 (1978), 348-375.

Milner, R., The Standard ML Core Language, Polymor-
phism 2:2 (Oct. 1985), l-28.

Mitchell, J. C., Polymorphic type inference and containment,
Information and Computation 76 (1988), 211-249.

Meyer B., Object-oriented Sofnvare Construction, Prentice
Hall (1988).

O’toole, J and Gifford, D., Type reconstruction with first-
class polymorphic values, Proc. Sigplan 89 Symposium,
in S&plan Not. 24:7 (1989), 207-217.

Reynolds, J., Towards a Theory of Type Structure, Paris
Colloquium on Programming (1974)) 408-424.

Robinson, J.A., A machine-oriented logic based on the
resolution principle, J. ACM 12:l (1965), 23-41.

Stroustrup, B., The C++ Programming Language, Addison
Wesley (1986).

van Wigngaarden, A., et al. Revised report on the algo-
rithmic language Algol 68, Acta Informatica 5 (1975),
l-236.

Wadler, P and Blott, S., How to make ad-hoc polymor-
phism less ad hoc, Proc. 16th Symposium on Principles
of Programming Languages (Jan. 1989), 60-76.

Wright, A.K., Design of the Programming Language
ForceOne, Research Report CS-87-10, University of
Waterloo (1987).

136

