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Abstract

Embedded C code for safety critical systems faces some substantial challenges: like every other embedded SW code it must
be efficient in terms of code size, data size and execution time, but it must also behave safely under all circumstances, without
a user or operator who could handle the errors. One kind of problem is array accesses where the index is outside the specified
value range. The C language does not specify the behaviour in such cases, which clearly violates the requirements for safe
code. In this paper, the approach of the model-based development tool “ASCET” is explained, and the experiences of three
case studies that describe the adoption of index protection by the users are presented.

Keywords Domain-specific languages -
engineering

1 Introduction

Tools for model-based software development have existed for
several years now, and have been widely adopted in the indus-
try for some domains. In this paper, the topic is the adoption of
anew feature in the model-based development tool “ASCET”
[7], which is mainly used in the automotive industry for the
development of engine control algorithms and braking assis-
tance (ABS, ESP). The introduction continues to describe
the relevant properties of the tool, the concepts of functional
safety and embedded systems. The second section discusses
how the problem of index-out-of-bounds can be handled, and
the third section discusses some related work. The following
three sections describe the case studies, with a conclusion in
the last section.

This paper is based on a conference submission [3]. It has
been enhanced in the areas of the introduction and the related
research, and a third case study has been added. Please also
note that the handling of the index-out-of-bounds problem
is described to motivate the suitability for the described pur-
pose. It is not innovative with respect to other research. The
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main contribution of the paper is the three case studies, high-
lighting the issues that can arise in a real-world application.

1.1 Model-based development with ASCET

The modelling language of ASCET is designed to sup-
port the engineering of control algorithms in the automotive
domain, where C is still the most frequently used language. It
avoids many of the problems of the C language, like pointer
arithmetics, operator precedence and uninitialized data. It
also adds some special features that are important for the
domain, like arithmetic of fixed-point integer values, spe-
cial data structures to hold approximations of functions and
a memory model suitable for embedded microcontrollers.
The language contains several kinds of specification, includ-
ing data-flow-oriented diagrams, textual representations and
state machines.

The typical user is a control engineer who has lim-
ited knowledge about the technical details of embedded
systems. The representation of control algorithms as data-
flow-oriented diagrams is suitable for the domain and also
used during education and in other tools.

The development process typically starts with a model
that represents the control algorithm and is calculated with
floating point values. It is run on the local PC to verify the
correct behaviour. After that, the model is handed over to a
software specialist who adds annotations to make the model
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executable in an embedded device: fixed-point representa-
tions for the arithmetic values, data-consistency and real-time
scheduling and assigning the data to the appropriate sections
in the memory (like FLASH and RAM, where multiple sec-
tions may exist with different capacity and access latencies).
Using the terminology of the Object Management Group,
this is the transformation from a platform-independent to a
platform-specific model [14]. The annotated model is then
used to generate the code for an embedded device. The code
is usually stored in a repository together with the model and
later retrieved to build an executable. In most organizations,
the application is split into multiple models and integration
is done on the level of the C code.

The development of ASCET started in 1995, and the first
embedded control unit (ECU) containing generated code
went into production in 2000. At the time of writing, about
7500 developers are using ASCET, and an estimated 450
million ECUs are on the roads and rails that use ASCET
generated code.

For the purpose of this paper, two model elements need to
be described in more detail: system constants and arrays.

System constants are scalar elements of a Boolean, enu-
meration or integer type and used to model variants that are
resolved by the compiler. Common examples are the presence
or absence of a turbo charger, the activation of a customer-
specific feature or the number of cylinders in an engine. In the
generated C code, system constants appear as preprocessor
#define directives.

Arrays in ASCET are very similar to other C-like lan-
guages. The index range can be of fixed size, or set by a
system constant. (The array is of variant size.) In the latter
case, the actual size of the array is not known before compile
time. The size of all ASCET arrays is, however, known at
compile time at the latest, enabling static allocation. It is not
possible to calculate the size of ASCET arrays at runtime or
change the size of an array programmatically.

In addition, regular integer variables also exist to index an
array, e.g. as loop variables or counters. All integer variables
also have a defined value range that may be a subset of the
data type range.

1.2 Concepts of functional safety

In safety-critical systems, a failure could potentially result
in injury or death of persons. Such systems exist in multi-
ple domains, like medical, aviation, railway and automotive.
They must be developed according to the state of practice,
which is defined by standards like the general ISO/IEC61508
“Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems” [9] or the specific ISO
26262 “Road vehicles - Functional safety” [11] for the auto-
motive industry.
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The standards categorize the components into differ-
ent levels depending on their criticality and recommend
engineering methods throughout the development cycle to
achieve safety. The safety integrity levels (SIL) for ISO61508
reflect probability and consequences, and the automotive
safety integrity levels (ASIL) for ISO26262 reflect probabil-
ity, severity and controllability. The reason for this difference
is the fact that most critical systems are operated by pro-
fessionals that can be educated and are expected to follow
established rules and procedures. For the automotive domain,
the average driver of a car can be any type of person. To
reflect this, the aspect of controllability has been added that
describes how likely it will be that the conductor stays in
control of the vehicle when a certain failure occurs.

What also strikes the automotive industry more than other
domains is the cost pressure due to the high volume of cars
sold, and this also applies to ECUs, where savings of a few
Euro per unit (e.g. using less memory or a weaker micro con-
troller) can mean several million Euros over the production
life time of an ECU. For the software part, this means that
memory footprint and execution time should be optimized
without sacrificing safety.

The relevant part for the topic of this paper is Part 6 Section
8.4.4 of 1S0O26262 [11], which addresses the implementation
of a software unit. Among the properties to be achieved, there
is robustness, which is defined as “the ability to provide safe
behaviour at boundaries” (Part 1 Section 1.100). Although
this is certainly intended to be understood in a broad con-
text, it can be taken quite literally when talking about array
accesses and the boundaries of the index.

The authors of these standards were aware that the pro-
gramming languages used in practice were not designed for
high-integrity software development and therefore recom-
mend to use a “safe subset” of such languages. A popular
one is defined by the rules in MISRA-C [1], which in this
context formulates directive 4.1 to minimize array bound
errors. In general, the MISRA-C guidelines restrict the usage
of language features which have an undefined, unspecified
or implementation-defined behaviour, and also the features
that are difficult to understand or negatively affect readabil-
ity. Examples would be the evaluation order of side effects,
the size of an integer (16 or 32bit), integer promotion and
conversion and the comma operator.

Another topic is related to the integration of multiple com-
ponents on one ECU: the operation of one component must
not be degraded through the interference with other com-
ponents. This interference can take place in different ways,
for example, consuming too much CPU time, blocking crit-
ical resources or writing into the memory of a different
component. The standard therefore requires the isolation of
components from each other. This isolation of the different
sections of memory can be achieved by a suitable configu-
ration of the memory management unit (MMU). However,
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small microcontrollers do not include a MMU, or the cost of
reconfiguration when transferring control from one compo-
nent to another can be prohibitive for context switch latencies
needed in a multi-threaded hard real-time environment. The
other option is to avoid the problem by construction, which
means a restricted use of pointers and a safe way of access-
ing the contents of an array (which technically is also pointer
arithmetic in C).

For code generated from ASCET models, pointer arith-
metic is not used, because the modelling language is
restricted to only access array elements through an index, and
this is also the only way that is used in the generated code.
The safety of an array access can therefore be reduced to
ensure that the index is in the valid range. In addition, access
through pointers is safe by construction, because all pointers
are initialized in the model to refer to a statically allocated
object (either on definition of the pointer, or using a data-flow
analysis to ensure initialization before first usage). To support
handling of arrays of different sizes, fat array references are
used that also carry the size of the referenced array to ensure
a safe access. Other kinds of interferences are not addressed
by the modelling language and need to be taken care of using
other methods (e.g. schedulability analysis using worst-case
execution times [8,19] or safe communication [15]).

It should also be noted that the ISO standard does not
require “correct” behaviour, e.g. in a mathematical sense.
Instead, it emphasizes that the safety requirements to pre-
vent hazards must be documented, complete and verified,
e.g. using coding guidelines, static analysis, manual review
or testing (see [2,16]). The handling of exceptional cases can
therefore take place in any way, as long as it is suitable to be
verified against the safety requirements, which at least means
that it is defined and deterministic.

1.3 Restrictions for embedded systems

Embedded systems come in various flavours, and the ECUs
referred to in this paper are characterized as follows: they are
real-time applications with functions that must run frequently
(with inter-arrival times measured in milliseconds) and have
hard deadlines (equal to the inter-arrival period or less). In
addition, there are the usual resource constrains with respect
to memory and performance. This can also be seen later, as
the large majority of index variables have an 8-bit data type.
One consequence is that heap storage allocation is not
used, because memory allocation introduces non-
determinism that is difficult to account for in offline real-
time analyses, and handling of an out-of-memory error is
in conflict with the real-time requirements. Instead, all data
are allocated statically or on the stack. While this is suffi-
cient for the target domains, this is too restrictive for more
recent technologies like processing of radar or video data, or
entertainment systems (radio, MP3 players, DVD players).

2 Handling index-out-of-bounds

Accessing an array is nothing new, and various approaches
are used to handle the index-out-of-bounds:

1. Make it the user’s problem: this approach is taken in C,
where the behaviour is simply “undefined” (see e.g. [10]
appendix J.2). Expert programmers sometimes tend to
exploit the fact that the access is to the “next” mem-
ory location, but this also depends on alignment, packing
and padding which may change in the future (with a new
compiler version or a different microcontroller architec-
ture). In addition, memory may not even exist at these
addresses, which could result in a trap. Some of the
input/output devices may also be mapped to memory and
reading to, or writing from such addresses may have an
effect on the complete system, which adds one more fail-
ure mode to array accesses.

2. Throw an exception: this approach is taken in Ada, Java
and C#. This is also a flavour of the first approach, but
with a defined behaviour.

3. Prove that the problem does not exist: perform a code
review or run a static analysis to ensure that the index is
always inside of the bounds.

4. Handle the errors explicitly, e.g. check the index before
each access and implement error handling code.

5. Handle the errors implicitly, e.g. map the invalid index
values to valid ones by limitation
min(max(i, 0), arraySize — 1).

In the context of embedded C code for safety-critical
systems, the first two options are unsuitable: undefined
behaviour must be avoided, and exception handling is not
possible in C. In addition, throwing an exception adds an
edge to the control-flow graph, which can lead to a large
increase in testing effort if branch coverage is required.

The other options are suitable and can also be used also
in combination, e.g. using the static code analysis to ensure
the consistent application of the explicit handling.

The options have an effect on development effort, though.
If errors are handled explicitly with a follow-up manual
review step, there is a risk of a late finding of a missing
protection (which requires to repeat the development cycle
once more). Even if static analysis is used, the experts need
to qualify the findings of the “potentially unsafe” category
and take appropriate action. In any case, the effort needs to
be repeated for every change, and as long as humans are
involved, there is also the risk of human error.

If errors are handled implicitly by an automated code gen-
erator, there is no additional effort required. Users may still
want to run static code analysis to protect themselves against
tool defects, but the analysis report only needs to be checked
that no definitely or potentially unsafe code is detected. The
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finding of an unnecessary protection is not critical, as long
as the added execution time does not violate the real-time
constraints. The number of late findings will be near zero.
Itis also possible to handle the errors explicitly, and add an
implicit handling if necessary. Again this can also be checked
by static code analysis and will have nearly no late findings.

2.1 Index limitation

Limitation on the assignment to integer variables has been a
property of the ASCET modelling language since the begin-
ning: the value range of all variables is explicitly defined in
the model, and an assigned value is limited to that range.

Regarding array indexing, ASCET up to version 6.1
followed C and used the first approach, placing the respon-
sibility on the user: he needed to add explicit checks as
necessary. Since Version 6.2, ASCET supports the combina-
tion of the options (4) and (5): the user can handle the error
cases explicitly, and the tool can add the index limitation to
ensure a valid index.

The reason was the positioning of ASCET as tool to
develop software for safety-critical applications, and the
array indexing was the last kind of runtime error without
tool support. The expected benefits for the user are:

1. Front-loading of checks, avoiding long turnaround times
if the defect is detected late. This contributes to work
efficiency.

2. Reduced model complexity when explicit handling of the
index-out-of-bounds problem can be removed. The mod-
els should become more understandable and also more
maintainable.

3. In addition to code, documentation is generated from the
models that is used in the downstream process of cali-
brating the software to a particular vehicle model. This
documentation should become more readable in the same
way as the model becomes more understandable.

By default, all array accesses are protected by adding an
index limitation. To reduce the negative impact of the added
checks on the code efficiency, an analysis has been added
to identify those accesses where no additional protection is
required. The analysis is a standard data-flow analysis to rec-
ognize the typical model structures used for explicit handling
of index problems. It keeps track of the value ranges for each
variable (taking the value ranges as specified in the model as a
starting point) and uses interval arithmetic on operators. This
is sufficient for arrays of fixed size. Additionally, relations
that are derived from if and loop conditions are exploited to
handle arrays of variant size.

The analysis decides if an array access is always safe,
potentially unsafe or definitely unsafe. In the definitely
unsafe case, an error is reported. In the potentially unsafe
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Fig.1 Example block diagram model

1 if (i < 8Y) {

2 x = arrayl[i];
3 ¥ else {

4 x = arrayl[i-1];
5

¥

Fig.2 Example textual model

case, a warning is reported. A separate option enables the
generation of a limitation of the index value against the lower
and upper bounds.

To enforce the explicit handling by the user, the warn-
ing can be promoted to an error, so that code will only be
generated if all array accesses are considered safe by the
tool. If index limitation is the dominant way of explicit han-
dling, this can be taken care of in the code generator, and
the warnings can be used in a review to check if additional
handling is required. The safety property of isolation (see
Sect. 1.2) is maintained in both cases. Please recall that cor-
rectness in a mathematical sense is not required. Instead, the
behaviour needs to be deterministic and correct with respect
to the safety requirements. If both the index limitation and
the data flow analysis are nevertheless considered unsuitable
or insufficient, both can be disabled.

As an example, consider Fig. 1. The drawing only shows
the behaviour part of the model, since this is the relevant part
for the example. The model also contains information that
the variable i and the system constant SY are integer values
with a value range of [0. .255], initial values of 0 and 10,
respectively, and the array is declared to have SY elements,
with a maximum of 10. The base type of the array and the
variable x are both floating point types.

The ASCET block diagrams are a data-flow-oriented spec-
ification, where each object (like variables, system constants
and arrays) and operators are represented as a block with the
according pins. Variables and system constants have a read-
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pin on the right-hand side, and variables have an additional
write-pin on the left-hand side. The less-than-operator has
two operand pins on the left-hand side and a result-pin on
the right-hand side. For the subtraction operator, the operand
pins are on the left and the bottom side, and the result is
retrieved from the right-hand pin. The array blocks shown
here have a pin on the right-hand side to read an array ele-
ment, whose index is connected to the left of the two pins
on the bottom. The right-hand pin and the right bottom pin
can be used to write an array element. The execution order is
explicitly defined, and the first statement is the if-statement,
which is sequenced as number 1 in the process. Depending on
the result of condition, either the then-path on the right-hand
pin is followed using the dashed connection, or the else-path
at the bottom. In both cases, multiple blocks can be con-
nected, and they are then executed in the specified sequence.
The block diagram is semantically equivalent to the textual
model shown in Fig. 2.

When analyzing the if-block, the relation i < SY is
derived from the condition and used in the array access con-
nected to the then-pin on the right-hand side of the if-block.
With this information, the access is definitely safe and does
not need to be protected.

The opposite situation is observed on the else-pin on the
bottom of the if-block: the relation 1 >= SY is derived. But
in this case, the variable i is notused directly, and the analysis
needs to deal with the subtraction. The information about
relations is discarded, and interval arithmetic is applied to
yield a result interval of [—1..254]. This case is considered
to be potentially unsafe, and a warning is reported.

We decided to not place a focus on the analysis of loops
like heuristics for loop invariants. The loop body is only ana-
lyzed for variables that are not assigned (so the information
at loop entry can be used), and the loop condition is used
locally for the loop body. This was not expected to be a major
problem because loops occur only occasionally in control
algorithms for real-time systems.

Regarding the typical model structures for explicit han-
dling, it is quite difficult to get good input from customers:
for reasons of protection of intellectual property, the models
are only shared to a very limited extent with the develop-
ment team to perform an analysis. Asking questions also
has little benefit, because the contact person has no detailed
knowledge of what users have implemented in potentially
hundreds of models during the last years. In addition, at the
time of requirements engineering for a specific version, the
customers are still working on the introduction of the pre-
vious version and have little immediate motivation to spend
what seems to be additional effort.

As can be seen from the above description, the analysis is
implemented in a conservative way. The first reason is that
one additional limitation is not a critical problem, while a
missing limitation is. It is clear that critical defects would

array
& /1/process
-

Fig.3 Simple access to an array

undermine the trust in the tool, which will contradict the
whole argument about safety. The second reason is that gen-
erated code is almost always also reviewed for correctness,
and if the analysis is too elaborate, it will be difficult to under-
stand its decisions.

2.2 Variant handling at compile time

Variant handling is an important topic for the domain. There
are functional variants, where a case distinction is added to
the model and the data structures are not affected. And there
are also structural variants, where different data structures
must be allocated. Variants are resolved at compile time,
because, on the one hand, no unnecessary code and data
should be in the final executable, and, on the other hand,
it should be possible to select the variant as late as possible,
while still using the static allocation.

One example is an array whose size is defined by a system
constant. This affects the declaration of the data structures,
but also the access to the array. A simple example is shown
in Fig. 3. Like in the example from Fig. 1, the variable i and
the system constant SY are integer values with a value range
of [0..255], initial values of 0 and 10, respectively, and the
array is declared to have SY elements, with a maximum of
10. The base type of the array and the variable x are both
floating point types. The executable named process has
only one step, which is the storage of the array element at
index i into the variable x.

The generated code (see Fig. 4) is straightforward: the
system constant is lazily defined with the default value, the
value is checked to be in the allowed interval, the array is
defined using the value of SY for the number of elements,
and the array access contains a limitation. (Since the index
cannot be negative, a limitation against the upper bound is
sufficient.)

The check of the system constant in line 4 is added for two
reasons: to have an early error in case the value is less than 1,
instead of waiting for the compiler to produce an error on the
array declaration, which may be more difficult to analyze.
And to avoid the accidental allocation of a very large array,
which will not be detected earlier than at link time for the
final executable, if the available memory is exceeded.
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Fig.4 Generated code for an 1  #ifndef SY
access to a variant array 2 #define SY 10
3  #endif
4 #if (8Y < 1) || (8Y > 10)
5  #error The system constant SY must be between 1 and 10,...
6  #endif
7 ce
8 unsigned long array[SY];
9 ce
10 x = array[((i < 8Y) ? i : (SY - 1U))];

The analysis and code generation for array accesses is
designed to provide safe and efficient code by recognizing
manual protection in the models. To avoid long turnaround
times, potential problems are highlighted as soon as possible
(during code generation or compilation). Execution time of
the analysis itself is a secondary issue.

3 Related work
3.1 Research

Both static code analysis to detect runtime failures and
code optimization in compiler construction have triggered
research that can be applied to the index protection problem.

The work of Kolte and Wolfe [12] proposes different opti-
mization strategies to remove unnecessary checks or merge
similar checks. The area of application is either a program-
ming language that mandates these checks (e.g. Ada) or
where checks are added optionally for added safety (e.g.
C, Fortran). The reaction for a failed check is a trap in this
case, and no other options are discussed. The different opti-
mization strategies are implemented in a research compiler
for Fortran, and experimental results for various benchmark
programs are computed.

The proposed algorithm is much more sophisticated than
the one presented in this paper, also building on existing work
for induction variables to handle loops. The second special
strategy is the optimization of weaker checks: when a trap
is executed if 1 >= 5]|1 >= 10, then the second condition
can be removed. This is not applicable to the limitation of
index values, because the two upper bounds result in two
different limited index values.

Widening the scope, Rugina and Rinard [18] not only deal
with static detection of array bounds violations and elimina-
tion of array bounds checks, but also pointer arithmetic with
the presence of dynamic memory allocation and recursion. A
prototype implementation has been tested on various bench-
mark programs for C and Cilk, a parallel version of C.

Since both dynamic memory allocation and recursion are
not used in the domain of real-time embedded software, the
design of the analysis is overly complex for ASCET. Please
recall that one of the design goals is the freedom from defects
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that lead to missing protections. The support for loops is sim-
ilarly weak, and the algorithm has the restriction of variables
with an unsigned value range.

Buffer overruns are a serious problem for the security of
networked applications and can also be detected statically. In
Wagner et al. [21], an approach is developed that is applied to
string operations in C. It does not include an analysis of the
control flow or pointers, but still provides useful results. The
analysis is supposed to be carried out during the development
to be able to fix the vulnerabilities prior to the deployment of
the code. The focus is therefore on the analysis performance,
accepting undetected problems.

The described analysis is even more basic than the one
implemented in ASCET. Following the argument that few
detected vulnerabilities are better than none (in case the com-
plete analysis takes too long to be unusable), undetected
problems are accepted, which is not an option for safety-
critical applications as outlined earlier.

3.2 Other languages and tools

Beyond research, there are also static code analysis tools
in practical use, e.g. the Polyspace Verifier [4]. This tool
uses abstract interpretation to analyze C code for the pres-
ence of runtime errors, including array accesses. The analysis
is very elaborate, and this tool is also used to analyze
ASCET generated code. The output annotates the C code with
the analysis result: safe, unsafe, unreachable or potentially
unsafe. Findings of the last category obviously need to be
further analyzed. However, code may be unreachable due to
defensive code generation (uncritical) or due to errors in the
program logic, also leading to follow-up analysis and proba-
bly changes to the model. Due to the conservative design of
the index protection analysis in ASCET, unreachable code is
reported by the checker, resulting in a conflict between under-
standable code and minimizing effort of follow-up analysis.

Another modelling language that is also targeted at safety-
critical embedded applications is Lustre. This language is
supported by the tool SCADE developed by Esterel and
mainly used in the aviation and railway industry [5], [6].
In V4 of the language, the support for arrays has been added
as described in the PhD thesis [17]. The language is not only
designed to generate models for special hardware like FPGA
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and embedded C code, but also to enable formal verification.
To this end, the language has been revised in V6 to simplify
the verification of models with arrays [13].

The arrays in Lustre are restricted to have a fixed size that
is known at the time the model is compiled for some target
platform. Indexing of an array is also restricted to an index
expression with a value that is constant, so that the question
of index-out-of-bounds can be decided statically. To com-
pensate for this limitation, the language lifts all operators as
element-wise operations on arrays, and also introduces new
operators to aggregate all array elements, etc. This eliminates
the need for loops to a large extent, and the access to array
elements is correct by construction.

The idea to lift operators to array types could also be
applied to ASCET, and the strategies for efficient code gen-
eration to eliminate unnecessary array copies would also be
beneficial. The extension to arrays of a system constant size
is straightforward. It could, however, be difficult to present
the concept of higher-order functions (like an operation on
an array that takes an initial value and an operator for the
array elements that can be used to compute min, max, sum,
etc., of all array elements) to the existing user base in a way
that is easy to understand and use.

The most frequently used tool in this domain is Simulink
developed by The Mathworks [20]. The focus lies on the
simulation, but code generation is also supported. The mod-
els support multi-dimensional values, and a “Selector” block
exists to extract a single value or a subset of the values. In the
case of an index violation, the simulation stops with an error
message. While this is a sensible reaction for simulation,
this is usually not desired for an executable in an embedded
device.

The two code generators “Simulink Coder” and “Embed-
ded Coder” that are also sold from The Mathworks both do
not generate any index protection. So if a model is exten-
sively simulated without an error, it can be expected to not
have an array index that is out-of-bounds. If additional safety
is required, static code analysis and explicit handling (e.g.
using saturating blocks) can be applied.

In general, the value of a simulation is reduced if the results
are not identical to the generated code on the ECU. In this
case, the different behaviour is obvious and therefore not a
problem in practice. ASCET does not have a separate simu-
lation engine: when running a model on the local PC, code
is generated, compiled and then executed. In this case, only
compiler defects or different hardwares (like floating point
units) lead to differences in behaviour between simulation
and the ECU.

3.3 Summary

The index-out-of-bound problem can be treated in a number
of ways, depending on the intended use case. Analysis can be
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Fig.5 Index protection in the model

1 _t1 = (sint16)SY - 1;
2  _t1 = (((sint16)i <= _t1) 7
3 (sint16)i : _t1);
4 if (_t1 >=0)

5 A

6 if (_tl1 < (sint16)SY)
7 {

8 _t2 = _t1;

9 }

10 else

11 {

12 _tluint8 = SY - 1U;
13 _t2 = (sint16)_t1uint8;
14 }

15 _tl = _t2;

16 X

17  else

18 {

19 _tl1 = 0;

20}

21 x = array[_t1];

Fig.6 Generated code for index protection in the model

fast and inaccurate or very elaborate. Modelling languages
can be designed to avoid this problem completely or leave it
for the user to find a solution.

4 Case Study |

When planning the introduction of ASCET 6.2 in one cus-
tomer organization, the key users agreed that the array index
protection would improve the safety of the generated code
and decided to enable it. After the testing phase has been fin-
ished successfully and the new version was made available to
the end-users, a lot of negative feedback about increased code
size and execution time was reported from the end-users.

4.1 Example: index protection in the model

Since the users have already worked for several years with-
out the index limitation during code generation, the models
were full of explicit handling of index values. One typical
way is very similar to the generated limitation, namely the
usage of a min-operator in Fig. 5. This was not recognized
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/1/process
EI—'O—’W
noLimit i

/2/process

——— >

X

Fig.7 Manually suppressed limitation in the model

t1 = (sint16)SY - 1;

tl = (((sint16)_input <= _t1) ?
(sint16) _input : _t1);

i = (uint8)_t1;

x = array[((i < 8Y) 7 i :

U W N =

(sYy - 10))1;

Fig.8 Generated code for manually suppressed limitation

by the analysis, resulting in a duplicate limitation, which is
certainly safe, but inefficient, see the code in Fig. 6.

The result is indeed surprisingly large compared to the
model, for a number of reasons. Both the system constants
SY and the index variable 1 are declared to have an interval
of [0..255]. The interval of SY-1 is therefore [—1..254]
and requires a signed type (line 1). The result of the min-
operator also has an interval of [—1..254], which requires
a limitation against both the lower bound, which is 0 (lines
4, 19), and the upper bound, which is SY-1 (lines 6, 12,
13). The upper bound of an array is ensured to be positive.
Due to type casting according to MISRA-C:2012 rule 10.8
[1], a temporary variable is inserted on the assignment of
an unsigned value to a signed variable (line 12). This extra
assignment enforces the cascaded structure of i f-statements
(lines 4, 6) that could otherwise be generated as conditional
operators with a comma operator. For reasons of readability,
the use of the comma operator is discouraged by MISRA-
C:2012 rule 12.3 (see [1]).

The root cause of this problem was an incomplete require-
ment, which did not list the min-operator as a possible
explicit protection. It was straightforward to add this case
of explicit handling to the analysis.

4.2 Example: Manually suppressed limitation

Limitation is not only applied for array index values, but more
prominently on the assignment to integer variables to avoid
overflows (in this case from — 1 to 255). Users, especially if
they have a strong C background, tend to tweak the model
and want to avoid unnecessary limitations also in this case.

@ Springer

This is achieved by the special noLimit-operator! as shown
in Fig. 7. As outlined in the previous example, the value of
the min-expression may be negative, which would lead to
a limitation on the assignment. The effect of the noLimit-
operator can be seen in line 4 of Fig. 8: the value is directly
assigned, without a further limitation.

It should be noted that a model like this is fragile: if the
array size is changed to depend on a different system constant,
the noLimit-operator may mask an overflow if SY can then
become 0 again. It is a case-by-case decision of the user
that depends on the outlined risk, the available measures of
verification, and the expected benefit (which may be relevant
if the code is executed very frequently, e.g. once every 1 ms).

Since the analysis was designed to be conservative, the
information gathered on the operand of the special noLimit-
operator is not used. The effect is that the index in the array
access is again limited, even though protection has already
been done explicitly in the model.

The removal of the noLimit-operator would enable the
analysis to omit the index protection, but at the same time add
alimitation on the assignment to i. To avoid this, the declared
interval of SY would need to be changed to [1..255], since
an array cannot have 0 elements. This will improve the result
interval of the min-operator to [0..254] and not trigger a
limitation on the assignment to 1. However, the system con-
stants are (as indicated by the name) global to the system,
and a change in the properties therefore has a global effect,
which consequently is prohibitively expensive.

The other option, which is more likely to be accepted,
would be to improve the analysis to infer that system con-
stants used as array sized cannot be 0 (which is safe due to the
added check as outlined in Sect.2.2), and that the informa-
tion from the operand of a noLimit-operator can be further
used, if the operator does not result in an overflow.

4.3 Discussion

The generated code is clearly more complex than expected
(especially in Fig. 6), which affects readability and possibly
efficiency in a negative way.

Different opinions exist if readability is a concern for gen-
erated code. Drawing an analogy, typical C programmers do
not read the intermediate assembly language output. On the
other side, the transition towards model-based development
is not complete yet. The quality of the generated code is
ready for production use, and it is therefore not changed
manually before being compiled. But organizations check
the generated code into the source code repositories instead
of re-generating it from the models and they apply methods
developed for manual coding like code reviews and coverage
analysis. In this setting, readability is an important property.

! The operator is called “implementation cast” in the product
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No protection | With protection | Increase
C16x 18 Bytes 32 Bytes 70 %
MPC56x 48 Bytes 84 Bytes 75 %

Fig.9 Comparisons of code size

The effects on code efficiency are not so easy to estimate.
During compilation, the system constant is replaced with a
concrete value. A data flow analysis can then propagate this
value and enable the optimizations to reduce the code. For
embedded systems, the compilers may not include the most
recent technologies, and developers of safety-critical systems
usually stick with the default configuration to protect them-
selves from compiler defects, which may exclude the more
complex optimizations. This means that the compiled code
may be less efficient than the result of state-of-the-art high-
performance compilers. Taking the example in Fig. 6, the
effect is a lot less dramatic than in the C code and basically
what would be expected for a duplicate limitation. Taking
compilers for a 16-bit target (Infineon C16x,Tasking VX 2.2
compiler released in 2005) and a 32-bit target (Freescale
MPC56x, Windriver 5.6.0 compiler released in 2007), it can
be seen in Fig. 9 that the extra code is not more expensive
than the limitation in the model for the embedded targets,
although it takes a lot more lines of code. The effect there-
fore is real, but not as big as it may be indicated by the C
code.

The issues were discussed between two groups within the
customer organization: the advocates for safety and represen-
tatives of the user community. The decision was to disable
the index limitation for the following reasons:

— The index limitation was already part of the models, and
further static analysis of the generated C code established
that the limitations were sufficient. The correctness of the
models was also ensured by reviews and testing.

— The users did not want to spend effort to change the mod-
els to achieve the efficiency they already had, because the
analysis was not sufficiently thorough. In contrast, they
argued that the tool is there to make the life of the users
easier. Since each change must also be verified through
reviews, testing etc., this is a strong argument.

— The perceived negative impact on the efficiency required
an either-or decision. It was not feasible to enable the
limitation and adapt the models over time (e.g. when other
changes were made anyway).

Unfortunately, these discussions were conducted inter-
nally, without involvement of experts from the tool vendor.
There were no opportunities to correct the perception of
unacceptably high loss of efficiency or to suggest support-
ing measures. It may well be that code efficiency is only a
secondary aspect, and the real issue is code change, since

the switch from one version to another (or a configuration
change) is verified by code comparison. In this approach, the
number of code changes directly translates into effort and
cost of change. What makes matters worse is the decision to
only have one tool version in service. While this minimizes
the administration effort, it requires all projects to switch the
tool version at the same time.

Independent of the actual root cause of the rejection, the
analysis should be improved to address the areas where the
biggest measurable impact on efficiency and/or change in
generated code is observed to increase the probability of
feature adoption. Taking one step back, it could also be ben-
eficial to offer a model refactoring to remove unnecessary
manual limitations. This would address the double-limitation
problem and also provide the benefit of reduced model com-
plexity.

5 Case Study I

A second customer has a different workflow. The ECU soft-
ware is split into multiple models according to the functional
structure of the software to facilitate distributed development.
The interface between the models consists of data (like vehi-
cle speed or motor temperature). Function calls across model
boundaries are not supported. The compatibility of the data
definitions (like data types) is checked outside of ASCET,
where an overview of all models is available.

To perform global optimizations of the data structures, a
special description file is used. The code and the data struc-
ture description is generated separately for each model and
stored in a repository. When the configuration of an ECU is
defined (i.e. which models are part of the build), a custom
tool takes the descriptions of all models that are used in an
ECU and generates globally optimized data structures. The
optimizations, for example, omit data that are unused in the
selected variant and reduce the data copies to ensure data
consistency.

This extra step of data structure generation was also used
to add features that could also be part of ASCET, but was
implemented in the custom tool due to schedule and priority
conflicts. One enhancement included the ability to annotate
arrays with an additional size that overrides the information in
the model for the data structures description. The annotation
was more expressive than the product solution in version 6.2,
in particular allowing the size to be calculated from constants
and system constants, e.g. redefining the size for an array with
10 elements as SY x 2 — 1.

This customer also upgraded from an earlier version to
V6.2 and investigated if index limitation could be suitable,
but encountered a problem: the code generator would use
the size as specified in the model for limitation, while the
actual data structures would have a different size, effectively
limiting the array index against the wrong upper bound. In
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// array is declared with 10 elements
// in the model
unsigned long array[SYx2 - 1];

// upper bound is wrong
x = array[(i < 10) 7 i : 9];

Fig. 10 Mismatch between declared size and limit bound

the example (see Fig. 10), the array has been declared with
10 elements in the model, but the annotation specifies that the
size is computed from the value of a system constant. Since
the index analysis has no information about this annotation,
itintroduces a limitation against the upper bound as specified
in the model, which may be too small or too big.

5.1 Discussion

In contrast to the first case study, it was not a list of more
or less frequent cases that were not handled as expected, but
one substantial point that made the usage of automatically
generated limitations difficult to achieve. The root cause is
not related to the index analysis itself, but the unavailability
of the customer-specific annotation for the analysis.

The most simple solution is to make sure that the array
size in the model is not too small and enable the limitation.
This will give a correct lower bound, but an upper bound
that is too big. Compared to the previous setting, this is safer
for the lower bound, while not unsafer for the upper bound.
Taking the example in Fig. 10, the code would be correct as
long as SY < 5. If SY represents the number of cylinders
in an engine, and the model is only developed for up to 4
cylinders, this is fine. But obviously, the benefit is only half
of what it could be and the handling of the additional failure
would require additional effort.

The next-best solution is to introduce a dummy system
constant for the size, whose value is determined at compile
time. This would effectively mean to exchange an annotation
about the array size with an annotation about the calculation
of a system constant value. From a practical perspective, the
definition can be added as a compiler switch or added to
a header file, due to the lazy definition of the system con-
stant value that already exists in the generated code (see Fig.
11). The customer-specific annotations for the array size are
sufficiently formal to enable an automated migration. This
automation is not only nice to have to save the manual effort,
it is definitely required to avoid the inevitable errors that
occur during manual tasks.

While the two described solutions fit into the current setup
and can be implemented without a product change by the
customer himself in the short term, a product solution cer-
tainly is the preferred option. The impediment here is that the
expressiveness for the variant size of an array is too limited,
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#define SY2 ((SY)*2 - 1)

#ifndef SY2
#define SY2 10
#endif

unsigned long array[SY2];

x = array[(i < SY2) 7 i : (SY2 - 1)];

Fig. 11 Calculated value of the system constant

which was caused by the ignorance of this specific customer
enhancement when the variant arrays were introduced.

There is also a tension between a product with tightly con-
trolled features, and open interfaces that enable customers to
implement their own requests without coordination with the
core product development. Once such a customer-specific
solution exists, it becomes difficult to change it into a prod-
uct feature if there is no clear benefit, because this creates
additional implementation and migration effort. One anti-
pattern we observed in this area is a response along the line
of “I know what I am doing” from the side of the customer:
indeed they know what they are doing and know the boundary
conditions, etc. However, it is likely that customer organiza-
tion looses this knowledge over time, since customizing tools
is not the core business. So the question is not if the customer
knows what he is doing now, but how long he will continue
to know, and how this compares to the expected usage time
of the tool. The time span of knowing may be very small if
an external consultant is given the task of customization, or
be in the area of three to five years for employees.

6 Case study lll

A third customer also agreed that index limitation is a suitable
way to avoid the runtime errors and decided to enable the
index limitation when migrating to ASCET V6.2. The overall
situation was different to the other two customers: the models
were built in a way that no index-out-bounds could occur, e.g.
using arrays of fixed size with constant index values, and
there was also no follow-up tool chain that interacts with the
index protection. The models therefore did not contain any
explicit handling to avoid runtime errors. Still this customer
was very sensitive to the actual efficiency of the generated
code, mainly in terms of execution time.

When activating the index limitation, most of the array
accesses therefore did not need any additional protection.
However, this customer also encountered the problem of
unnecessary limitations, e.g. in the case of special loops. One
example is an array that is effectively a matrix with a length
and width that can be adjusted to the current configuration of
the software (see Fig. 12). The array has a fixed size of 50,
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1 sum=0;

2 idx=0;

3 for (cnt = 0; cnt < (length * width); cnt = cnt + 1)
4 A

5 sum = sum+array[idx];

6 idx = idx + 1;

7 %}

8 return sum;

Fig. 12 Example loop for a manual workaround

and the variable idx is consequently defined with a value
range of [0..49], so that the array access is considered to
be safe by the index analysis. The increment on idx then
involves a limitation, which is reported by a code generator
diagnostic as shown in Fig. 13.

The alternative of directly using the variable cnt to access
the array would have the same semantics, since the values of
cnt and idx are identical at the point of the array access.
However, the loop condition has no apparent relation to the
array size, so the index analysis would consider the array
access as potentially unsafe, add a limitation to the index
and report a warning.

By introducing the variable idx, the behaviour was pre-
served, but the diagnostics changed from a warning about
an index limitation to an info message about a limitation
on assignment. In this way, the model did comply with the
modelling guidelines that index limitation should not be nec-
essary, and the new info message could be handled in the
existing review process.

The unnecessary index limitations as described in the
example were very rare, so the overall impact on the effi-
ciency was negligible. The benefit of the added safety did
therefore outweigh the cost of an exceptionally added limi-
tation.

6.1 Discussion

It is a common practice to analyze the compiler diagnostics
and either change the source code to avoid a warning or to
decide that a specific warning is not relevant for a specific
project. Likewise, the diagnostics of a code generator are ana-
lyzed. In this case, the warning that an index limitation needs
to be applied was not tolerated, because the accesses are safe
by design, and such a warning would indicate a violation of
that design. To handle the false positive warnings, the model
was changed to instead produce the information about the
limitation of a regular integer value. For this information,
an existing process was in place to separate the intentional

INFO(IIa13): Interval mismatch to <idx> [0,49]

Fig. 13 Diagnostic information for limitation

warnings from the accidental ones (which would result in
increased run time) and could be reused.

This highlights that a successful adoption of a new feature
not only depends on the functional behaviour, but also on
pragmatic properties like diagnostic information that can be
used to detect the places that need manual intervention.

In contrast to the case study II, this customer tried to use the
tool with as little customization as possible, recognizing that
customizations need to be maintained for a potentially long
time. This made it easier to use the standard mechanisms for
migration. Unlike the first case study, the switch to a new tool
version was synchronized with the start of a new development
project. The disadvantage is that multiple versions of the tool
need to be maintained for different projects, but the clear
advantage is that running projects do not need to cope with
the impact of a version switch, while new projects can benefit
from the most recent feature set.

7 Conclusion

With ASCET Version 6.2, we introduced handling the prob-
lem of index values outside the array boundaries by limitation
of the index value. Although the approach of limitation is
appropriate for the given domain, two major customer orga-
nizations did not adopt the new feature. We have identified
two root causes for the failed adoption of index protection:

— The analysis failed to recognize frequently used explicit
protections in the customer models. This leads to dou-
ble limitation and therefore inefficient code and/or code
changes that need to be verified manually.

— The limitation was not correct in combination with
customer-specific adaptions of the data structure genera-
tion that extended to capabilities of the core product.

On the other hand, there are positive things. Even though
the analysis did not cover all typical cases of customer mod-
els, its design was suitable for the job: it is a common
understanding of all users that a missing limitation is a crit-
ical defect, and we have not observed such a problem at all.
In addition, the initially missing cases could be added to the
analysis without design changes.

It also was a good decision to make the generation of the
limitation optional. If it would have been mandatory, this
could have made it impossible for the customers to adopt a
newer version. Adding new features as options with a default
behaviour as in the older versions is also a best practice for
regular programming languages and compilers and should

:= [1,50] (will be limited)
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therefore also be applied to modelling languages. For a simi-
lar reason, providing diagnostic information can also help to
integrate a new feature in a development workflow.

The interesting questions is how these problems could
have been avoided. There is certainly some room for improve-
ment in the requirements engineering, but the major decisions
were done correctly and the real world is always a little bit
more complicated than anticipated. The main point is that the
array index protection changes the abstraction of the mod-
elling language: a behaviour that needed to be implemented
manually by the users became part of the language. A late
change in the semantics of the language is always difficult.
Special care therefore needs to be taken to find a suitable
abstraction early in the language development. Otherwise
users are forced to implement workarounds, and there is a
considerable inertia against spending effort to change work-
ing solutions.

We will continue to work with both customers to address
the issues:

— Improve the analysis to reduce the detrimental impact on
the efficiency of the generated code, while avoiding to
make the analysis too complex.

— Integrate the external data structure generation with the
index analysis.

The topic of safe access to arrays is well understood from a
theoretical perspective. The issues encountered when apply-
ing the solution in a real-world environment may look trivial
in comparison, but can nevertheless be substantial and make
an adoption very hard. The mission of a tool vendor must be
to overcome these problems as well to deliver an added value
to the customers.
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