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A simple method is presented for detecting ambiguities and finding the correct interpretations of 
expressions in the programming language Ada. Unlike previously reported solutions to this problem, 
which require multiple passes over a tree structure, the method described here operates in one 
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is demonstrated by a brief formal argument. 
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1. INTRODUCTION 

T h e  p o s s i b i l i t y  o f  " o v e r l o a d i n g "  c e r t a i n  k i n d s  o f  s y m b o l s  is  one  o f  t h e  m o s t  
i n t e r e s t i n g  f e a t u r e s  of  t h e  p r o g r a m m i n g  l a n g u a g e  A d a  [8, 11]. F o r  a n  o v e r l o a d e d  
s y m b o l  in  a n  A d a  p r o g r a m ,  " t h e r e  m a y  be  s e v e r a l  m e a n i n g s  a c c e p t a b l e  a t  a g iven  
po in t ,  a n d  t h e  a m b i g u i t y  m u s t  be  r e s o l v e d  b y  t h e  ru l e s  o f  o v e r l o a d i n g "  [8]. 
O p e r a t o r  s y m b o l s ,  s u b p r o g r a m  a n d  e n t r y  iden t i f i e r s ,  a n d  e n u m e r a t i o n  l i t e r a l s  
m a y  be  o v e r l o a d e d ,  a n d  b y  ex tens ion ,  so m a y  n a m e s  a n d  e x p r e s s i o n s  t h a t  i nc lude  
i n s t a n c e s  of  o v e r l o a d e d  symbo l s .  

F o r  e x a m p l e ,  c o n s i d e r  t h e  fo l lowing  A d a  d e c l a r a t i o n s :  

t y p e  T1 is  (A, B); 
t y p e  T2 is  (A, B); 
t y p e  T3 is  (A, B); 
funct ion "+"(X:  T2; Y: T3) r e t u r n  T1 i s . . .  ; 
funct ion "+"(X:  T3; Y: T1) r e t u r n  T2 i s . . .  ; 
funct ion "+"(X:  T1; Y: T2) r e t u r n  T3 is  . . .  ; 
X: T1; 

T h e s e  d e c l a r a t i o n s  o v e r l o a d  A a n d  B as  l i t e r a l s  o f  t h r e e  d i s t i n c t  t y p e s  a n d  + as  
t h r e e  d i s t i n c t  o p e r a t o r s .  L e t  Ai a n d  Bi d e n o t e  t h e  m e a n i n g s  of  A a n d  B as  of  t y p e  
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Ti, respectively, for i = 1, 2, 3. Let +i denote the definition of + shown that 
returns type Ti, for i = 1, 2, 3. Within the visibility range of the definitions above 
(provided no further meanings are defined for A, B, and +), the expression A + 
A + A + A has three possible interpretations: 

(a) (((A, +3 A2) +2 A1) ÷1 A3); 
(b) (((A2 ÷, A3) +3 A2) +2 At); 
(c) (((A3 +2 A,) ÷I A3) +3 A2). 

The statement X := A + A + A + A; has only one legal interpretation, however, 
since in this context the type of A + A + A + A is required to match that of the 
simple variable X, namely, TI. Thus, assuming there are no other visible decla- 
rations of A and +, the interpretation of A + A + A + A in X : = A + A + A + A; 
is unambiguously (a). 

For each expression or name, a compiler for Ada must determine whether it 
has zero, one, or more legal interpretations, and if there is only one, it must 
produce the correct interpretation. This is made more difficult by a number of 
factors: 

(1) use  clauses, which make declarations of operators and literals from a package 
visible within an expression only if there is no consistent interpretation of 
that  expression which does not use those declarations; 

(2} contexts that  do not completely specify the types of the component expres- 
sions, but do impose some restriction, such as ranges (where both expressions 
must be of the same type} and assignments; 

(3) operatorlike constructs that  are unnamed, such as array and record aggre- 
gates, which are far more complex but have characteristics similar to function 
calls; 

(4) constructions such as F(new A'RANGE(B + C)), where overloading in B + 
C must be completely resolved, so that  it may be evaluated, before overloading 
of F may be resolved; 1 

(5) implicit type conversions; 
(6) literal expressions, which always have a unique interpretation, independent 

of operator overloadings.1 

Determining whether an expression has a unique meaning and, in the case that 
it does, identifying the types and definitions of all the constituent components 
(referred to hereafter as simply overload resolution) clearly is a complex task. 
For reliability and efficiency, care must be taken in the design of a "front end" 
processor for Ada that  it does not become any more complex than is actually 
necessary. 

A number of papers have appeared on the subject of overload resolution 
algorithms and their implementation [1-3, 4-6, 9, 10]. One reason for all this 
activity is that  the algorithm originally offered by the Ada language design team 
[4] is clearly more complicated than necessary. In essence, it was suggested that  
an indefinite number of alternating passes be made up and down the tree of an 
expression, pruning away overloadings that  fail to meet the requirements of 

' Recent language changes appear  to have eliminated this. 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



One-Pass Algorithm for Overload Resolution in Ada 603 

context, until convergence is reached. The first published improvement of this 
algorithm is given in [3], where it is shown that four passes over the tree are 
sufficient to reach convergence. Subsequent papers reduce the number of passes 
to two or three. 

These multipass algorithms can be roughly divided into two groups. In the first, 
exemplified by Ganzinger and Ripken [3], the tree is processed three times: top- 
down, bottom-up, and top-down. During the first pass, the set of types allowed 
by context is used to select from all the visible declarations of each operator those 
that  have permissible result types. The second pass checks the possible types of 
argument expressions against formal parameter types, pruning out operator 
interpretations that  cannot apply to the given arguments. At the conclusion of 
this pass there will be a unique interpretation left for the operator at the root of 
the expression tree, provided the expression has exactly one legal interpretation. 
The third pass carries the consequences of this unique interpretation back down 
the tree, essentially repeating the processing done in the first pass. The algorithms 
in the second group, including those given in [6, 7], make only two passes, 
corresponding to the second and third passes described above. It would appear at 
first that  these algorithms are more efficient, but Pennello et al. [6] observe that 
it might turn out that even though a preliminary top-down pass is not needed it 
may prove useful as a heuristic, should it turn out that  this first pass is usually 
successful in finding a unique interpretation for an expression. Thus the question 
of which group of algorithms is better remains open until a good statistical 
comparison is done. 

All the algorithms discussed so far make use of lists of interpretations which 
are attached to the nodes of a parse tree, or an abstraction of one, and so require 
the use of extra working storage, which is presumably reclaimed when the analysis 
of each expression has been completed. Cormack [2] > " proposes a radically different 
recursive algorithm that  begins from the root of an expression tree and enumer- 
ates all possible interpretations of the tree. The algorithm is simple and requires 
as working storage only the stack used in implementing the recursion. On the 
other hand, its worst case running time appears to be of the order (n ~°gmk÷l) (km2), 
where n is the number of operators in an expression, k is the number of 
interpretations for each operator, and m is the number of arguments to each 
operator. This is compared to order kmn for the other algorithms. Despite this 
potentially longer running time, it is claimed that  Cormack's algorithm takes very 
little time on the kind of expressions encountered in actual programs, especially 
when this time is viewed relative to the time spent doing all the other processing 
that  is part of the c:ompilation process. 

The algorithm for overload resolution described in this paper is based on a 
viewpoint similar to that expressed by Cormack--that expression analysis is a 
small part of the work done by a compiler and that inefficiency on a few 
expressions is tolerable, so long as it permits reducing the overhead for simple 
expressions and the complexity of the compiler itself. Our viewpoint is different 
in two respects, however, owing to a bias created by the implementation context 
in which we expect overload resolution to take place. First, the implementation 
is viewed as parsing and producing intermediate code trees from the source in 
one bottom-up pass. Second, the symbol table and intermediate code are viewed 
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as belonging to a library file that resides on a secondary storage device, from 
which small pieces are brought into central memory when needed for processing. 
Our goal is therefore to perform as much of the semantic processing as possible 
in parallel with the parsing and construction of the intermediate code tree and to 
avoid backtracking whenever possible, since it might require bringing portions of 
the symbol table or code back into central memory. 

As it turns out, this goal can be largely accomplished. It is possible, in one 
bottom-up pass, to read in an expression, parse it, check for a unique legal 
interpretation, and translate it to an intermediate code tree (or evaluate it, if 
static). This is accomplished by a technique that may be viewed as a refinement 
of the multipass methods derived from [4]. The essence of the refinement is that 
when a set of possible operators is constructed for a node it does not merely 
represent an unstructured set of possibly allowed operator definitions. Rather, 
each operator points to those operators in the operator lists of the actual 
parameter subexpressions that are legal operands of the operator. The pointers 
make superfluous the final top-down pass which two-pass methods such as those 
in [6, 7] must make to distribute the final operator information over the expression 
tree, provided operator trees or other pointer-based intermediate codes are 
acceptable as an intermediate form for the next stage of the compilation process. 

Following precedent established by earlier papers on this subject, for the sake 
of clarity, the proposed algorithm for one-pass overloading resolution is presented 
in a simplified form, restricted to the cases of subprogram calls and expressions 
built up from elementary data objects by means of operators and function calls. 
Among the language features specifically neglected are aggregates, default param- 
eters, and named parameter associations, implicit type conversions, evaluation of 
static expressions, and use  clauses. It is not that extending the algorithm 
described here to take all such complicating factors into account is impossible. 
Indeed, most of the required extensions are discussed in Section 6, after the basic 
method has been explained. 

Section 2 gives an informal explanation of the overloading resolution method. 
Section 3 introduces some formal definitions that are then used to prove two 
lemmas, which are the method's theoretical basis. Section 4 defines a directed 
acyclic graph (DAG) constructing function, gen__calls, in detail. Time and space 
requirements for overloading resolution using gen__ calls are discussed in Section 
5. Section 6, the concluding section, deals briefly with extensions of the basic 
algorithm to permit handling the full generality of Ada constructs, including such 
things as static expressions and declarations made visible by use  clauses. 

2. INFORMAL DESCRIPTION OF THE METHOD 

Overload resolution is assumed to take place during a bottom-up left-to-right 
parse of the source program, during which a tree structure representing the 
meaning of the program is produced. Although the final goal of this process is 
the production of a tree structure, at intermediate stages the structures produced 
are likely to be DAGs with multiple roots, each root corresponding to a different 
interpretation of the Ada source construct. More precisely, the semantic structure 
representing a source construct is a set of trees, one for each meaning, which may 
share subtrees, representing shared interpretations of subexpressions. These 
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Fig. 1. Expression-DAG for 
A + A .  

DAGs, or overlapping trees, are referred to as expression-DAGs here (even 
though they may in fact also represent constructs other than expressions, such as 
procedure calls). 

The construction of expression-DAGs is performed by a function, gen__calls, 
which is described informally here and more formally in Section 4. Gen__calls 
takes two parameters. The first is a set V of operator definitions. The second is 
a sequence ($1, $2 . . . . .  S,) of sets of roots of expression-DAGs representing actual 
parameters. Each Si is a set of roots of an expression-DAG representing the ith 
actual parameter of an operator. Gen__calls(V, (S1, S2 . . . . .  Sn)) returns a set of 
roots of an expression-DAG which represents all legal interpretations of the 
operators in V applied to the actual parameter-expressions in ($1, $2 . . . . .  S,). In 
practice, V would ordinarily be the set of visible instances of some operator name 
and each Si would be the set of visible instances of a simple actual parameter or 
the result of an earlier evaluation ofgen_calls for an actual parameter expression. 

To save memory, and to avoid risking exponential growth of expression-DAGs 
in the case that  gen__ calls discovers more than one applicable operator definition 
with the same result type, say T, all such interpretations are represented by the 
abbreviation "ambiguous(T)." No more information need be retained since the 
surrounding context can only be used to select from multiple interpretations on 
the basis of result type. When there is more than one interpretation for a 
subexpression with the same result type, such interpretations can never be part 
of an unambiguous interpretation of any surrounding expression. On the other 
extreme, if gen_calls cannot discover a set of legal actual parameter interpre- 
tations for any of the operator definitions, the special value "void" is returned. 

Example. For the Ada program fragment given in Section 1, when the expres- 
sion A + A is parsed, gen__calls({+~, +2, +a), ({A1, A2, A3}, (h i ,  A2, A3})) would 
be evaluated, returning the set of roots {RI, R2, R3} of the DAG shown in Figure 
1. (Recall that  Ai, A2, and A3 are literals of types T1, T2, and T3, respectively, 
and that +1, +2, and +3 are operators that return types T1, T2, and T3, 
respectively.) 

Moving up the parse tree, when (A + A) + A is parsed, gen_calls({+i, +2, 
+3}, ((R1, R2, R3), (A1, A2, A3})) would be evaluated, returning the set of roots 
(Q1, Q2, Qa} of the DAG shown in Figure 2. 

Eventually a level is reached in the context of each expression where overload 
resolution must be completed. Three basic cases arise: 

(1) An expression of a specific type, say T, is required. In this case, the root 
with result type T is selected from the set of roots provided by gen__calls, and 
the DAG is reduced to a single tree. If no root with result type T is found, or if 
ambiguous(T) is found, there is an error. 
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Fig. 2. Expression-DAG for (A + A) + A. 

(2) A context,  such as a range, tha t  requires two expressions of the same type  
is reached. The  sets of roots of the DAGs for the two expressions are compared  
to determine whether  there  is any type T for which each expression has a root. 
I f  there  is exactly one such T and nei ther  root  of the pair  is ambiguous(T),  the 
correct  in terpreta t ions  of the two expressions have been found. Otherwise, an 
error  has been detected.  

(3) An operator ,  such as a procedure  call, tha t  re turns  no result  is reached. 
Although it is not  specifically pointed out  in the definition of g e n _  calls (below), 
gen__calls re turn  ei ther  void, a single tree, or ambiguous(no__type) ,  in this case, 
according to whether  the syntactic construct  has zero, one, or more  legal inter- 
pretations. 

3. FORMAL FOUNDATIONS 

T h e  overload resolution me thod  described in this paper  is based on two heuristics 
proved in this section. In order  to s tate  these heuristics in a form tha t  can be 
proved, some formal  definitions are necessary. 

Le t  Object__symbols  be a set of atomic expressions. 
Le t  Opera tor__symbols  be a set of  opera tor  symbols. (It is in tended here  to 

include all Ada constructs t ha t  take paramete r  expressions, such as functions, 
type  conversions, and aggregates, as well as the usual opera tor  symbols.) 

Expressions are constructed of instances of symbols. Suppose tha t  there  is an 
infinite set of  instances for each object  symbol and each opera tor  symbol, and a 
mapping taking each instance to the unique symbol of which it is an instance. 
Any functions defined on symbols are implicitly extended to all instances of 
symbols. 

An expression is ei ther  

(1) an instance of an o b j e c t _ s y m b o l  or 
(2) an ordered  sequence (X, Y1 . . . .  , Yk), where X is an instance of an opera tor  

symbol, Y1 . . . .  , Yk are expressions, X, YI . . . . .  Yk have no instances in 
common,  and k _ 0. 

Instances of the  same symbol are distinguished by  the use of subscripts. For  
example, in (F1, AI(F2, A2, B~)) there  are two instances of F and two instan- 
ces of A. 
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One expression S is a subexpression of another expression E if either 

(1) E = S or 
(2) for some subexpression (X,Y1 . . . . .  Yk) of E, Yi = S. 

Let Types be a set of types, including a special element, no__type. 
Let Object_definitions be a set of possible denotations of object symbols, with 

special elements void, denoting an object with no legal interpretation, and 
ambiguous(T) for each type T, denoting an ambiguous object of type T. 

Let Opera tor_  definitions be a set of possible denotations of operator symbols. 
Let ou t_ type(X)  give the type of X, if X is an object definition, and the result 

type of X if it is an operator definition. 
Let number_of_paramete r s (D)  give the number of formal operands of op- 

erator definition D. 

Let parameter__type(F, I) give the type of the Ith operand of operator 
definition F. 

Let visible(S) give the set of visible definitions of a symbol S. 
An interpretation I for an expression is a mapping giving each instance X of a 

symbol in the expression a unique definition I(X). 
Function out__type can now be extended to interpreted expressions: 

out__type(E, I) -- T if E is an object symbol and out__type(HE)) -- T; 
ou t_ type (E ,  I) -- T if E = (X, Y1 . . . . .  Yk) and out__type(I(X)) = T. 

An interpretation I for E is legal if for every instance X in E, I(X) is in visible(X) 
and 

(1) X is an instance of an object symbol and I(X) is an object def'mition or 
(2) X is an instance of an operator symbol F occurring in a subexpression (X, Y1, 

• . . ,  Yk) of E, I(F) is an operator definition, k = number__of__param- 
eters(I(F)), and for i = 1 . . . .  , k, 

out__type(I, Yi) = parameter__type(I(F), i). 

An expression is void if it admits no legal interpretation. An expression is 
ambiguous (with respect to type T) if it admits more than one distinct legal 
interpretation (for which E has a result of type T). 

We are now prepared to state and prove the two heuristics to be used in 
overload resolution. 

LEMMA 1 (VOID HEURISTIC). I f  E is an expression with subexpression S and 
S is void, then so is E. 

PROOF. Suppose S is a subexpression of E and E is not void. Any legal 
interpretation of E, when restricted to S, gives a legal interpretation for S, so S 
cannot be void. [] 

LEMMA 2 (AMBIGUITY HEURISTIC). If E is an expression with a unique legal 
interpretation I, then for every subexpression (X, Y1 . . . . .  Yk) of E and every Yi 
(1 ~ i _< k), there is no other legal interpretation J of Yi for which out__type(Yi, 
J) = parameter__type(I(X), i). 

PROOF. The proof is by induction on the definition of subexpression. As a basis, 
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suppose  E = (X, Y1, • • •, Yk). T h e n  if there  is ano the r  legal in terpre ta t ion  J of 
some Yi for which out__type(Yi ,  J) = pa rame te r__ type ( I (X) ,  i), consider the 
in te rpre ta t ion  J '  ob ta ined  by  extending J to all of  E, using the  definitions given 
by  I for instances not  in Yi. J '  # I, since J and  I differ on Yi, bu t  J '  mus t  be legal, 
since J '  and  I assign the  same  result  type  to Yi and  J and  I are 'legal. Th is  
contradic ts  the hypothes is  t ha t  E has  no more  t han  one legal interpretat ion.  In  
general,  suppose  (A, B1 . . . . .  Bn) is a subexpress ion of E and Bj -- (X, Y1 . . . .  , Yk) 
for some j. Suppose  I is the  unique legal in te rpre ta t ion  of E, and by  induction, 
the  restr ic t ion of I to Bj is the  unique legal in te rpre ta t ion  of Bj. I f  there  is ano ther  
legal in te rpre ta t ion  J of  Yi {that differs f rom the restr ict ion of I to Yi) for which 
out__type(Yi ,  J) = pa r am e t e r__ t ype ( I (X) ,  i) then,  as in the  basis case, J can be 
extended to give a new legal in te rpre ta t ion  for all of Bj, and hence to all of E - - a  
contradict ion.  [] 

4. DEFINITION OF GEN__CALLS 
Let  Express ions  be the  set  of " in te rpre ted  expressions," t ha t  is, expressions in 
which every instance of a symbol  has  been  replaced by  a definition of t ha t  
instance according to some legal in te rpre ta t ion  of the  expression. T h e  funct ion 
gen__calls, described informally  in Sect ion 2, and  two other  functions, ma tch-  
i ng__a rgumen t  and gen__call ,  which it uses are defined below. 

funct ion matching__argument(T: types; ARGS: set of Expressions) r e t u r n  Expressions 
)s 

-- Return the unique expression in ARGS with out__type T, ff possible. 
-- If more than one, return ambiguous(T). 
-- If none, return void. 

A: vector of Expressions; 
E: Expressions; 

beg in  A : -  null__vector; 
for  each element E of ARGS 
loop 

i f T  = out type(E) then A := A & X; end if; 
end loop; 
-- A contains all the interpreted expressions in ARGS 
-- that return type T. 
i f  length(A) _> 2 then  r e t u rn  ambiguous(T); 
elsif  A = null__ vector then  r e t u r n  void; 

else r e t u rn  A(1); end if; 
end matching__argument; 

funct ion gen__call(F: Operator__ definitions; ARGS: vector of set of Expressions) 
r e tu rn  Expressions is 

-- ARGS is a vector with one component for each formal parameter of F. 
-- The ith component of ARGS is a set of interpreted expressions, 
-- one for each legal interpretation of the ith actual parameter expression. 

E: Expressions; 
I: Numbers; 
S: vector of Expressions; 
T: Types; 
ISAMBIGUOUS: Boolean; 

beg in  S := null__vector; ISAMBIGUOUS := false; 
for  I in 1 .. n u m b e r _  of_parameters(F)  
loop T := parameter__type(F, I); 
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T := matching__argument(T, ARGS(I)); 
i f  E = void then  r e t u rn  void; 
else ISAMBIGUOUS := ISAMBIGUOUS or E = ambiguous(T); end if; 
S : = S & E ;  

end loop; 
i f  ISAMBIGUOUS then  r e t u rn  ambiguous(out__type(F)); 
else return F & S; end if; 

-- Void is returned if Lemma 1 guarantees the expression is void. 
-- Ambiguous(T) is returned if Lemma 2 guarantees the expression has more 
-- than one interpretation returning a value of type T. 
-- Otherwise an interpreted expression is returned, using operator__definition 
-- F, and matching argument__interpretations from ARGS. 
end gen__ call; 

function gen__ calls (FUNCS: set of Operator __ definitions; ARGS: vector of set of Expres- 
sions) r e tu rn  Set of Expressions is 
F: Operator def'mitions; 
S: Set of Expressions; 

begin S := empty__set; 
for  each element F of FUNCS 
loop S := S U {gen__caU(F, ARGS)}; 
end loop; 
r e tu rn  S; 

end gen__ calls; 

5. ANALYSIS 

Funct ion matching__ a rgument  per forms  one i terat ion for each  e lement  of  ARGS.  
Funct ion g e n _ c a l l  per forms  a t  mos t  one i terat ion for each  formal  p a r a m e t e r  of  
F and calls ma tch ing__a rgumen t  once in each  iteration. Funct ion gen__calls 
performs one i terat ion for each opera tor  definition in FUNCS,  and each  i terat ion 
involves one call of  gen__call.  All together,  the  worst  case running t ime of one 
call on gen__calls is thus  bounded  above by  a constant  t imes 

number _ of . parameters(F) 

Y, Y. JARGS(I) J. 
FEFUNCS I l l  

This  could be improved  slightly by  using a more  sophist icated scheme than  l inear 
search to find e lements  in A R G S  tha t  re turn  type  T, but  such a change is likely 
to increase overhead  wi thout  improving efficiency for the  size sets likely to be 
encountered  in use. Note  t ha t  J ARGS(I)J is the  n u m b e r  of distinct possible result  
types  for the  I th  actual  parameter .  

Concerning worst  case storage requirements ,  the key  observat ion is t ha t  each 
call on gen_ca l l s  re turns  a set  of  expressions no larger than  the  n u m b e r  of  
distinct result  types  of  the opera tor  definitions in the  set  FUNCS,  which consists 
of all the visible overloadings of  the opera tor  symbol  under  consideration.  Each  
of these  expressions requires  addit ional  storage propor t ional  to the n u m b e r  of  
pa r ame te r s  of the corresponding opera tor  definition. Since each opera tor  defini- 
t ion in F U N C S  corresponds to a visible definition of an operator ,  and each call of 
gen__ calls corresponds to an actual  use of an opera tor  in an expression, even the 
mos t  pathological ly ambiguous  p rogram can use no more  storage t han  the  produc t  
of  the n u m b e r  of opera tor  and formal  p a r a m e t e r  definitions t imes the  n u m b e r  of 
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uses of operators in the program. The example given earlier can be modified to 
exhibit this kind of worst case behavior. 

Example 
t y p e  T1 is (A, B); 

t y p e  Tk is (A, B); 
f u n c t i o n  "+"(X, Y: T1) re turn  T1 is  . . .  ; 

f u n c t i o n  "+"(X, Y: Tk) r e t u r n  Tk i s . . .  ; 

Within this context, A + A . . .  + A (k operators) would expand to a code-DAG 
of height k, with k 2 internal nodes and leaves. It is expected that  such situations 
will not arise frequently in practice, and that when they do, k will not be extremely 
large. 

It is worth emphasizing that  the storage requirements under discussion so far 
are for working storage, most of which can be collected after analysis of an 
expression has been completed. Continuing with the example above, if the 
expression occurred in the context of an assignment 

X : = A + A + . . .  +A;  

k - 1 of the roots of the code-DAG generated could be discarded as soon as the 
complete statement is processed, reducing the storage used for the final interpre- 
tation to k internal nodes and one leaf. In the author's implementation, where 
code trees are kept on a secondary storage device, no at tempt has yet been made 
to reclaim this storage, since the space consumed by intermediate code structures 
that  are no longer needed has so far been tolerable. It is planned to add a garbage 
collector for this storage, and for other storage that may be freed as a result of 
library updates, later. Such a garbage collector might be viewed as a deferred 
"second pass," which would mean the algorithm proposed here must be a two- 
pass algorithm. Alternatively, a true second pass could be performed over the 
code structures created during the analysis of an expression, after analysis is 
complete, provided that multiple interpretations actually were constructed. Since 
such a pass would not access the symbol table and need not always be performed, 
it might be argued that it would still be preferable to the kind of second pass 
performed by methods such as those given in [6, 7]. 

Of course, it is no more clear that a one-pass method for overloading resolution 
is superior to a two-pass method than it is clear that a two-pass method is 
superior to a three-pass method. Choosing the correct method for an implemen- 
tation requires balancing conflicting considerations, such as worst case versus 
average case behavior, time versus working storage versus storage for compiler 
code, and reliability versus efficiency. There does not appear to be any way of 
being certain of making the right choice short of exhaustive experimentation. 

A few generalizations can be made, however. With the exception of [2], the 
worst case asymptotic orders of complexity of the published overload resolution 
algorithms are the same. The multipass methods make more node visits, but the 
one-pass method may incur greater overhead on its one pass than is incurred by 
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N N N  
Fig. 3. Decora ted  expression tree for (A + A) + A. 

the others on any single one of their passes, since it must save the formal-actual 
parameter correspondences that the multipass methods may discard (and recom- 
pute in part later). So far as size complexity of the algorithm is concerned, 
Cormack [2] appears to offer the simplest algorithm, with second place going to 
the one-pass method described here. With respect to requirements for working 
storage, the one-pass method appears equivalent or marginally better on expres- 
sions that  are very small or do not contain many locally ambiguous symbols, but 
will require considerably more working storage on expressions that are harder to 
analyze. This can be seen by comparing the "decorated" code tree shown in 
Figure 3, which might be produced by an implementation of a multipass algorithm 
such as given in [6], with the structure shown in Figure 2, which would be 
produced by the algorithm described here on the same input. The one-pass 
algorithm seems to be able to save space on leaves (though this is an implemen- 
tation detail), but it uses one extra pointer for each formal parameter of each 
operator interpretation. 

Since, as of this writing, there are no validated Ada compilers yet operational, 
it appears to be too early to say which approach to overloading resolution will 
prove superior in use, if any. 

6. CONCLUSIONS 

We have explained how to resolve overloads in Ada expressions in a single 
bottom-up pass, which may be carried out during a bottom-up parse of a program. 
The author and some of his students are at work on an Ada implementation in 
which this algorithm is used in conjunction with an LALR(1) parser. 

As mentioned earlier, several complicating factors have not been explicitly 
covered. The Ada language definition introduces a multitude of special cases and 
quite a few of these are encountered in the process of overloading resolution. It 
is not appropriate to go into all such details in this paper, but a few extensions to 
the algorithm presented here deserve mention. 

First, the problem of performing static expression evaluation during overload 
resolution is trivially solved by modifying the final r e t u r n  statement of function 
gen_ call to first check whether the function and actual parameter expressions 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



612 T.P. Baker 

const i tu te  a stat ic expression and if so t o  evaluate  it, re turning a leaf  represent ing 
this value r a the r  t han  the  vector  (F, $1 . . . . .  Sk). 

Second, the  handl ing of u s e  clauses can be accomplished,  still in one pass, by  
tagging each internal  node of the D A G  with one of six possible states.  We 
represen t  each  s ta te  by  a two-digit  sequence, where  the  first digit indicates the 
n u m b e r  of  meanings  of  the  node with u s e  clauses and the  second digit indicates 
the  n u m b e r  of  meanings  of  the  node wi thout  u s e  clauses. A zero indicates no 
meanings,  a 1 indicates one meaning,  and a 2 indicates two or more  meanings.  
T h e  six such s ta tes  needed are 

(00) void, independen t  of  u s e  clauses; 
(10) void wi thout  u s e  clauses, bu t  represent ing  a unique in te rpre ta t ion  if names  

made  visible by  u s e  clauses are t aken  into account;  
(11) represent ing  a unique interpreta t ion,  independent  of  u s e  clauses; 
(20) ambiguous,  represent ing  more  t h a n  one in te rpre ta t ion  with  this resul t  type,  

if u s e  clauses are t aken  into account,  bu t  void otherwise; 2 
(21) ambiguous  with  u s e  clauses, bu t  represent ing  a unique in te rpre ta t ion  with- 

out  u s e  clauses; 
(22) ambiguous,  independent  of u s e  clauses. 

No te  t ha t  the  Ada visibility rules, which s ta te  t ha t  a u s e  clause m a y  make  
addi t ional  names  direct ly visible but  m a y  never  cause names  otherwise visible to 
be hidden,  specifically rule out  s ta tes  t h a t  would correspond to (01), {02), and 
(12) by  the  number ing  scheme used above.  Wi th  slight modifications,  the  s ta te  of 
each  node can be incorpora ted  into the DAGs  re tu rned  by  funct ion gen__calls 
described above.  

Impl ic i t  type  conversions can be supplied, when  needed, by  the  function 
ma tch ing__a rgumen t .  Similarly,  handl ing default  p a r a m e t e r s  and  n a m e d  pa ram-  
e ter  associat ions makes  the  functions gen__cal l  and ma tch ing__a rgumen t  more  
complicated,  bu t  the  t ree  s t ruc tures  produced need not  be any  more  complicated,  
and  the  detect ion of ambiguous  and void constructs  is no different. 

Literal  expressions can be handled  by  lett ing gen__calls discard all interpre-  
tat ions re turning o ther  types  whenever  an  expression has  an in te rpre ta t ion  t h a t  
re turns  a universal  type.  

Finally, there  are aggregates.  Al though aggregates  are in m a n y  ways like 
a n o n y m o u s  funct ion calls (with more  complex syntax),  the  type  resolut ion of 
aggregates,  and therefore  of  over loaded symbols  in expressions which include or 
are a pa r t  of  aggregates,  touches  on some details of  the  Ada language definition 
t h a t  are inadequate ly  specified in the  proposed s tandard  a t  the  t ime of this 
writing. I t  appea r s  likely t ha t  changes  or clarifications to the  s tandard  will be 
adop ted  which m a y  improve  the  situation, but  during the  in ter im implementa -  
t ions mus t  still identify the  types  of  aggregates  and do so in a m a n n e r  total ly 
consis tent  wi th  the  language definition. 

2 State 20 need not be distinguished from state 22 at the end of the analysis, but the two must be 
distinguished during the calculation of the collective state of a set of interpretations from the states 
of the individual interpretations, since adding an interpretation which is independent of use clauses 
(state 11) to a set of interpretations that are ambiguous but entirely dependent on use clauses (state 
20) yields a set of interpretations with state 21, which is unambiguous. 
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The "brute force" application of the approach described here for functions to 
aggregates, making suitable allowance for the additional complexity of matching 
record and array components to expressions over matching formal parameters, 
leads to an implementation that  can handle aggregates, though it may be very 
cumbersome in some cases. That  is, all array and record types that are within 
scope at the point where an aggregate is found must be considered and checked 
against the aggregate for conformance. Code constructs for all possible interpre- 
tations are passed on up the tree. Clearly there are two problems: (1) in a context 
where many similar array and record types are available, the number of possibil- 
ities considered for the type of an aggregate may be very large; (2) for large 
aggregates, in deeply nested contexts where the required type cannot be locally 
determined, a large amount of storage may be required. These are not problems 
which can be avoided by multipass schemes, except in so far as they may be able 
to apply a greater number of heuristics. Expressions such as (A, B, C) = (D, E, F) 
provide no more information to a top-down multipass algorithm than they do to 
the bottom-up algorithm presented here. On such expressions a multipass scheme 
might use less storage, but it would have to process the same number of cases 
and so would take comparable time. 

In the author's opinion, an Ada compiler must provide a fully general scheme 
for resolving the types of aggregates, but it must employ as many heuristics as 
possible to avoid using the general algorithm when it is not needed. In particular, 
it is possible to avoid consideration of more than one type for an aggregate in a 
number of contexts, including qualified expressions, allocators, and places where 
an initial or default value is given in a declaration. Ultimately, barring language 
changes to eliminate problem contexts such as (A, B, C) = (D, E, F) entirely, 
coding Ada programs so that  the type of an aggregate is always available from a 
nearby context may make a difference between short and long compilation times 
(as well as making programs easier for humans to read). 
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