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1. INTRODUCTION 

In ADA, many distinct functions may have the same name. Many 
languages such as FORTRAN, PL/I and ALGOL 68 support this concept, 
although FORTRAN does so only for built-ln operators. In these 
languages the types of the parameters are the only criteria used in 
selection of the appropriate function. ADA allows the type of the 
result to be considered during selection. 

In conventional languages, the appropriate functions may be selected 
by a single bottom-up traversal of the parse tree. The ADA rationale 
[ICH 79] states an algorithm which selects functions using a number of 
top-down then bottom-up traversals. Dausmann et al. [DAU 79] show that 
this algorithm requires at most three traversals: top-down, then 
bottom-up, then top-down. They then show that the selection can be done 
with two traversals: bottom-up then top-down. 

Both algorithms are complex and difficult to state precisely, and 
require the manipulation of sets whose size is unknown. The processing 
time required depends on the total number of set elements processed, 
rather than the number of traversals. Furthermore, storage is more 
likely to be a constraint than execution time. Thus it is not obvious 
that the [DAU 79] algorithm is superior to the [ICH 79] algorithm in 
terms of either memory usage or execution time. 

This paper presents a succinct recursive algorithm which selects 
functions in ADA. Only stack (local) storage is required, and the stack 
depth will never exceed the depth of the parse tree being processed. In 
our examples, processing time has been found to be negligible. 
Nevertheless, three optimizations are presented. The first two require 
no extra storage but can save a great deal of time. The third requires 
some storage but reduces processing time to less than [ICH 79], and 
probably less than [DAU 79]. 

2. AN ALGORITHM TO COUNT THE NUMBER OF INTERPRETATIONS OF AN EXPRESSION 

The following algorithm is expressed in the form of a recursive 
procedure, SELECT, which accepts as parameters a parse tree for an 
expression and the desired type of the expression. It returns the 
number of combinations of functions which may be selected such that the 
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expression has a result of the desired type. 

SELECT(DESIREDTYPE,PARSE TREE) returns NUMBER SOLUTIONS; 
if PARSE TREE is a lea~ then 

if type of PARSE TREE is DESIRED TYPE then 
m 

NUMBER SOLUTIONS := 1 
else NUMBER SOLUTIONS := 0 

else 
NUMBER SOLUTIONS := 0 

let Q = name of proc at root of parse tree 
let R = llst of actual parameters to Q (as parse trees) 
for every proc QQ with name Q which yields DESIRED TYPE do 

let S = llst of formal parameters to QQ 
if R matches S in terms of length, parameter names, and 

default values 
then 

PARM COMBOS := 1 
for I from 1 to length of R do 

PARM COMBOS := PARM COMBOS • SELECT(type of S[I],R[I]) 
NUMBER SOLUTIONS := NUMBER SOLUTIONS + PARM COMBOS 

END SELECT 

If NUMBER SOLUTIONS is I, the expression is correct; if it is greater 
than I, the expression is ambiguous; if it is O, there is no consistent 
way of selecting the functions in the expression. 

Note that all variables (NUMBER SOLUTIONS, PARM COMBOS, QQ, and I) 
are of fixed size and that the number of levels of recurslon is equal to 
the depth of the parse tree. Furthermore, no functions are investigated 
unless their result could potentially be used in the expression. This 
statement also holds for [ICH 79] but is not true for [DAU 79l. This 
fact raises doubts as to whether or not [DAU 79] is faster than [ICH 

791. 

3. OPTIMIZATIONS TO THE ALGORITHM 

3 .I OPTIMIZATIONS WHICH REQUIRE NO EXTRA STORAGE 

Clearly, the loop beginning "for I" can be aborted if PARM_COMBOS 
ever becomes zero. This means that once a parameter of a function 
cannot be matched, that function is discarded from further 
consideration; we need not attempt to match the remainder of its 
parameters. Note that we may NOT terminate the loop when PARMCOMBOS 

exceeds one. 

This modification reduces the processing required to reject invalid 
QQ's (note that, in any valid expression, all but one QQ are Invalld). 
If there is one invalid parameter, we have to examine, on average, only 
half of the parameters before the invalid one is encountered. If more 
than one parameter is invalid, as will often be the case, shorter 
searches occur. This optimization applies at each level of recurslon 
and thus causes exponential improvement with the depth of the parse 
tree. Further heuristics may be applied, such as matching parameters of 
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uncommon types first, or matching parameters with smaller parse trees 
first. These techniques are not investigated in this paper. 

A similar optimization may be applied to the loop beginning "for 
every QQ". The loop may be aborted when NUMBER SOLUTIONS exceeds it 
once the expression is found to be ambiguous we don°t care how ambiguous 
it is. Note that this optimization changes the result of SELECT; we no 
longer receive a true count but can still determine whether the 
expression was inconsistent, correct, or ambiguous. As with the 
previous example, heuristics may be applied to the order of the loop; as 
with the previous example, these heuristics have not been pursued° 

3.2 AN OPTIMIZATION WHICH USES EXTRA STORAGE 

With the above optimizations, the algorithm investigates fewer 
possibilities than [ICH 79] and many fewer than [DAU 79]. However, many 
recursive calls may be made with exactly the same arguments. For 
example, we may have: 

PROCEDURE F(A:INTEGER; B:REAL); 
PROCEDURE F(A:INTEGER; B:INTEGER); 

In resolving the expression 

F( 1+2,3) 

SELECT is called twice with DESIRED TYPE = INTEGER and the parse tree 
for "I+2". This duplication can be avoided by attaching to each node of 
the parse tree a list of each DESIRED TYPE for which SELECT has been 
called. The result of the calls must be stored also. The storage 
required would be equal to that required by [ICH 79] if the 
optlmizations described in section 3.1 were not applied. If the 
optimizations were included, the storage required would be considerably 
less. Furthermore, running out of storage merely defeats the 
optimization; it need not cause termination of the algorithm. 

4. YIELDING THE SELECTED FUNCTIONS 

If the expression is unambiguous, it is necessary to set a pointer to 
the appropriate symbol table entry for each function in the parse tree. 
The algorithm, as discussed so far, has merely indicated whether or not 
an unamblguous filled-ln tree exists. A trivial method of obtaining the 
filled-ln parse tree would be for SELECT to return a filled-in subtree 
from every successful invocation. However, this section describes a 
modified algorithm which sets the pointers in the original parse tree, 
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thus avoiding the storage cost of the previously mentioned modification. 

SELECT(DESIRED TYPE,PARSE TREE,MARK) returns NUMBERSOLUTIONS; 
if PARSE TREE is a leaf then 

if type of PARSE TREE is DESIRED TYPE then 
NUMBER SOLUTIONS := 1 

else NUMBER SOLUTIONS := 0 
else 

NUMBER SOLUTIONS := 0 
let Q = name of proc at root of parse tree 
let R = list of actual parameters to Q (as parse trees) 
for every proc QQ with name Q which ylelds DESIRED_~PE do 

let S = list of formal parameters to QQ 
if R matches S in terms of length, parameter names, and 

default values 
then 

PARM COMBOS := 1 
for • from I to length of R do 

PARM COMBOS := PARM COMBOS * SELECT( 
type of SIll ,R[IT,MARK and NUMBER SOLUTIONS=O) 

if MARK and PARM COMBOS > 0 and NUMBER SOLUTIONS = 0 then 
set pointer iV root of PARSE TREE to point to QQ 

NUMBER SOLUTIONS := NUMBERSOLUTIONS + PARMCOMBOS 

END SELECT 

We have added a boolean parameter, MARK, which indicates whether or 
not PARSE TREE should should be marked with pointers to the appropriate 
symbol table entries. The pointers continue to be filled in until a 
solution is found. Subsequent calls merely check for ambiguity and 
therefore do not request that the parse tree be marked. If there is one 
solution, the tree is filled in appropriately; if there is more than one 
solution, the first one is filled in; if there are no solutions, the 
pointers which are filled in in the parse tree are not meaningful. 

The optlmizations discussed in section 3.1 can be applied to this 
algorithm as easily as to the first. The optimization described in 
section 3.2 may be applied also, but the symbol table pointers for the 
root of the tree must be stored along with the list of desired types for 

which SELECT has been called. 

5. CONCLUSIONS 

The major advantage of the algorithm presented is simplicity, both as 
a statement of the rules for overloading and as a guide for 
implementation. It is suggested that the execution time of the 
algorithm is not important. Nevertheless, the speed of three algorithms 
has been analysed. [DAU 79] follows different paths than [ICH 79] or 
SELECT (the algorithm presented herein), however there is little reason 
to believe that it is faster or uses less storage than [ICH 79]. Three 
optimizations to SELECT, which are mechanical and do not change the 

algorithm, make SELECT considerably faster than [ICH 79]. 
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SELECT is clearly superior in what we consider to be a more important 
constraint, namely, memory size~ Two of the optlmizations do not affect 
memory usage~ while the third may be selected at run-tlme whenever there 
is surplus storage available. 

The algorithm (without optimlzatlons) has been implemented using 
PL/I. The effort required was very small and the algorithm was found to 
be effective. 

[ ICH 79] 

[ DAU 79] 
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