
A One-Pass Algorithm for
Resolution in Ada

T. P. BAKER
Florida State University

Overload

A simple method is presented for detecting ambiguities and finding the correct interpretations of
expressions in the programming language Ada. Unlike previously reported solutions to this problem,
which require multiple passes over a tree structure, the method described here operates in one
bottom-up pass, during which a directed acyclic graph is produced. The correctness of this approach
is demonstrated by a brief formal argument.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classification--
Ada; D.3.4 [Programming Languages]: Processors--compilers

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Overloading, translators, intermediate code

1. INTRODUCTION

T h e p o s s i b i l i t y o f " o v e r l o a d i n g " c e r t a i n k i n d s o f s y m b o l s is one o f t h e m o s t
i n t e r e s t i n g f e a t u r e s of t h e p r o g r a m m i n g l a n g u a g e A d a [8, 11]. F o r a n o v e r l o a d e d
s y m b o l in a n A d a p r o g r a m , " t h e r e m a y be s e v e r a l m e a n i n g s a c c e p t a b l e a t a g iven
po in t , a n d t h e a m b i g u i t y m u s t be r e s o l v e d b y t h e ru l e s o f o v e r l o a d i n g " [8].
O p e r a t o r s y m b o l s , s u b p r o g r a m a n d e n t r y iden t i f i e r s , a n d e n u m e r a t i o n l i t e r a l s
m a y be o v e r l o a d e d , a n d b y ex tens ion , so m a y n a m e s a n d e x p r e s s i o n s t h a t i nc lude
i n s t a n c e s of o v e r l o a d e d symbo l s .

F o r e x a m p l e , c o n s i d e r t h e fo l lowing A d a d e c l a r a t i o n s :

t y p e T1 is (A, B);
t y p e T2 is (A, B);
t y p e T3 is (A, B);
funct ion "+"(X: T2; Y: T3) r e t u r n T1 i s . . . ;
funct ion "+"(X: T3; Y: T1) r e t u r n T2 i s . . . ;
funct ion "+"(X: T1; Y: T2) r e t u r n T3 is . . . ;
X: T1;

T h e s e d e c l a r a t i o n s o v e r l o a d A a n d B as l i t e r a l s o f t h r e e d i s t i n c t t y p e s a n d + as
t h r e e d i s t i n c t o p e r a t o r s . L e t Ai a n d Bi d e n o t e t h e m e a n i n g s of A a n d B as of t y p e

This work was supported in part by the U.S. Air Force under contract F08635-81-0062 and in part by
the National Science Foundation under grant MCS-79-24583.
Author's address: Department of Mathematics and Computer Science, Florida State University,
Tallahassee, FL 32306.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/1000-0601 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982, Pages 601-614.

602 T.P. Baker

Ti, respectively, for i = 1, 2, 3. Let +i denote the definition of + shown that
returns type Ti, for i = 1, 2, 3. Within the visibility range of the definitions above
(provided no further meanings are defined for A, B, and +), the expression A +
A + A + A has three possible interpretations:

(a) (((A, +3 A2) +2 A1) ÷1 A3);
(b) (((A2 ÷, A3) +3 A2) +2 At);
(c) (((A3 +2 A,) ÷I A3) +3 A2).

The statement X := A + A + A + A; has only one legal interpretation, however,
since in this context the type of A + A + A + A is required to match that of the
simple variable X, namely, TI. Thus, assuming there are no other visible decla-
rations of A and +, the interpretation of A + A + A + A in X : = A + A + A + A;
is unambiguously (a).

For each expression or name, a compiler for Ada must determine whether it
has zero, one, or more legal interpretations, and if there is only one, it must
produce the correct interpretation. This is made more difficult by a number of
factors:

(1) use clauses, which make declarations of operators and literals from a package
visible within an expression only if there is no consistent interpretation of
that expression which does not use those declarations;

(2} contexts that do not completely specify the types of the component expres-
sions, but do impose some restriction, such as ranges (where both expressions
must be of the same type} and assignments;

(3) operatorlike constructs that are unnamed, such as array and record aggre-
gates, which are far more complex but have characteristics similar to function
calls;

(4) constructions such as F(new A'RANGE(B + C)), where overloading in B +
C must be completely resolved, so that it may be evaluated, before overloading
of F may be resolved; 1

(5) implicit type conversions;
(6) literal expressions, which always have a unique interpretation, independent

of operator overloadings.1

Determining whether an expression has a unique meaning and, in the case that
it does, identifying the types and definitions of all the constituent components
(referred to hereafter as simply overload resolution) clearly is a complex task.
For reliability and efficiency, care must be taken in the design of a "front end"
processor for Ada that it does not become any more complex than is actually
necessary.

A number of papers have appeared on the subject of overload resolution
algorithms and their implementation [1-3, 4-6, 9, 10]. One reason for all this
activity is that the algorithm originally offered by the Ada language design team
[4] is clearly more complicated than necessary. In essence, it was suggested that
an indefinite number of alternating passes be made up and down the tree of an
expression, pruning away overloadings that fail to meet the requirements of

' Recent language changes appear to have eliminated this.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 603

context, until convergence is reached. The first published improvement of this
algorithm is given in [3], where it is shown that four passes over the tree are
sufficient to reach convergence. Subsequent papers reduce the number of passes
to two or three.

These multipass algorithms can be roughly divided into two groups. In the first,
exemplified by Ganzinger and Ripken [3], the tree is processed three times: top-
down, bottom-up, and top-down. During the first pass, the set of types allowed
by context is used to select from all the visible declarations of each operator those
that have permissible result types. The second pass checks the possible types of
argument expressions against formal parameter types, pruning out operator
interpretations that cannot apply to the given arguments. At the conclusion of
this pass there will be a unique interpretation left for the operator at the root of
the expression tree, provided the expression has exactly one legal interpretation.
The third pass carries the consequences of this unique interpretation back down
the tree, essentially repeating the processing done in the first pass. The algorithms
in the second group, including those given in [6, 7], make only two passes,
corresponding to the second and third passes described above. It would appear at
first that these algorithms are more efficient, but Pennello et al. [6] observe that
it might turn out that even though a preliminary top-down pass is not needed it
may prove useful as a heuristic, should it turn out that this first pass is usually
successful in finding a unique interpretation for an expression. Thus the question
of which group of algorithms is better remains open until a good statistical
comparison is done.

All the algorithms discussed so far make use of lists of interpretations which
are attached to the nodes of a parse tree, or an abstraction of one, and so require
the use of extra working storage, which is presumably reclaimed when the analysis
of each expression has been completed. Cormack [2] > " proposes a radically different
recursive algorithm that begins from the root of an expression tree and enumer-
ates all possible interpretations of the tree. The algorithm is simple and requires
as working storage only the stack used in implementing the recursion. On the
other hand, its worst case running time appears to be of the order (n ~°gmk÷l) (km2),
where n is the number of operators in an expression, k is the number of
interpretations for each operator, and m is the number of arguments to each
operator. This is compared to order kmn for the other algorithms. Despite this
potentially longer running time, it is claimed that Cormack's algorithm takes very
little time on the kind of expressions encountered in actual programs, especially
when this time is viewed relative to the time spent doing all the other processing
that is part of the c:ompilation process.

The algorithm for overload resolution described in this paper is based on a
viewpoint similar to that expressed by Cormack--that expression analysis is a
small part of the work done by a compiler and that inefficiency on a few
expressions is tolerable, so long as it permits reducing the overhead for simple
expressions and the complexity of the compiler itself. Our viewpoint is different
in two respects, however, owing to a bias created by the implementation context
in which we expect overload resolution to take place. First, the implementation
is viewed as parsing and producing intermediate code trees from the source in
one bottom-up pass. Second, the symbol table and intermediate code are viewed

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

604 T.P. Baker

as belonging to a library file that resides on a secondary storage device, from
which small pieces are brought into central memory when needed for processing.
Our goal is therefore to perform as much of the semantic processing as possible
in parallel with the parsing and construction of the intermediate code tree and to
avoid backtracking whenever possible, since it might require bringing portions of
the symbol table or code back into central memory.

As it turns out, this goal can be largely accomplished. It is possible, in one
bottom-up pass, to read in an expression, parse it, check for a unique legal
interpretation, and translate it to an intermediate code tree (or evaluate it, if
static). This is accomplished by a technique that may be viewed as a refinement
of the multipass methods derived from [4]. The essence of the refinement is that
when a set of possible operators is constructed for a node it does not merely
represent an unstructured set of possibly allowed operator definitions. Rather,
each operator points to those operators in the operator lists of the actual
parameter subexpressions that are legal operands of the operator. The pointers
make superfluous the final top-down pass which two-pass methods such as those
in [6, 7] must make to distribute the final operator information over the expression
tree, provided operator trees or other pointer-based intermediate codes are
acceptable as an intermediate form for the next stage of the compilation process.

Following precedent established by earlier papers on this subject, for the sake
of clarity, the proposed algorithm for one-pass overloading resolution is presented
in a simplified form, restricted to the cases of subprogram calls and expressions
built up from elementary data objects by means of operators and function calls.
Among the language features specifically neglected are aggregates, default param-
eters, and named parameter associations, implicit type conversions, evaluation of
static expressions, and use clauses. It is not that extending the algorithm
described here to take all such complicating factors into account is impossible.
Indeed, most of the required extensions are discussed in Section 6, after the basic
method has been explained.

Section 2 gives an informal explanation of the overloading resolution method.
Section 3 introduces some formal definitions that are then used to prove two
lemmas, which are the method's theoretical basis. Section 4 defines a directed
acyclic graph (DAG) constructing function, gen__calls, in detail. Time and space
requirements for overloading resolution using gen__ calls are discussed in Section
5. Section 6, the concluding section, deals briefly with extensions of the basic
algorithm to permit handling the full generality of Ada constructs, including such
things as static expressions and declarations made visible by use clauses.

2. INFORMAL DESCRIPTION OF THE METHOD

Overload resolution is assumed to take place during a bottom-up left-to-right
parse of the source program, during which a tree structure representing the
meaning of the program is produced. Although the final goal of this process is
the production of a tree structure, at intermediate stages the structures produced
are likely to be DAGs with multiple roots, each root corresponding to a different
interpretation of the Ada source construct. More precisely, the semantic structure
representing a source construct is a set of trees, one for each meaning, which may
share subtrees, representing shared interpretations of subexpressions. These
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 605

R! R 2 R 3

N N] ® N

Fig. 1. Expression-DAG for
A + A .

DAGs, or overlapping trees, are referred to as expression-DAGs here (even
though they may in fact also represent constructs other than expressions, such as
procedure calls).

The construction of expression-DAGs is performed by a function, gen__calls,
which is described informally here and more formally in Section 4. Gen__calls
takes two parameters. The first is a set V of operator definitions. The second is
a sequence ($1, $2 S,) of sets of roots of expression-DAGs representing actual
parameters. Each Si is a set of roots of an expression-DAG representing the ith
actual parameter of an operator. Gen__calls(V, (S1, S2 Sn)) returns a set of
roots of an expression-DAG which represents all legal interpretations of the
operators in V applied to the actual parameter-expressions in ($1, $2 S,). In
practice, V would ordinarily be the set of visible instances of some operator name
and each Si would be the set of visible instances of a simple actual parameter or
the result of an earlier evaluation ofgen_calls for an actual parameter expression.

To save memory, and to avoid risking exponential growth of expression-DAGs
in the case that gen__ calls discovers more than one applicable operator definition
with the same result type, say T, all such interpretations are represented by the
abbreviation "ambiguous(T)." No more information need be retained since the
surrounding context can only be used to select from multiple interpretations on
the basis of result type. When there is more than one interpretation for a
subexpression with the same result type, such interpretations can never be part
of an unambiguous interpretation of any surrounding expression. On the other
extreme, if gen_calls cannot discover a set of legal actual parameter interpre-
tations for any of the operator definitions, the special value "void" is returned.

Example. For the Ada program fragment given in Section 1, when the expres-
sion A + A is parsed, gen__calls({+~, +2, +a), ({A1, A2, A3}, (h i , A2, A3})) would
be evaluated, returning the set of roots {RI, R2, R3} of the DAG shown in Figure
1. (Recall that Ai, A2, and A3 are literals of types T1, T2, and T3, respectively,
and that +1, +2, and +3 are operators that return types T1, T2, and T3,
respectively.)

Moving up the parse tree, when (A + A) + A is parsed, gen_calls({+i, +2,
+3}, ((R1, R2, R3), (A1, A2, A3})) would be evaluated, returning the set of roots
(Q1, Q2, Qa} of the DAG shown in Figure 2.

Eventually a level is reached in the context of each expression where overload
resolution must be completed. Three basic cases arise:

(1) An expression of a specific type, say T, is required. In this case, the root
with result type T is selected from the set of roots provided by gen__calls, and
the DAG is reduced to a single tree. If no root with result type T is found, or if
ambiguous(T) is found, there is an error.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

606 T .P . Baker

Qt Q2

,, i L

D

Fig. 2. Expression-DAG for (A + A) + A.

(2) A context, such as a range, tha t requires two expressions of the same type
is reached. The sets of roots of the DAGs for the two expressions are compared
to determine whether there is any type T for which each expression has a root.
I f there is exactly one such T and nei ther root of the pair is ambiguous(T), the
correct in terpreta t ions of the two expressions have been found. Otherwise, an
error has been detected.

(3) An operator , such as a procedure call, tha t re turns no result is reached.
Although it is not specifically pointed out in the definition of g e n _ calls (below),
gen__calls re turn ei ther void, a single tree, or ambiguous(no__type) , in this case,
according to whether the syntactic construct has zero, one, or more legal inter-
pretations.

3. FORMAL FOUNDATIONS

T h e overload resolution me thod described in this paper is based on two heuristics
proved in this section. In order to s tate these heuristics in a form tha t can be
proved, some formal definitions are necessary.

Le t Object__symbols be a set of atomic expressions.
Le t Opera tor__symbols be a set of opera tor symbols. (It is in tended here to

include all Ada constructs t ha t take paramete r expressions, such as functions,
type conversions, and aggregates, as well as the usual opera tor symbols.)

Expressions are constructed of instances of symbols. Suppose tha t there is an
infinite set of instances for each object symbol and each opera tor symbol, and a
mapping taking each instance to the unique symbol of which it is an instance.
Any functions defined on symbols are implicitly extended to all instances of
symbols.

An expression is ei ther

(1) an instance of an o b j e c t _ s y m b o l or
(2) an ordered sequence (X, Y1 , Yk), where X is an instance of an opera tor

symbol, Y1 , Yk are expressions, X, YI Yk have no instances in
common, and k _ 0.

Instances of the same symbol are distinguished by the use of subscripts. For
example, in (F1, AI(F2, A2, B~)) there are two instances of F and two instan-
ces of A.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 607

One expression S is a subexpression of another expression E if either

(1) E = S or
(2) for some subexpression (X,Y1 Yk) of E, Yi = S.

Let Types be a set of types, including a special element, no__type.
Let Object_definitions be a set of possible denotations of object symbols, with

special elements void, denoting an object with no legal interpretation, and
ambiguous(T) for each type T, denoting an ambiguous object of type T.

Let Opera tor_ definitions be a set of possible denotations of operator symbols.
Let ou t_ type(X) give the type of X, if X is an object definition, and the result

type of X if it is an operator definition.
Let number_of_paramete r s (D) give the number of formal operands of op-

erator definition D.

Let parameter__type(F, I) give the type of the Ith operand of operator
definition F.

Let visible(S) give the set of visible definitions of a symbol S.
An interpretation I for an expression is a mapping giving each instance X of a

symbol in the expression a unique definition I(X).
Function out__type can now be extended to interpreted expressions:

out__type(E, I) -- T if E is an object symbol and out__type(HE)) -- T;
ou t_ type (E , I) -- T if E = (X, Y1 Yk) and out__type(I(X)) = T.

An interpretation I for E is legal if for every instance X in E, I(X) is in visible(X)
and

(1) X is an instance of an object symbol and I(X) is an object def'mition or
(2) X is an instance of an operator symbol F occurring in a subexpression (X, Y1,

• . . , Yk) of E, I(F) is an operator definition, k = number__of__param-
eters(I(F)), and for i = 1 , k,

out__type(I, Yi) = parameter__type(I(F), i).

An expression is void if it admits no legal interpretation. An expression is
ambiguous (with respect to type T) if it admits more than one distinct legal
interpretation (for which E has a result of type T).

We are now prepared to state and prove the two heuristics to be used in
overload resolution.

LEMMA 1 (VOID HEURISTIC). I f E is an expression with subexpression S and
S is void, then so is E.

PROOF. Suppose S is a subexpression of E and E is not void. Any legal
interpretation of E, when restricted to S, gives a legal interpretation for S, so S
cannot be void. []

LEMMA 2 (AMBIGUITY HEURISTIC). If E is an expression with a unique legal
interpretation I, then for every subexpression (X, Y1 Yk) of E and every Yi
(1 ~ i _< k), there is no other legal interpretation J of Yi for which out__type(Yi,
J) = parameter__type(I(X), i).

PROOF. The proof is by induction on the definition of subexpression. As a basis,

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

608 T.P. Baker

suppose E = (X, Y1, • • •, Yk). T h e n if there is ano the r legal in terpre ta t ion J of
some Yi for which out__type(Yi , J) = pa rame te r__ type (I (X) , i), consider the
in te rpre ta t ion J ' ob ta ined by extending J to all of E, using the definitions given
by I for instances not in Yi. J ' # I, since J and I differ on Yi, bu t J ' mus t be legal,
since J ' and I assign the same result type to Yi and J and I are 'legal. Th is
contradic ts the hypothes is t ha t E has no more t han one legal interpretat ion. In
general, suppose (A, B1 Bn) is a subexpress ion of E and Bj -- (X, Y1 , Yk)
for some j. Suppose I is the unique legal in te rpre ta t ion of E, and by induction,
the restr ic t ion of I to Bj is the unique legal in te rpre ta t ion of Bj. I f there is ano ther
legal in te rpre ta t ion J of Yi {that differs f rom the restr ict ion of I to Yi) for which
out__type(Yi , J) = pa r am e t e r__ t ype (I (X) , i) then, as in the basis case, J can be
extended to give a new legal in te rpre ta t ion for all of Bj, and hence to all of E - - a
contradict ion. []

4. DEFINITION OF GEN__CALLS
Let Express ions be the set of " in te rpre ted expressions," t ha t is, expressions in
which every instance of a symbol has been replaced by a definition of t ha t
instance according to some legal in te rpre ta t ion of the expression. T h e funct ion
gen__calls, described informally in Sect ion 2, and two other functions, ma tch-
i ng__a rgumen t and gen__call , which it uses are defined below.

funct ion matching__argument(T: types; ARGS: set of Expressions) r e t u r n Expressions
)s

-- Return the unique expression in ARGS with out__type T, ff possible.
-- If more than one, return ambiguous(T).
-- If none, return void.

A: vector of Expressions;
E: Expressions;

beg in A : - null__vector;
for each element E of ARGS
loop

i f T = out type(E) then A := A & X; end if;
end loop;
-- A contains all the interpreted expressions in ARGS
-- that return type T.
i f length(A) _> 2 then r e t u rn ambiguous(T);
elsif A = null__ vector then r e t u r n void;

else r e t u rn A(1); end if;
end matching__argument;

funct ion gen__call(F: Operator__ definitions; ARGS: vector of set of Expressions)
r e tu rn Expressions is

-- ARGS is a vector with one component for each formal parameter of F.
-- The ith component of ARGS is a set of interpreted expressions,
-- one for each legal interpretation of the ith actual parameter expression.

E: Expressions;
I: Numbers;
S: vector of Expressions;
T: Types;
ISAMBIGUOUS: Boolean;

beg in S := null__vector; ISAMBIGUOUS := false;
for I in 1 .. n u m b e r _ of_parameters(F)
loop T := parameter__type(F, I);

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 609

T := matching__argument(T, ARGS(I));
i f E = void then r e t u rn void;
else ISAMBIGUOUS := ISAMBIGUOUS or E = ambiguous(T); end if;
S : = S & E ;

end loop;
i f ISAMBIGUOUS then r e t u rn ambiguous(out__type(F));
else return F & S; end if;

-- Void is returned if Lemma 1 guarantees the expression is void.
-- Ambiguous(T) is returned if Lemma 2 guarantees the expression has more
-- than one interpretation returning a value of type T.
-- Otherwise an interpreted expression is returned, using operator__definition
-- F, and matching argument__interpretations from ARGS.
end gen__ call;

function gen__ calls (FUNCS: set of Operator __ definitions; ARGS: vector of set of Expres-
sions) r e tu rn Set of Expressions is
F: Operator def'mitions;
S: Set of Expressions;

begin S := empty__set;
for each element F of FUNCS
loop S := S U {gen__caU(F, ARGS)};
end loop;
r e tu rn S;

end gen__ calls;

5. ANALYSIS

Funct ion matching__ a rgument per forms one i terat ion for each e lement of ARGS.
Funct ion g e n _ c a l l per forms a t mos t one i terat ion for each formal p a r a m e t e r of
F and calls ma tch ing__a rgumen t once in each iteration. Funct ion gen__calls
performs one i terat ion for each opera tor definition in FUNCS, and each i terat ion
involves one call of gen__call. All together, the worst case running t ime of one
call on gen__calls is thus bounded above by a constant t imes

number _ of . parameters(F)

Y, Y. JARGS(I) J.
FEFUNCS I l l

This could be improved slightly by using a more sophist icated scheme than l inear
search to find e lements in A R G S tha t re turn type T, but such a change is likely
to increase overhead wi thout improving efficiency for the size sets likely to be
encountered in use. Note t ha t J ARGS(I)J is the n u m b e r of distinct possible result
types for the I th actual parameter .

Concerning worst case storage requirements , the key observat ion is t ha t each
call on gen_ca l l s re turns a set of expressions no larger than the n u m b e r of
distinct result types of the opera tor definitions in the set FUNCS, which consists
of all the visible overloadings of the opera tor symbol under consideration. Each
of these expressions requires addit ional storage propor t ional to the n u m b e r of
pa r ame te r s of the corresponding opera tor definition. Since each opera tor defini-
t ion in F U N C S corresponds to a visible definition of an operator , and each call of
gen__ calls corresponds to an actual use of an opera tor in an expression, even the
mos t pathological ly ambiguous p rogram can use no more storage t han the produc t
of the n u m b e r of opera tor and formal p a r a m e t e r definitions t imes the n u m b e r of

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

f j J ~

610 T .P . Baker

uses of operators in the program. The example given earlier can be modified to
exhibit this kind of worst case behavior.

Example
t y p e T1 is (A, B);

t y p e Tk is (A, B);
f u n c t i o n "+"(X, Y: T1) re turn T1 is . . . ;

f u n c t i o n "+"(X, Y: Tk) r e t u r n Tk i s . . . ;

Within this context, A + A . . . + A (k operators) would expand to a code-DAG
of height k, with k 2 internal nodes and leaves. It is expected that such situations
will not arise frequently in practice, and that when they do, k will not be extremely
large.

It is worth emphasizing that the storage requirements under discussion so far
are for working storage, most of which can be collected after analysis of an
expression has been completed. Continuing with the example above, if the
expression occurred in the context of an assignment

X : = A + A + . . . +A;

k - 1 of the roots of the code-DAG generated could be discarded as soon as the
complete statement is processed, reducing the storage used for the final interpre-
tation to k internal nodes and one leaf. In the author's implementation, where
code trees are kept on a secondary storage device, no at tempt has yet been made
to reclaim this storage, since the space consumed by intermediate code structures
that are no longer needed has so far been tolerable. It is planned to add a garbage
collector for this storage, and for other storage that may be freed as a result of
library updates, later. Such a garbage collector might be viewed as a deferred
"second pass," which would mean the algorithm proposed here must be a two-
pass algorithm. Alternatively, a true second pass could be performed over the
code structures created during the analysis of an expression, after analysis is
complete, provided that multiple interpretations actually were constructed. Since
such a pass would not access the symbol table and need not always be performed,
it might be argued that it would still be preferable to the kind of second pass
performed by methods such as those given in [6, 7].

Of course, it is no more clear that a one-pass method for overloading resolution
is superior to a two-pass method than it is clear that a two-pass method is
superior to a three-pass method. Choosing the correct method for an implemen-
tation requires balancing conflicting considerations, such as worst case versus
average case behavior, time versus working storage versus storage for compiler
code, and reliability versus efficiency. There does not appear to be any way of
being certain of making the right choice short of exhaustive experimentation.

A few generalizations can be made, however. With the exception of [2], the
worst case asymptotic orders of complexity of the published overload resolution
algorithms are the same. The multipass methods make more node visits, but the
one-pass method may incur greater overhead on its one pass than is incurred by
ACM Transac t ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 611

'

N N N
Fig. 3. Decora ted expression tree for (A + A) + A.

the others on any single one of their passes, since it must save the formal-actual
parameter correspondences that the multipass methods may discard (and recom-
pute in part later). So far as size complexity of the algorithm is concerned,
Cormack [2] appears to offer the simplest algorithm, with second place going to
the one-pass method described here. With respect to requirements for working
storage, the one-pass method appears equivalent or marginally better on expres-
sions that are very small or do not contain many locally ambiguous symbols, but
will require considerably more working storage on expressions that are harder to
analyze. This can be seen by comparing the "decorated" code tree shown in
Figure 3, which might be produced by an implementation of a multipass algorithm
such as given in [6], with the structure shown in Figure 2, which would be
produced by the algorithm described here on the same input. The one-pass
algorithm seems to be able to save space on leaves (though this is an implemen-
tation detail), but it uses one extra pointer for each formal parameter of each
operator interpretation.

Since, as of this writing, there are no validated Ada compilers yet operational,
it appears to be too early to say which approach to overloading resolution will
prove superior in use, if any.

6. CONCLUSIONS

We have explained how to resolve overloads in Ada expressions in a single
bottom-up pass, which may be carried out during a bottom-up parse of a program.
The author and some of his students are at work on an Ada implementation in
which this algorithm is used in conjunction with an LALR(1) parser.

As mentioned earlier, several complicating factors have not been explicitly
covered. The Ada language definition introduces a multitude of special cases and
quite a few of these are encountered in the process of overloading resolution. It
is not appropriate to go into all such details in this paper, but a few extensions to
the algorithm presented here deserve mention.

First, the problem of performing static expression evaluation during overload
resolution is trivially solved by modifying the final r e t u r n statement of function
gen_ call to first check whether the function and actual parameter expressions

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

612 T.P. Baker

const i tu te a stat ic expression and if so t o evaluate it, re turning a leaf represent ing
this value r a the r t han the vector (F, $1 Sk).

Second, the handl ing of u s e clauses can be accomplished, still in one pass, by
tagging each internal node of the D A G with one of six possible states. We
represen t each s ta te by a two-digit sequence, where the first digit indicates the
n u m b e r of meanings of the node with u s e clauses and the second digit indicates
the n u m b e r of meanings of the node wi thout u s e clauses. A zero indicates no
meanings, a 1 indicates one meaning, and a 2 indicates two or more meanings.
T h e six such s ta tes needed are

(00) void, independen t of u s e clauses;
(10) void wi thout u s e clauses, bu t represent ing a unique in te rpre ta t ion if names

made visible by u s e clauses are t aken into account;
(11) represent ing a unique interpreta t ion, independent of u s e clauses;
(20) ambiguous, represent ing more t h a n one in te rpre ta t ion with this resul t type,

if u s e clauses are t aken into account, bu t void otherwise; 2
(21) ambiguous with u s e clauses, bu t represent ing a unique in te rpre ta t ion with-

out u s e clauses;
(22) ambiguous, independent of u s e clauses.

No te t ha t the Ada visibility rules, which s ta te t ha t a u s e clause m a y make
addi t ional names direct ly visible but m a y never cause names otherwise visible to
be hidden, specifically rule out s ta tes t h a t would correspond to (01), {02), and
(12) by the number ing scheme used above. Wi th slight modifications, the s ta te of
each node can be incorpora ted into the DAGs re tu rned by funct ion gen__calls
described above.

Impl ic i t type conversions can be supplied, when needed, by the function
ma tch ing__a rgumen t . Similarly, handl ing default p a r a m e t e r s and n a m e d pa ram-
e ter associat ions makes the functions gen__cal l and ma tch ing__a rgumen t more
complicated, bu t the t ree s t ruc tures produced need not be any more complicated,
and the detect ion of ambiguous and void constructs is no different.

Literal expressions can be handled by lett ing gen__calls discard all interpre-
tat ions re turning o ther types whenever an expression has an in te rpre ta t ion t h a t
re turns a universal type.

Finally, there are aggregates. Al though aggregates are in m a n y ways like
a n o n y m o u s funct ion calls (with more complex syntax), the type resolut ion of
aggregates, and therefore of over loaded symbols in expressions which include or
are a pa r t of aggregates, touches on some details of the Ada language definition
t h a t are inadequate ly specified in the proposed s tandard a t the t ime of this
writing. I t appea r s likely t ha t changes or clarifications to the s tandard will be
adop ted which m a y improve the situation, but during the in ter im implementa -
t ions mus t still identify the types of aggregates and do so in a m a n n e r total ly
consis tent wi th the language definition.

2 State 20 need not be distinguished from state 22 at the end of the analysis, but the two must be
distinguished during the calculation of the collective state of a set of interpretations from the states
of the individual interpretations, since adding an interpretation which is independent of use clauses
(state 11) to a set of interpretations that are ambiguous but entirely dependent on use clauses (state
20) yields a set of interpretations with state 21, which is unambiguous.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

One-Pass Algorithm for Overload Resolution in Ada 613

The "brute force" application of the approach described here for functions to
aggregates, making suitable allowance for the additional complexity of matching
record and array components to expressions over matching formal parameters,
leads to an implementation that can handle aggregates, though it may be very
cumbersome in some cases. That is, all array and record types that are within
scope at the point where an aggregate is found must be considered and checked
against the aggregate for conformance. Code constructs for all possible interpre-
tations are passed on up the tree. Clearly there are two problems: (1) in a context
where many similar array and record types are available, the number of possibil-
ities considered for the type of an aggregate may be very large; (2) for large
aggregates, in deeply nested contexts where the required type cannot be locally
determined, a large amount of storage may be required. These are not problems
which can be avoided by multipass schemes, except in so far as they may be able
to apply a greater number of heuristics. Expressions such as (A, B, C) = (D, E, F)
provide no more information to a top-down multipass algorithm than they do to
the bottom-up algorithm presented here. On such expressions a multipass scheme
might use less storage, but it would have to process the same number of cases
and so would take comparable time.

In the author's opinion, an Ada compiler must provide a fully general scheme
for resolving the types of aggregates, but it must employ as many heuristics as
possible to avoid using the general algorithm when it is not needed. In particular,
it is possible to avoid consideration of more than one type for an aggregate in a
number of contexts, including qualified expressions, allocators, and places where
an initial or default value is given in a declaration. Ultimately, barring language
changes to eliminate problem contexts such as (A, B, C) = (D, E, F) entirely,
coding Ada programs so that the type of an aggregate is always available from a
nearby context may make a difference between short and long compilation times
(as well as making programs easier for humans to read).

ACKNOWLEDGMENTS

The author is grateful to D. Dunkle for implementing a multipass overload
resolution algorithm for Ada which helped to motivate and demonstrate the
greater simplicity of a one-pass approach, and to the U.S. Air Force for supporting
the development of a prototype Ada semantic analyzer which demonstrated the
approach's practicality.

REFERENCES

1. BELMONT, P. Type resolution in Ada: An implementation report. S I G P L A N Notices (ACM) 15,
11 (Nov. 1980), 57-61.

2. CORMACK, G.V. An algorithm for the selection of overloaded functions in Ada. S I G P L A N
Notices (ACM) 16, 2 (Feb. 1981), 48-52.

3. GANZINGER, H., AND RIPKEN, K. Operator identification in Ada: Formal specification, complex-
ity, and concrete implementation. S I G P L A N Notices (ACM) 15, 2 (Feb. 1980), 30-42.

4. ICHBIAH, J., HELIARD, J., ROUBINE, O., BARNES, J., KRIEG-BRUECKNER, B., AND WICHMANN,
B. Rationale for the design of the Ada programming language. S I G P L A N Notices (ACM) 14, 6,
pt. B (June 1979), 7-8-7-12.

5. JANAS, J.M. A comment on "Operator identification in Ada" by Ganzinger and Ripken. SIG-
P L A N Notices (ACM) 15, 9 (Sept. 1980), 39-43.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

614 T.P. Baker

6. PENNELLO, T., DEREMER, F., AND MEYERS, Pt. A simplified operator identification scheme for
Ada. SIGPLAN Notices (ACM) 15, 7 (July 1980), 82-87.

7. PERSCH, G., WINTERSTEIN, G, DAUSMANN, M., AND DROSSOPOULOU, S. Overloading in prelim-
inary Ada. SIGPLAN Notices (ACM) 15, 11 (Nov. 1980), 47-56.

8. Reference Manual for the Ada Programming Language (proposed standard), U.S. Department
of Defense, Washington, D.C., Nov. 1980.

9. SHERMAN, M. A flexible semantic analyzer for Ada. SIGPLAN Notices (ACM) 15, 11 (Nov.
1980), 62-71.

10. WALLIS, R.J., AND SILVERMAN, R.W. Efficient implementation of the Ada overloading rules.
Inf. Process. Lett. 10, 3 (Apr. 1980), 120-123.

11. WEGNER, P. Programming with Ada: An Introduction by Means of Graduated Examples.
Prentice-Hall, Englewood Cliffs, N.J., 1980.

Received May 1981; revised November 1981 and March 1982; accepted March 1982

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

