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Abstract We provide an accessible, self-contained explanation of memory errors as they pertain
to programming languages, and the related idea of memory safety. We use the C language as a
concrete example.

For major operating system and browser vendors who make heavy use of systems languages,
65–70% or more of reported software vulnerabilities in recent years have involved memory er-
rors [2]. For Microsoft, the share has remained near 70% for a dozen years, per a 2019 report [4].
In a broad study counting the number of exploits in the US National Vulnerability Database over
2013-2017, the top category was (memory) buffer errors, among 19 vulnerability categories [1].
Though these statistics lag by a few years, decades-old problems clearly remain with us today.

This article provides background and context for students and security novices, among others,
to understand memory errors and memory safety. Definitions for these terms remain hard to find in
older computer security textbooks, while discussion meaningful to practitioners is often absent from
the research literature. To that end, we ground our discussion using C for context and examples of
language-related security vulnerabilities involving memory errors. We plan to consider Java and
Rust in a future article.

In teaching software security, we believe much can be gained by giving greater focus to the
choices made in designing programming languages, rather than to malware exploits on target exe-
cutables, a popular historical focus. This may help steer development teams to better programming
language choices for long-term projects. A language-centered discussion of software security and
memory errors may also serve students well by motivating them to learn more about comparative
aspects of programming languages and their designs.

C language features and related security pitfalls

In contrast to application-level programming languages such as Java and modern scripting languages
like Python, systems languages like C prioritize efficiency and programmer access to memory ad-
dresses over built-in security protections. Programming of device drivers and hardware interfaces is
supported by program access to explicit memory addresses (raw pointers) and easy drop-down into
assembly language or machine code.

As is well known, this comes with a downside. C and closely related C++ have historically
been accomplices in a lion’s share of security vulnerabilities. Certain C language features have
historically been associated with programming errors underlying software vulnerabilities. To help
understand memory errors, Sidebar-1 summarizes C language features relevant to our discussion.

C’s failure to do bounds-checking on array accesses (as noted in Sidebar1) is compounded by
the failure of many utilities in the C standard library (libc) to carry out basic error-checking. This is
left as a responsibility of human programmers—who, being human, also often fail to do proper error
checking. Instances of resulting mistakes produce both “normal” errors (incorrect results, run-time
exceptions, program crashes) and exploitable errors (software vulnerabilities). For example, one
type of buffer overflow vulnerability enables overwriting a run-time stack return address, thereby
altering execution control flow.

The point to note here is that software vulnerabilities go beyond “normal” errors, and can enable
remote parties to run unauthorized code (malware) that can take control of host machines. A novice
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C pointer syntax, casting, basic data types, and coercion (Sidebar-1)

If p is a pointer, then *p denotes the value that p points to, whereas &z denotes the address at which
the value denoted by variable z is stored. C variables of type pointer are raw pointers (typically 4 or
8 bytes, based on machine architecture), giving programming language access to memory addresses.
While in principle pointers point to specific data types, C is a bit loose on this, e.g., void * (pointer
to void) is “used to hold any type of pointer but cannot itself be dereferenced” [3]. The intent is to
later manually cast the pointer to a specific type.

Such type-casting allows C programmers to convert one data type to another, including from in-
tegers to pointers. C also supports pointer arithmetic, e.g., you may add an integer to a pointer; the
integer is implicitly scaled by the size (in bytes) of the data type of the object pointed to.

Aside from pointers, primitive data types in C include integer types of widths ranging from 8 to
64 bits: char, short, int, long, and long long. Integers (and floating point types) can be given
modifiers signed or unsigned.

C also has a struct type for programmer-defined objects that group multiple (optionally different)
data types, and a union that allows a memory area to be used by two or more different data types at
different times.

A character string is not a basic C type, but by convention is an array of char, terminated by a
NUL 0x00, and referenced using a pointer to the string’s first byte. Standard C library string utilities
use this convention—but are a notorious source of security vulnerabilities, as discussed later in this
article.

In C an array is a contiguous sequence of n data values of one type. The storage location implied
by b[i] evaluates to (b)+(i) in pointer arithmetic: (b) denotes a base address and offset i is scaled
by the data type (size). An array’s address &b is the address of its first item b[0]. Critically, C does
no bounds checking (on reads or writes) on array accesses; this is the programmer’s responsibility.
Out-of-bounds accesses are said to result in “undefined behavior”.

To evaluate expressions, C compilers may generate code that does coercion, i.e., automated type
conversions not requested by the programmer. This is part of type-checking system designs. For
example, to ease programming of arithmetic expressions combining integer types of different width,
some shorter integer data types are converted to a wider type compatible with longer integers; this is
called integer promotion. C’s specification calls for implicit coercion not only in the case of arithmetic
expressions that mix integer types of various widths and signedness with floats, but also in assignment
statements, function return values, and function arguments whose types do not match declared formal
arguments types; a syntax error is declared if no compatible conversion exists.

might not think this concerns them directly, but their view may change when a ransomware attack
results in all content of their laptop being rendered inaccessible.

One set of libc utilities is notoriously problematic: functions supporting string operations [10].
An underlying problem here is C’s error-inducing convention of strings being NUL-terminated. The
resulting security pitfalls are summarized in Sidebar-2. Warnings about these traps are given in
documentation for the functions, but words in documents do not stop errors from occurring.

While what is needed is library utilities resilient to human errors, C programmers are instead
expected to be familiar with countless nuances to avoid such pitfalls. As programmers continue to
step into traps, security vulnerabilities creep into code, silently awaiting later exploitation. Mean-
while, various libc utilities are declared “unsafe” by warnings in tools, but often remain available
nonetheless for backwards compatibility. The “unsafeness” involves memory errors, our main topic.
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Garbage collection versus malloc

Garbage collection is another piece of the memory error puzzle, and involves managing heap
memory—a rich source for memory errors.

When a process is scheduled to run, the OS assigns to it a memory space distinct from kernel
memory and other processes. In C environments, this is commonly split into five regions: run-time
call stack (for data related to function calls), heap (for dynamically allocated objects), text segment
(for code), data segment (initialized global data), and the BSS area, short for block started by symbol
(uninitialized global data).

Often in systems languages, heap memory is manually allocated by programmatically request-
ing blocks of the desired size (chunks). In C, calls to malloc() return a pointer p to a chunk of
uninitialized heap memory, or a NULL pointer if the request cannot be filled; the related calloc()
returns a zero-initialized chunk. Memory no longer needed is released by calling free(p); if not,
the memory is effectively lost (called a memory leak), inducing out-of-memory errors over time.

Manual memory management is avoided in many higher-level languages (e.g., Java) through a
process called garbage collection (GC), whereby memory chunks no longer used or reachable are
automatically reclaimed and returned to a system free pool of available memory chunks. Any of
various storage allocator approaches are used to manage this heap memory, often arranging the free

C strings, string utilities, and related buffer overflows (Sidebar-2)

strcpy(char *dst, char *src) is a main string-copy utility in C. It copies whatever string is
found at the src address to the address indicated by dst, byte-by-byte, ending once a NUL byte is
found and copied. If fewer bytes were allocated for the destination buffer than present in this source
string, that does not matter—the copying blindly continues until a NUL byte is found. This overwrites
memory beyond the end of the dst buffer, continuing into the adjacent data structure or executable
code at the next higher memory address, and the one after that and so on. Eventually a NUL byte will
be copied. Not all such instances are exploitable; by this we mean, it might “only” trigger an access
violation or system crash.

While such an overrun can arise if the dst buffer is shorter than the src buffer, it can also occur
even when the dst data structure is the same size or larger than that of src, in the case that the
src buffer itself contains no ending NUL byte. This can result in a different problem at the src end:
reading of non-NUL bytes beyond the end of the src buffer may result in an information leak exposing
potentially sensitive data (e.g., secret keys) from memory beyond the intended src buffer.
gets() and puts(), the get-string and put-string functions, raise similar issues. Another example

is the string concatenation function, strcat(char *dst, char *t); it concatenates the string at t
to the end of that found at dst, blindly assuming that dst has sufficient space [3].

Yet another is strncpy(), perhaps viewed as a safe alternative to strcpy(). It takes a third
parameter n, the maximum number of bytes to copy, stopping after either the first NUL or n bytes,
whichever is first. This enables a different error: the resulting destination string may end up without
a terminating NUL. In that case, a later memory error will almost surely occur as later code expects a
conventional NUL-terminated string.
strncat() is a concatenation alternative with a third parameter n, here specifying the maximum

number of non-NUL bytes concatenated to the end of the dst string, but a terminating NUL is al-
ways inserted—extending the dst string by possibly n+1 bytes. This inconsistency with n’s use in
strncpy() induces so-called off-by-one memory errors, corrupting single bytes.
strlen(s) is another off-by-one trap. It returns the number of bytes in its string argument, ex-

cluding the ending NUL byte—so one byte more than the return value is needed to store the string.
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pool in a double-linked list ordered by size, and occasionally reorganized.
GC has advantages beyond relieving programmers from the burden of allocating and deallo-

cating memory: it eliminates temporal memory errors (as explained shortly) and can significantly
reduce memory leaks. However, disadvantages include significant processor time costs, and unpre-
dictable process delays when the GC routines engage to collect and consolidate free memory. Basic
GC approaches are also unsuitable in time-critical applications that must meet strict timeliness con-
straints.

Data types and type checking

As we build towards defining memory errors and memory safety, it helps to recall the main ideas of
data types, type systems, and type checking [5].

Why are data types needed in programming languages? Many operations—even in simple arith-
metic expressions, and assigning a value to a variable—take inputs whose values are expected to be
from specific domains and produce outputs with expected characteristics, again with values falling
in an implied domain [9]. Data types are used to specify and convey these expectations, and every
programming language has some form of type system that defines built-in types, allows creation of
user-defined types, and dictates rules governing what is required and enforced related to these types.

Data types are associated not only with data structures, but also functions and operators (includ-
ing unary and binary arithmetic and logical operators) via the allowed inputs and outputs—which
must have expected types.

How to define data type in greater detail is somewhat harder. The important aspects are that
types convey useful details about an object’s properties and semantics, and of help in identifying
mismatches between objects and their expected operators or uses. In essence, data types convey
the operations or methods allowed on data values—and of special interest to us is catching errors
having possible security implications. Data types also convey information to the system about how
data values are represented (e.g., storage formats); this may be intentionally hidden from application
programmers in an attempt to simplify their task, or to abstract platform-specific representations.

Based on a type system’s types and rules, type checking is the process of detecting domain
incompatibilities—improper or unexpected uses of objects—at compile time (static type checking),
run time (dynamic type checking), or both. Not all incompatibilities can be detected at compile
time, as not all values are known. Out-of-bounds array accesses when element indexes are dynamic
inputs, and division by zero, are examples of errors that cannot be caught at compile time; examples
that can be are multiplication or exponentiation of strings and boolean values.

Requiring a programmer to specify the data type of every single object and value is tedious.
Thus to varying degrees, programming languages relax the requirement of explicit type declara-
tions, some requiring few if any. The language processor then uses type inference to assign a data
type (hopefully as intended by the programmer) based on context and the rules of the language. Of
course, this might result in a mismatch with programmer’s expectations, and a syntactically accept-
able program having semantic errors. Thus there is a language design tradeoff: strict requirements
of type declarations impose heavy burdens, while being lax risks undetected mismatches between
programmer intent and a language processor’s actions.

When the operands of an operation or arguments of a function are incompatible by strict rules,
a programming language could simply declare an error. Another option is to generate code to
automatically convert one or more values to a compatible type, in cases where this make sense such
as addition of integers and floating point numbers. This is called coercion (implicit type conversion).

There are different sets of rules by which this might be done—for example, consider the pos-
sibilities for adding an integer and a float, (2 + 3.0). A natural choice is to convert the integer
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“upward” to a float. Along these lines, well-defined (albeit not always well understood) conver-
sion hierarchies have emerged. These resolve some, but not all, attempted operations—e.g., most
languages disallow “adding” an integer to a string (though some treat it as concatenation).

Implicit type conversions can be more complicated than they first appear, even for integers and
floats—consider, for example, that C has numerous widths for integers alone, as well as signed vs.
unsigned (and also char). Languages that are overly eager in carrying out coercion enable pro-
gramming errors—some exploitable—when unanticipated by programmers, and may signal what is
called weak typing.

Static type checking may result in compile-time errors, or in generating code for run-time coer-
cion or run-time type checking. If a compile-time check can rule out a type incompatibility, then this
single check both avoids a run-time test at each instance the relevant code line runs, and catches er-
rors during development versus during dynamic testing or post-deployment. Static type declarations
themselves also often help developers understand programs.

C is weakly-typed

C is statically typed (variable types are declared) and has static type-checking (expressions and
function parameters are type-checked at compile time). However, note that C supports or allows:

• a wide range of implicit type conversions;

• raw pointers, pointer arithmetic, and converting pointers to one type to pointers to another;

• various code sequences noted by the specification to result in undefined behavior;

• no bounds-checking on memory accesses via pointers, although compiler-related tools may
offer special options or warnings;

• bypassing the type system by the union construct, and manual casting (type conversion)
including between pointer types and integers, and from a function pointer to another whose
function signature differs (e.g., in return value type, argument types, or number of arguments).

While Kernighan and Ritchie [3] state that every (non-void) C pointer points to an object of some
fixed type, C’s design takes no responsibility for enforcing this, as they also state, e.g., that the
programmer is responsible for tracking which type is currently stored in a union. Programmers are
likewise responsible for tracking the data type of a pointer’s referent, as is clear from the flexibility
allowed in casting pointer types, pointer arithmetic, and array indexing. Thus, although C is a typed
language and variables must be declared (with a type name) before use, it is loose (relative to other
languages) in ensuring that object types are compatible with uses.

Based on these observations, C is said to be weakly-typed. Its design and language processors
do not reliably guarantee domain compatibility in the use of objects, and no run-time type-related
support addresses compile-time deficiencies. The opposite is a strongly-typed language.

Memory error categories and memory safety

We now consider categories of security problems enabled by language features.
A wide variety of errors involving improper memory access, on both writes and reads—called

memory errors—are enabled by dereferencing of invalid pointers, and failure to check that array
accesses are within bounds [7], [8]. Some, but not all, result in error conditions raised by the
hardware (CPU); in some cases, errors enable unauthorized code to be executed before (or without)
the vulnerable process being terminated, or the operating system crashing.

Consider first a few possible outcomes of writing to an unintended address, e.g., beyond the
bounds of a referenced array. Perhaps the value written is controlled by a malicious program input.
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a) The value overwritten is a code pointer (stack return address or function pointer). This will
alter later execution paths when the code pointer is loaded into the CPU instruction pointer,
breaking the program’s control-flow integrity.

b) The memory overwritten holds program data other than code pointers, e.g., data variables and
pointers to them (data pointers). This breaks program data integrity. It may also indirectly
alter execution paths that depend on the altered values.

c) The memory overwritten is code that will be executed later. This directly breaks code in-
tegrity. A common tactic involves shellcode, where an attacker crafts special code as mali-
cious program input, aiming to execute this code of their choosing on a target machine.

Consider next two outcomes of errors associated with read access, which may lead to information
leaks (disclosure of sensitive data).

d) Data is read from an uninitialized object, part of whose associated memory retains values
from when the same memory was used for an earlier object. (C does not require initialization
of automatic variables; static vars are set to 0 or NULL. Reading from an uninitialized variable
is said to result in undefined behavior.)

e) Data is read from an arbitrary address within the process’ address space, unintended or unan-
ticipated by a benign programmer. A severe example was the 2014 Heartbleed incident,
where a function in the OpenSSL library failed to check array bounds.

Distinct from these outcomes, we now consider three categories of memory errors [7]. The first
category is spatial safety errors (spatial refers to a memory range), including two cases:

1(i) memory access (read or write) that involves a pointer to one object, but results in access to
memory outside the range allocated for that object. For write access, this corrupts a separate
object. The first object could be an array whose elements are accessed using a base pointer
and offset; the error equates to a failure to bounds-check. In the buffer overflow case, bytes
are written continuously beyond the buffer’s end, spilling into objects at higher addresses.

1(ii) dereferencing a wild pointer. We define a wild pointer as any pointer whose use would result
in undefined behavior per the language specification (e.g., in C, for uninitialized and NULL

pointers, among others). NULL pointer dereferencing is known to be exploitable in some cases
(vs. simply causing an access violation). NULL, often represented 0x0..0, might map to
kernel memory through the virtual address translation implemented by the OS and hardware.

The second category is temporal safety errors (temporal refers to time), with two cases both involv-
ing use of a dangling pointer:

2(i) use-after-free error. This involves dereferencing a dangling pointer, i.e., a pointer to an object
in memory that has already been deallocated. The referent is an invalid object, and using any
reference to it is an error. The object referred to might be in heap memory, or a local variable
on the stack call frame (and referred to after its memory is deallocated by a function return).

2(ii) double-free error. This involves freeing an already-freed object, thus passing the deallocator
a dangling pointer. Deallocation puts a memory chunk into the free pool; doing so twice may
corrupt internal allocator data structures (if a free pool chunk is freed a second time), or may
create a separate dangling pointer (if the chunk was already re-allocated to a new object).
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A third category of memory errors (also resulting in undefined behavior in C) involves:

3) reading from uninitialized variables. Here we exclude dereferencing wild pointers, viewing
that as a spatial error—but include the case of an uninitialized pointer whose value is read
(e.g., to assign to a second variable) but not dereferenced. (If and when the second variable is
later dereferenced while holding a wild pointer, we view that as a spatial error.)

Aside from the third category, memory errors involve dereferencing or using an invalid pointer.

Memory safety levels L1 to L4

We can now define memory safety, or rather, four levels useful to differentiate classes of memory
errors that a language’s design and core support tools (compiler, run-time) may address.

L1: fundamental memory safety. Level 1 aims to eliminate spatial safety errors and temporal
safety errors, the most serious categories of memory errors and pointer-based security issues.
L1 safety may be viewed as guarding memory associated with an object through checks on
memory bounds (low, high), plus a flag indicating whether the object remains valid (i.e., both
its memory remains allocated and the object remains in scope).

L2: clean memory safety. Level 2 aims to eliminate both information leaks and undefined behavior
related to uninitialized variables.

Further levels are associated with mitigating two other common classes of memory errors.

L3: memory leaks. Level 3 aims to eliminate memory leaks. These can crash programs or the OS,
and can be viewed as security-related in that they may enable denial-of-service attacks.

L4: data races. Level 4 aims to eliminate security issues and unpredictable outcomes due to data
races, which can arise in the case of concurrent reads and writes to shared memory, e.g., if one
execution thread changes a data value while another is using it. This and related concurrency
issues fall in the broader context of thread safety.

Other categories of memory-related errors exist. Two of these overlap L1 and L2: errors involving
exploitable format strings (e.g., user-defined or user-controllable formats in C’s printf family
of formatted-output functions), and variadic functions, taking a variable number of arguments [7].
Another protection category involves cleartext secret keys and passwords in memory (some systems
offer support to store these encrypted while in memory, aside from instants of actual use).

Memory safety levels L1–L4 offer a useful starting point for assessing and comparing program-
ming languages with respect to their features that may help prevent memory errors, and thereby
improve software security. From our discussion, it is easy to see that C has deficiencies in each of
the four levels. Languages such as Java and Rust, among many others, fare better in most areas.

Cifuentes and Bierman [1] suggest that mainstream programming languages leave much room
for improvement, in that all fail to provide features to preclude prominent, known categories of
software vulnerabilities (from a list of categories well beyond those considered herein). But which
of these categories can be effectively addressed via programming language design remains unclear.

Overall, we view memory errors as violations of the expectations, set by a language specification
and its abstractions, about how programs should interact with memory [6]. Here we should also
emphasize the separation of a language specification from its implementations (thanks to F. Piessens
for this reminder). For example, the C specification declares various instances of memory errors
to result in “undefined behavior”, and does not take responsibility for ensuring that all memory
accesses are proper (consequently, C is declared memory-unsafe); the degree to which these memory
errors result in security vulnerabilities can vary greatly across compilers and runtime environments.
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