
-48-

AN ALGORITHM FOR THE SELECTION OF OVERLOADED FUNCTIONS IN ADA

G. V. Cormack
Department of Computer Science

University of Manitoba
Winnipeg, Canada R3T 2N2

1. INTRODUCTION

In ADA, many distinct functions may have the same name. Many
languages such as FORTRAN, PL/I and ALGOL 68 support this concept,
although FORTRAN does so only for built-ln operators. In these
languages the types of the parameters are the only criteria used in
selection of the appropriate function. ADA allows the type of the
result to be considered during selection.

In conventional languages, the appropriate functions may be selected
by a single bottom-up traversal of the parse tree. The ADA rationale
[ICH 79] states an algorithm which selects functions using a number of
top-down then bottom-up traversals. Dausmann et al. [DAU 79] show that
this algorithm requires at most three traversals: top-down, then
bottom-up, then top-down. They then show that the selection can be done
with two traversals: bottom-up then top-down.

Both algorithms are complex and difficult to state precisely, and
require the manipulation of sets whose size is unknown. The processing
time required depends on the total number of set elements processed,
rather than the number of traversals. Furthermore, storage is more
likely to be a constraint than execution time. Thus it is not obvious
that the [DAU 79] algorithm is superior to the [ICH 79] algorithm in
terms of either memory usage or execution time.

This paper presents a succinct recursive algorithm which selects
functions in ADA. Only stack (local) storage is required, and the stack
depth will never exceed the depth of the parse tree being processed. In
our examples, processing time has been found to be negligible.
Nevertheless, three optimizations are presented. The first two require
no extra storage but can save a great deal of time. The third requires
some storage but reduces processing time to less than [ICH 79], and
probably less than [DAU 79].

2. AN ALGORITHM TO COUNT THE NUMBER OF INTERPRETATIONS OF AN EXPRESSION

The following algorithm is expressed in the form of a recursive
procedure, SELECT, which accepts as parameters a parse tree for an
expression and the desired type of the expression. It returns the
number of combinations of functions which may be selected such that the

-49-

expression has a result of the desired type.

SELECT(DESIREDTYPE,PARSE TREE) returns NUMBER SOLUTIONS;
if PARSE TREE is a lea~ then

if type of PARSE TREE is DESIRED TYPE then
m

NUMBER SOLUTIONS := 1
else NUMBER SOLUTIONS := 0

else
NUMBER SOLUTIONS := 0

let Q = name of proc at root of parse tree
let R = llst of actual parameters to Q (as parse trees)
for every proc QQ with name Q which yields DESIRED TYPE do

let S = llst of formal parameters to QQ
if R matches S in terms of length, parameter names, and

default values
then

PARM COMBOS := 1
for I from 1 to length of R do

PARM COMBOS := PARM COMBOS • SELECT(type of S[I],R[I])
NUMBER SOLUTIONS := NUMBER SOLUTIONS + PARM COMBOS

END SELECT

If NUMBER SOLUTIONS is I, the expression is correct; if it is greater
than I, the expression is ambiguous; if it is O, there is no consistent
way of selecting the functions in the expression.

Note that all variables (NUMBER SOLUTIONS, PARM COMBOS, QQ, and I)
are of fixed size and that the number of levels of recurslon is equal to
the depth of the parse tree. Furthermore, no functions are investigated
unless their result could potentially be used in the expression. This
statement also holds for [ICH 79] but is not true for [DAU 79l. This
fact raises doubts as to whether or not [DAU 79] is faster than [ICH

791.

3. OPTIMIZATIONS TO THE ALGORITHM

3 .I OPTIMIZATIONS WHICH REQUIRE NO EXTRA STORAGE

Clearly, the loop beginning "for I" can be aborted if PARM_COMBOS
ever becomes zero. This means that once a parameter of a function
cannot be matched, that function is discarded from further
consideration; we need not attempt to match the remainder of its
parameters. Note that we may NOT terminate the loop when PARMCOMBOS

exceeds one.

This modification reduces the processing required to reject invalid
QQ's (note that, in any valid expression, all but one QQ are Invalld).
If there is one invalid parameter, we have to examine, on average, only
half of the parameters before the invalid one is encountered. If more
than one parameter is invalid, as will often be the case, shorter
searches occur. This optimization applies at each level of recurslon
and thus causes exponential improvement with the depth of the parse
tree. Further heuristics may be applied, such as matching parameters of

-50-

uncommon types first, or matching parameters with smaller parse trees
first. These techniques are not investigated in this paper.

A similar optimization may be applied to the loop beginning "for
every QQ". The loop may be aborted when NUMBER SOLUTIONS exceeds it
once the expression is found to be ambiguous we don°t care how ambiguous
it is. Note that this optimization changes the result of SELECT; we no
longer receive a true count but can still determine whether the
expression was inconsistent, correct, or ambiguous. As with the
previous example, heuristics may be applied to the order of the loop; as
with the previous example, these heuristics have not been pursued°

3.2 AN OPTIMIZATION WHICH USES EXTRA STORAGE

With the above optimizations, the algorithm investigates fewer
possibilities than [ICH 79] and many fewer than [DAU 79]. However, many
recursive calls may be made with exactly the same arguments. For
example, we may have:

PROCEDURE F(A:INTEGER; B:REAL);
PROCEDURE F(A:INTEGER; B:INTEGER);

In resolving the expression

F(1+2,3)

SELECT is called twice with DESIRED TYPE = INTEGER and the parse tree
for "I+2". This duplication can be avoided by attaching to each node of
the parse tree a list of each DESIRED TYPE for which SELECT has been
called. The result of the calls must be stored also. The storage
required would be equal to that required by [ICH 79] if the
optlmizations described in section 3.1 were not applied. If the
optimizations were included, the storage required would be considerably
less. Furthermore, running out of storage merely defeats the
optimization; it need not cause termination of the algorithm.

4. YIELDING THE SELECTED FUNCTIONS

If the expression is unambiguous, it is necessary to set a pointer to
the appropriate symbol table entry for each function in the parse tree.
The algorithm, as discussed so far, has merely indicated whether or not
an unamblguous filled-ln tree exists. A trivial method of obtaining the
filled-ln parse tree would be for SELECT to return a filled-in subtree
from every successful invocation. However, this section describes a
modified algorithm which sets the pointers in the original parse tree,

-51-

thus avoiding the storage cost of the previously mentioned modification.

SELECT(DESIRED TYPE,PARSE TREE,MARK) returns NUMBERSOLUTIONS;
if PARSE TREE is a leaf then

if type of PARSE TREE is DESIRED TYPE then
NUMBER SOLUTIONS := 1

else NUMBER SOLUTIONS := 0
else

NUMBER SOLUTIONS := 0
let Q = name of proc at root of parse tree
let R = list of actual parameters to Q (as parse trees)
for every proc QQ with name Q which ylelds DESIRED_~PE do

let S = list of formal parameters to QQ
if R matches S in terms of length, parameter names, and

default values
then

PARM COMBOS := 1
for • from I to length of R do

PARM COMBOS := PARM COMBOS * SELECT(
type of SIll ,R[IT,MARK and NUMBER SOLUTIONS=O)

if MARK and PARM COMBOS > 0 and NUMBER SOLUTIONS = 0 then
set pointer iV root of PARSE TREE to point to QQ

NUMBER SOLUTIONS := NUMBERSOLUTIONS + PARMCOMBOS

END SELECT

We have added a boolean parameter, MARK, which indicates whether or
not PARSE TREE should should be marked with pointers to the appropriate
symbol table entries. The pointers continue to be filled in until a
solution is found. Subsequent calls merely check for ambiguity and
therefore do not request that the parse tree be marked. If there is one
solution, the tree is filled in appropriately; if there is more than one
solution, the first one is filled in; if there are no solutions, the
pointers which are filled in in the parse tree are not meaningful.

The optlmizations discussed in section 3.1 can be applied to this
algorithm as easily as to the first. The optimization described in
section 3.2 may be applied also, but the symbol table pointers for the
root of the tree must be stored along with the list of desired types for

which SELECT has been called.

5. CONCLUSIONS

The major advantage of the algorithm presented is simplicity, both as
a statement of the rules for overloading and as a guide for
implementation. It is suggested that the execution time of the
algorithm is not important. Nevertheless, the speed of three algorithms
has been analysed. [DAU 79] follows different paths than [ICH 79] or
SELECT (the algorithm presented herein), however there is little reason
to believe that it is faster or uses less storage than [ICH 79]. Three
optimizations to SELECT, which are mechanical and do not change the

algorithm, make SELECT considerably faster than [ICH 79].

-52-

SELECT is clearly superior in what we consider to be a more important
constraint, namely, memory size~ Two of the optlmizations do not affect
memory usage~ while the third may be selected at run-tlme whenever there
is surplus storage available.

The algorithm (without optimlzatlons) has been implemented using
PL/I. The effort required was very small and the algorithm was found to
be effective.

[ICH 79]

[DAU 79]

REFERENCES

Ichbiah,Jo et al., Rationale for the Design of the ADA
Programming Language. Sigplan Notices, Vol. 14, No. 6, June
1979.

Dausmann,M. et al., Overloading in ADA. Instltut fur
Informatik II, Universitat Karlsruhe, Bericht Nr. 23/79

